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A b strac t

This thesis provides a unique cryptosystem comprised of different number theory 
applications. We first consider the well-known Knapsack Problem and the resulting 
Knapsack Cryptosystem. It is known that when the Knapsack Problem involves a 
superincreasing sequence, the solution is easy to find. Two cryptosystems are designed 
and displayed in this thesis that allow two parties often called Alice and Bob use a 
common superincreasing sequence in the encryption and decryption process. They 
use this sequence and a variation of the Knapsack Cryptosystem to send and receive 
binary messages. The first cryptosystem assumes that Alice and Bob agree on a shared 
superincreasing sequence prior to beginning encryption. The second cryptosystem 
involves Alice and Bob constructing a common, secret, superincreasing sequence built 
from subsequences of the Fibonacci sequence during the encryption process. Elliptic 
curves were explored on a smaller scale as they are also applied in cryptography. For a 
fixed prime number p and a special class of elliptic curves over Zp, we investigate how 
many of them intercept the y-axis. Additionally, the research presented in this paper 
was successfully implemented into a middle school classroom.

Chapter 1 includes introductory material about cryptography. Chapter 2 discusses 
superincreasing sequences and their appearance in Fibonacci subsequences. It also 
includes important properties of the Fibonacci sequence. The two cryptosystems are 
presented in Chapter 3 followed by the brief findings of the intersection of elliptic curves 
with y-axis in Chapter 4. Finally, Chapter 5 introduces a middle school lesson plan 
that provided students the experience of cryptography and increased their appreciation 
of mathematics. A few other lesson plans are provided in the appendix.
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1 Introduction to  C ryptography

Cryptography is a branch of m athem atics th a t has been incorporated into our daily lives. 

As the science of creating secure and efficient codes, it uses various algorithms, known as 

cryptosystems, to send and receive secret messages. Originated in ancient civilizations, cryp­

tography plays an ever im portant role in today’s society. Every tim e a credit card is swiped 

or a com puter is used, a security m ethod built from a cryptosystem is applied. It is most 

significant in m atters related to cyber and national security. Deeply rooted in the processes 

of cryptography is a discrete branch of m athem atics known as Number Theory. This project 

will focus on specific applications of Number Theory in their relevance to cryptography.

Basic Term inology

It is im portant to be familiar with the various terminology of crytography. Two parties, 

often named Alice and Bob, are trying to communicate in such a way th a t an adversary, 

often named Eve, cannot understand the message. Ideally, the cryptosystem should be built 

so th a t even if Eve intercepts a message, he or she cannot uncover its meaning. Therefore, 

it is crucial th a t a cryptostem  is both efficient and secure.

Encryption

Encryption is the process of taking a plaintext piece of information and encoding it in such a 

way th a t only the intended recipient can receive and understand the message. The plaintext 

is coded using an algorithm and turned into a ciphertext.

Decryption

Decryption is the m ethod used to uncover a ciphertext. Through a reverse algorithm ,the 

message is discovered and translated back into the plaintext message.

6



Keys

The algorithm  involved in encryption and decryption often uses a key. There are two types 

of keys: public and private. A public key is one th a t can be known to someone other 

than  the two communicating parties. A private key can be used by a single communicating 

member. It is kept secret for all other members and outsiders. Cryptosystems can often use 

a combination of both public and private keys.

Throughout the project, we assume the message space is built from integers, integers 

mod a positive integer, or vectors of integers.

2 Superincreasing Sequences

P relim inaries

The first application in Number Theory involves a superincreasing sequence which is defined 

below.

D e fin itio n  1 . A sequence r =  { r i , r 2, . . . ,rn} of positive integers is superincreasing if ri+1 >  

V{ +  r*j_i H----- +  r i  for all i with 1 <  i <  n — 1.

An example of a superincreasing sequence is {2 ,3 ,7 ,15,31} as each number is greater 

than  the sum of the numbers before it. These sequences are relatively easy to create and are 

of great im portance to the well-known Knapsack Problem [5]. A simple decipher m ethod is 

based on the following problem:

P ro b le m  2.1. The Knapsack Problem

Given a vector a =  (ai, 02, . . . ,  a*) of positive integers and a positive integer A, the Knapsack
k- 1

Problem for (a, A) is to find a k-vector b =  (6i, 62, • • •, bif) £  such that ^2 afti =  A and k

is a positive integer.
i=0
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E x a m p le  1 . The solution to ((1,3, 7,20,42,107), 115) is (1 ,0 ,1 , 0 ,0 ,1 ).

Note th a t the Knapsack Problem may have no solution, exactly one solution, or more 

than  one solution. It is known th a t when the vector a is formed by a superincreasing sequence 

and the solution to the Knapsack Problem exists, then the solution is unique [4]. In this 

case, a simple algorithm can be applied to  find the solution. This algorithm is a key player 

in the Knapsack Cryptosystem  which will be explained shortly.

The Knapsack Problem  was first recognized in 1957 by George Dantzig. Dantzig, known 

for his contributions to Operations Research, connected this problem with other maximiza­

tion problems in the field. Work on the Knapsack Problem continued in the direction of 

approxim ation algorithms and other solution methods in the 1980’s [2]. The work on var­

ious solution techniques may have been sparked by the use of the Knapsack Problem in a 

public key cryptosystem. This system, as previously mentioned, is known as the Knapsack 

Cryptosystem  and is shown below.

The basic premise of the Knapsack Cryptosystem  is provided [4]:

1. Alice has a secret key th a t is a superincreasing sequence r =  {r*i, r q , . . . ,  rn}.

2. Alice chooses two private, large integers A and B such th a t B >  2rn and gcd(A , B) =  1.

3. Alice creates a public key M  =  (M l5 M2, . . .  Mn), which is an n-vector in Zn, by 

calculating Mi =  A • r* mod B  w ith 0 <  Mi < B.

4. Encryption process: Bob chooses a plaintext message x =  (aq ,:^ , • • • ,x n) which is a 

binary n—vector. He computes and publishes the ciphertext C  — x • M  =  YH=i xi ’ Mi

5. Decryption process: Alice computes

n  n n

C' =  A~XC  =  A~l XiMi =  A~l xiAri =  aqr* mod B.
¿=1 ¿=1 i= 1
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As Alice knows r, she can use Proposition 2.2 below to uncover the plaintext x from 

C'.

Note th a t in Step 5, C' =  Y^i=\xKi m°d  B. As B >  2rn,C' <  ri — rn +  rn — 

2rn < B Therefore, the solution to C' =  xKi m°d  & is equivalent to C' =  XlILi xKi 

so Proposition 2.2 can be used.

P ro p o s it io n  2 .2 . [f] Let r — { r i , . . . , r n} be a superincreasing sequence and let C' be a 

positive integer. Consider the Knapsack Problem for r and C'. Assuming that a binary 

solution x — (x i , . . .  ,x n) exists, then it is unique and can be computed with the following 

steps:

1. Determine xn first.

If C' >  rn, xn =  l. If C  <  r n, xn — 0 .

2. A new sum is assigned:

n

C' :=  ^ 2  xpri =  C  -  rnxn.2=1
Repeat the same procedure in Step 1 to find xn- \.

3. Continue through the procedure until all x fs  are determined.

The steps above are based on a well-known algorithm for solving the Knapsack Cryp­

tosystem. It is im portant to note th a t this algorithm not only finds a solution, but tha t 

solution is in fact unique. A proof for the uniqueness of x follows:

Proof. Let C' =  x xr x +  x2r 2H-------b xnrn =  y ir1+ y 2r2-\-------by^n  where x =  {x i,x 2, . . .  ,x n)

and y =  {yx, y2, . . .  yn) are both  in Z^.

Then

(yn ~ xn)xn =  (x i -  y i)n  H------- b {xn- i  -  yn- i) r n- i
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which implies

n — 1 n — 1
|Vn -  X n V n  <  \ x j  -  2/ih <  }  n  since -  y i \  <  1 for alH =  1 , 2 , . . . ,  n -  1 

¿=1 i=  1

If xn 7̂  yn, then |xn — yn\ =  1. Thus r n <  r^. This is a contradiction as r is

a superincreasing sequence. Thus, xn =  yn. By m athem atical induction, X\ — y\,X 2 =

2/2, • • • ,x n =  yn so x =  y. □

E x a m p le  2 . Consider the Knapsack Problem in Example 1: ((1, 3, 7, 20,42,107), 115). 

Following Step 1 shown above, we compare 115 and 107. As 115 >  107, we assign xq =  1. 

For Step 2, our new C' — 115 — 107 =  8 . Continuing to r5 =  42, we compare 8 and 42. 

Tls 8 <  42, we assign £5 =  0 and therefore C' remains 8. Similarly, we would find £4 =  0 . 

Comparing r%, 8 >  7 50 x% =  1. Our new C' — l and trivially, X2 =  0 and X\ — 1. Therefore, 

the solution is (1, 0, 1, 0, 0, 1).

For convenience, with superincreasing sequence r — I n ,  7*2, . . . ,  r n}, we denote r =  

{r h r2 , • • • ,?"n) and call it a superincreasing vector. We will now show an example of the 

Knapsack Cryptosystem.

E x a m p le  3.

1. Alice has a secret key r — (1, 2 ,5 ,13, 34, 89, 233, 610) which is superincreasing.

2. She chooses A =  101 and B =  1221. Note that B >  2rn and gcd(A , B) =  1.

3. Alice calculates the non-negative residue of M  =  A • mod B and obtains M  =  

(101,202, 505,92,992,442,334,560) and sends this to Bob.

4- Encryption: Bob has a plaintext message x =  (0, 0, 1, 1, 0, 0,1, 0). He computes C =  

x • M  =  931 and sends it over to Alice.
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5. Alice computes C' =  A~l C  mod B. Here, A~l =  677 which can be found using the 

Euclidean Algorithm. Thus, C' =  (677)(931) mod 1221 =  251. Using Proposition 2.2, 

she achieves the plaintext message x — (0, 0, 1, 1, 0, 0, 1, 0).

P ro p e rtie s  of th e  F ibonacci Sequence and R elated  Sequences

Because superincreasing sequences are so relevant to the Knapsack Cryptosystem, we ex­

amined a few different sequences for their superincreasing nature. One of the most com­

monly known sequences is the Fibonacci sequence (F n}£°. The numbers in this sequence 

are created by adding the two previous numbers in the sequence. The first few term s are 

{ 0 ,1 ,1 ,2 ,3 ,5 ,8 ,1 3 ,. . .} .

D e fin itio n  2. The Fibonacci sequence is defined as: F0 =  0, Fi =  1, Fn+2 — Fn +  Fn+1 for 

all non-negative integers n.

The Fibonacci sequence has several im portant properties. The following property is of 

utm ost im portance to this paper.

P r o p e r ty  2.3. [12] Fn+2 =  Fl +  F2 H------- \-Fn +  l.

On the surface, the Fibonacci sequence appears to follow a recursive formula. However, 

Binet derived an explicit formula for the sequence in 1843 based on the Golden ratio a  =  

The formula follows.

P ro p o s it io n  2.4. Let a  =  and (3 =  so that a and (3 are roots of the equation 

x2 =  x +  1. Then Fn =  for all n >  1.

The num ber a  is known as the Golden Ratio. The following corollary is a direct result 

of the above formula.

C o ro lla ry  2.5. For any n G Z +, Fn <
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Proof. From B inet’s formula, we know th a t a =  1+2̂ , (3 - 1~2V̂  and Fn =  a ^  . Now 

since |<a| >  |/3|, and |a | >  1, we can say th a t \a\n >  \(3\n. Therefore, a n +  \(3\n < 2an. 

Because of this, we can say th a t Fn =  a- fJQ- <  ^  and since a  <  2, we can conclude th a t
o n + l

F» <  V - □

L e m m a  2.6. Consider positive integers n ,g >  1. Let p be a prime number such that p > g.

Then if 0 <  R < log2( V E p ) - g - l  
n — 1 , then F5+i?(n_i) <  p

Proof. We know th a t R <

2 R ( n - l ) + g + l  <  ^ p

log2( y / 5 p ) - g - l
n —1 < log2( F 5 p ) - g - l

n—1 so R(n—l)+ g + l <  log2(V%>) which implies

Thus from Corollary 2.5, Fg+^ n^  <
2 R ( n - l ) + g + l

7 T -
< p .

□

As previously mentioned, superincreasing sequences play a key role in the Knapsack 

Cryptosystem. As we move to the Fibonacci sequence, it can be shown th a t this is not a 

superincreasing sequence. We will also prove th a t any consecutive subsequence of length at 

least three is also not superincreasing.

L e m m a  2.7. The Fibonacci sequence is not a superincreasing sequence. In particular, any 

consecutive finite subsequence {Fm, Fm+1, . . . ,  Fm+r} where r >  2, m >  0 is not superincreas­

ing.

Proof. A simple counterexample will prove th a t Fibonacci sequence is not superincreasing. 

Consider the first few term s of the sequence: {0,1,1, 2, 3 ,5 , . . .  }. It can easily be seen th a t 

3 < 0  +  l +  l +  2. In other words, F4 ^  Y^=o

Now consider the sequence {Fm, Fm+1, . . . ,  Fm+r} for m  >  0 ,r  >  2. A simple check shows 

th a t Fmjr3 — Fjjj_j_2 T  Fm+1 Fmjr2 T  Fm+1 T  Fm. Thus, F177,-1-3 ^  Fm+2 T  Fm+1 -I- Fm. D

12



This project considers not only the Fibonacci sequence, but also Lucas sequence. The 

Lucas sequence {Ln}g°, while very similar to the Fibonacci sequence, begins with the integers 

2 and 1 and follows the same rule after the first two numbers. Thus by definition, Lq — 

2,L \ =  1 and Ln+2 =  Ln +  Ln+i if n >  0 ,n  G Z. Therefore, Lucas sequence is as follows: 

{2,1,3,4,7,11, . . .  } which is not superincreasing. Lucas sequence can be directly linked to 

the Fibonacci sequence with the following formula. [12]

L e m m a  2.8. Ln =  Fn_i +  Fn+1 =  Fn +  2Fn_i

Lucas sequence is expressed in Lemma 2.8 as a linear combination of certain Fibonacci 

numbers. Therefore, it is no surprise th a t Lucas is not a superincreasing sequence.

S uperincreasing  Subsequences of th e  F ibonacci Sequence and  Lucas 

Sequence

Although the Fibonacci sequence is not a superincreasing sequence, a closer look shows th a t it 

does have many superincreasing subsequences. For example, the even term s of the Fibonacci 

sequence, { 0 ,1 ,3 ,8 ,2 1 ,. . . ,} ,  form a superincreasing sequence. In fact, any subsequence th a t 

does not use consecutive Fibonacci numbers forms a superincreasing sequence.

T h e o re m  2.9. A. subsequence S  — \̂ Fm  ̂ Fm.\rri .̂r^1. . . ,  FA-)-ri+r2H— • • • } of the Fi­

bonacci sequence is a superincreasing sequence if d >  1, with all r* >  2 .

Proof. Let d be a positive integer. Then by Property 2.3 above,

F m+r\+r2-\ l-i’d ~  Fi +  F2 T  * ' * T  Fm.  l-̂ d- 2 T  1.

Since all >  2 and — 2 >  0, then m-\-ri +  r2 -\-------b i  +  — 2 >  m  +  r i + r 2H-------br^-x

13



which implies th a t

Fm,+ri+r2-{--- \-Td-l+̂ d 4" -^m+ri T  • • ' T  -fm+ri+^H--- hrd-i-

for all positive integers d. Thus, S =  {Fm, Fm+ri, Fm+n+r2, . . . ,  Fm+ri+r.2+...+rd, . . .  } is super- 

increasing. □

If all are the same, we obtain a special case of the above theorem. This case creates 

a subsequence of the Fibonacci sequence with evenly spaced terms. For example, 0, 1, 1, 

2, 3, 5, 8 , 13, 21, 34, 55, 89... is Fibonacci Sequence out to the 12th term. Consider 

the subsequence created with every th ird  number: 1, 5, 21, 89. This subsequence is a 

superincreasing sequence.

C o ro lla ry  2 .10 . A subsequence D =  {Fm, Fm+d, Fm+2d, Fm+3d, . . . ,  Fm+kd} of the Fibonacci 

sequence is a superincreasing sequence for all d >  1 and k >  0 .

Proof. If k =  0, we have {Fm} which is trivially superincreasing. If k >  0, this is a direct 

result of the previous theorem. □

The above theorems show th a t there are an infinite number of superincreasing subse­

quences of the Fibonacci sequence. Moving on to Lucas sequence, we can follow the same 

logic. As previously stated, Lucas sequence is a linear combination of Fibonacci sequences. 

Consider the following lemma. [12]

L e m m a  2.11. If a n and [3n are superincreasing sequences, then aan +  b(3n is superincreasing 

for all a, b >  0 .

We can create superincreasing subsequences of Lucas sequence if we use a linear combi­

nation of superincreasing Fibonacci subsequences.

14



G eneralized ¿-Superincreasing Sequences

Proposition 2.2 is the main piece to the Knapsack Cryptosystem  but the solution must be 

binary. W ith such a valuable proposition, one might ask, “Can we find other sequences tha t 

guarantee the uniqueness of the solution to a Knapsack Problem and the solution can be 

retrived similarly?” A generalization of superincreasing sequences, callled t —superincreasing 

sequences, is defined below.

D e fin itio n  3. A sequence r — ( r i , r 2, . . . ,rn} of positive integers is t-superincreasing if rn >  

(t — l) ( r i  +  r 2 +  • • • +  r n_i).

The superincreasing sequence, defined earlier in this paper, is a 2-superincreasing se­

quence. We now consider a 3-super increasing sequence r  =  {ri, r 2, . . . ,  rn} such th a t >  

2(r*i +  r 2 H------- b r<_i) for a lH  =  2, 3 , . . . ,  n.

T h e o re m  2.12. Consider the Knapsack Problem for a 3-superincreasing sequence r =  

( r i ,  r 2, . . . , r n} and a positive integer S.

1. If a solution exists in Z 3, then it is unique.

2. Let x — (xi, x 2, . . .  , xn) €  Z 3 be a solution then

0 if S < r n

1 if rn < S <  2 r,

2 if >  2r n.

(i)

Proof 1. S < rn if and only if xn — 0 because

S < rn &  xprx +  x2r2 H------- b xnrn < rn

x in  +  x2r2 H------- b xn_ ir„_ i <  r n (l -  xn)

^  xn =  0 since x \ n  +  x2r2 H------- b xn- \r n- \  >  0.

15



2. rn <  S  <  2rn if and only if xn — 1 since

rn < S < 2rn rn < x in  +  x2r2 H------- 1- xnrn <  2rn

rn( 1 -  xn) <  x i n  +  x2t2 H------- h £n_ irn_i <  r n(2 -  xn)

<=>■ xn =  1 since aqri +  £ 2̂ 2 +  • • • +  xn_ irn_i >  0 and 

r n >  2(ri +  r 2 H------- h r n_i) >  ^ r i  +  x2r2 H------- h xn_ irn_i.

3 . S >  2rn if and only if xn =  2 because

S > 2 r n <  ̂x iri +  x2t2 H------- h £n_ irn_i >  r n(2 -  a;n)

xn =  2 for similar reasons named above.

□

This algorithm  can truly be applied to any t —super increasing sequence.

T h e o re m  2.13. Consider a Knapsack Problem (r,S) where r is the t-superincreasing se­

quence created from r and S is a positive integer.

1. If a solution exists in Z™, then it is unique.

2. Let x =  (#i, x2, . . . ,  xn) G Z ” be a solution then

xn <

0 if S < r n

1 if rn <  S < 2 rn

2 if 2 rn < S < 3r,

J  -  1 if S > ( t -  1 )rn

(2)

The proof of this theorem is similar to the previous proof. Therefore, it has been omitted.
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3 C ryptosystem  using the Fibonacci Sequence

Two Variations of the Cryptosystem

Using our knowledge of the Knapsack Cryptosystem and superincreasing sequences, we cre­

ated the following cryptosystems. The first cryptosystem assumes th a t Alice and Bob possess 

a common key in the form of a superincreasing sequence before any interactions take place. 

The second cryptosystem  allows Alice and Bob to create a common shared key amidst the 

system.

Cryptosystem  Version 1: Secret Key Provided

Alice and Bob share a common key in the form of a superincreasing sequence which is pro­

vided beforehand and represented by the vector r — ( n ,  7*2, . . . ,  rn).

The public keys include g £ Z + ,<7 ^ 1, and a large prime p such th a t p >  2rn. Alice has a 

secret key a £ Z + such th a t gcd(a,p — 1) =  1 and Bob has a secret key k £  Z + such th a t 

gcd(k,p — 1) =  1.

1. Alice computes A =  ga mod p and sends A to Bob.

2. Bob encrypts his plaintext message x €  Z£ by sending (01, 02) to Alice where C\ =  gk 

mod p and C2 =  Ak(x • r) mod p.

3. Alice decrypts the messages by doing C' =  (ci)~a(c2) mod p. She then solves the 

Knapsack Problem with {r, C"} to get back to the plaintext message x.

Proof.

(ci)~a(c2) mod p =  (gka)~lgkax ■ r =  x ■ f

Because p >  2rn, this result is just a Knapsack problem with (r, x • r) and Proposition 2.2 

can be used to solve for x. □

17



E x a m p le  4. Alice and Bob have the common, secret key f  =  (1 ,2 ,5 ,13,34,89,233,610) 

which is superincreasing.

Public Keys: g =  99 and p =  1223.

Private Keys: Alice’s a — 7 Bob’s k — 3.

1. Alice computes A =  ga mod p =  856 and sends this to Bob.

2. Bob has the plaintext message x =  (0, 0 ,1 ,1 ,0 , 0,1, 0). He computes (01, 02) where 

C\ =  460 =  gk mod p, and C2 =  45 =  Ak(x • r) mod p. Bob sends (460,45) to Alice.

3. Alice computes C' =  (ci)~a(c2) mod p. c fa =  351-1 mod p =  233. C' =  251. 

She solves the Knapsack Problem for (r, 251) to recover the plaintext message x =  

(0, 0, 1, 1, 0, 0, 1, 0).

The above cryptosystem  is based on the fact th a t Alice and Bob already have a common 

superincreasing sequence. This is a fairly large assumption so we have created another 

similar cryptosystem  th a t creates a common superincreasing sequence based on Fibonacci 

subsequences.

Cryptosystem  Version 2: Secret Key Created

The following are public keys: a fixed n  £ Z + such th a t n >  2, a large prime p »  2l°Ĵ  , 

and g £ Z + such th a t 1 <  g <  log2(v /5p) — 10n +  9, and p \ g.

Alice has a secret key a £ Z + such th a t gcd(a,p — 1) =  1 and Bob has a secret key k £ Z + 

such th a t gcd(k,p — 1) =  1.

1. Alice computes A — ga mod p and sends A to Bob.

2. In order to encrypt his plaintext message x £ Z£, he needs to create a superincreasing
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vector r. Bob computes K  =  Ak mod p. He then computes

log2(V$p) -  g -  1u =  -------------------------  .
n — 1

If K  < u ,

r  =  { F g i  F g + K ,  F g + 2K l ■ • ■ 1 F g + ( n - 1) # } ’

If K  >  u,

T ~  {F g , F g+Vl Fg+2w) • • • 1 Fg+(n— I ) « }  

where v =  I — I and w — I — I +  1.LW-1 L U J

Bob can now encrypt x  by sending (ci,C2) to Alice where C\ — gk mod p and C2 =  

Ak(x • r) mod p.

3. Alice computes K  — c\ =  gka mod p. She then creates a superincreasing vector r in 

the same m anner as Bob. They now have a shared, secret, superincreasing sequence r.

4. Alice decrypts the messages by computing C  =  (ci)- a (c2) mod p. She then uses the 

special proposition with C  and r to get back to the plaintext message x. This result 

occurs because (ci)_a(c2) mod p =  (gka)~lgkax • r =  x ■ f  mod p.

Proof. Because p >  2l^h , \fhp >  210n 7. This implies log2{\[hp) >  10n — 7 so log2(V^p) — 

10n +  9 >  2. As g < log2(y/bp) — 10n +  9 , we can conclude th a t g >  2.

1. Case 1. K  <  w, r =  {Fg, Fg+Kj Fg+2K:•••■> Fg+(

We need to show th a t K  >  2 so th a t r is superincreasing.

Because gcd(a,p — 1) =  1 and gcd{k,p — 1) =  1, K  =  gak mod p >  1. Thus K  >  2. 

Then from Theorem 2.9, we know th a t f  creates a superincreasing sequence. To prove 

F g + ( n — 1)K  P •
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Because K  <
log2(y/bp) -  g

n

we can use Lemma 2.6 to show th a t Fg+^ i ) K < p. Because the last number in our 

sequence is less than  p, Proposition 2.2 can now be used to uncover the message.

2. Case 2. K  ^  ri, T {Fg, F'g+vi 2uj • • ■ Fg+(n— l)v}'

We need to prove v >  2:

P I  2l°yE 7 so >  210n_7 >  210n~9 => log2(V^p) — 10n +  9 >  0 

Since g <  log2 (V^p)~  10n+9, then g+lOn—9 <  log2 (V^p) =>• g+ n+ 9n —9 <  log2(y/&p)

Thus 9(n — 1) <  log2(VEp) — g — n =$■ 9 <  Zog2̂ ^ p|~g~n =  — 1

From here, we know th a t 9 <  l°92(V5p)-g-i _  \ < u Thus 6 <  u — 3. Then 

<  1 => <  ti <  iL in this case.

Therefore, K  >  =>• K u -  3K  > Q u ^ K > 6 +  — — 3(2 +  —

This implies iL >  3(1 +  |_^J) so K  > 3 w  or in other words F  >  3.

Lastly, v — >  F  — 1 >  2 Because u >  2, from Theorem 2.9, we know th a t r

creates a super increasing vector.

To prove Fg+{jl_l)v < p:

K K
u U f j  +  j J

<
K
~K

V <
log2(V5p) -  g -  1

n — 1

Now using Lemma 2.6, we can show th a t Fg+(n-i)v < p. Because the last number in 

our sequence is less than  p, Proposition 2.2 can now be used to  uncover the message.

□
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E x a m p le  5. Public Keys: n =  A,g =  2,p  =  12431470127 

Private Keys: Alice’s a =  7, Bob’s k =  11

1. Alice computes A =  ga mod p, A =  128.

2. Bob has the plaintext message x =  (1 ,0 ,1 ,1 ). He computes K  =  Ak mod p, K  =  

8362875137 and u — 10. Because K  >  u, Bob finds r — (1,89,6765,514229) which is 

superincreasing. He then sends Alice (01, 02) =  (2048,9618950101).

3. Alice computes K  =  c\ mod p. She similarly finds r — (1,89,6765,514229).

4- Alice decrypts the message by computing C' =  (ci)_a(c2) mod p. She finds C' =  520995 

and uses Proposition 2.2 to solve the Knapsack Problem for (r,C') to get back to the 

plaintext message x =  (1, 0, 1, 1).

Version 2 of the cryptosystem  has quite a few intricate steps. To increase the feasibility 

of the com putations, an algorithm for the cryptosystem  has been w ritten using the software 

SAGE and can be found in the Appendix. The next part of this paper will consider another 

piece of cryptography th a t uses many applications in Number Theory.

4 A Special Case of E lliptic Curves and the Points on  

the Y -A xis

Elliptic curves are becoming increasingly im portant in the world of cryptography. Elliptic 

Curve Cryptography, or ECC, represents one of the most modern methods used today. In 

this chapter, we will examine a special class of elliptic curves and establish when this set of 

curves will have a ^-intercept. An elliptic curve E  over a field F is defined by an equation 

of the form y2 =  x3 +  Ax +  £ ,  where A, B E F satisfy 4A3 +  27B2 0. A pair (x, y ) where
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x, y E F, is a point on the curve if (x, y ) satisfies the above equation [4]. Elliptic curves have 

their own binary addition defined in a specific way. ECC uses the algebraic structure of the 

curve y2 =  x3 +  Ax +  B  over a field F to encrypt and decrypt messages. Precisely, E  is 

defined as follows:

D e fin itio n  4. E(¥) =  {(x,y) \ x, y E F, y2 =  x3 +  Ax 4- B}  |J{ (9} , where O represents 

the identity of this closed algebraic group. The operation of the group is represented as ©, 

defined below:[4]

Let P\ =  (xi,yi) and P2 =  (x2,y2) be points on E.

1. For every P  6  E(F ) ,P @ 0  =  P  =  0 ® P

2. If x\ — X2 and y\ =  —y2, then Pi © P2 =  O.

3. If x 1 /  x2, Pi © P2 =  (x3, 2/3) where

x3 =  A2 -  xi -  x2 and y3 =  X(xi -  x3) -  2/1 •

for

_  I  (2/2 -  yi)(x2 -  Xi)-1 i f  Pi ±  P2 

\  (Zx2 +  A)(2yi)-1 i fPi  =  P2

E x a m p le  6 . For example, if E is an elliptic curve E F 7, then the curve y2 =  x3 +  lOx — 2 

consists of the following points:

{'O , (1,3), (1,10), (2,0), (3,4), (3,9), (5,2), (5,11), (6,1), (6,12), (11,3), (11,10), (12,0)}.

Elliptic curves, as previously mentioned, are curves of the form y2 =  x3 +  Ax +  B. It is 

im portant to notice th a t the left hand side must be a perfect square. In a finite field, perfect 

squares are called quadratic residues.
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D e fin itio n  5. [11] If m is a positive integer, we say that an integer a is a quadratic residue 

of m if (a, m) =  1 and the congruence x2 =  a mod m has a solution. If the congruence 

x2 =  a mod m has no solution, we say that a is a quadratic nonresidue of m.

E x a m p le  7. 3 is a quadratic residue modulo 13 because 42 =  3 mod 13. On the contrary, 8 

is a quadratic nonresidue because there is no integer which, when squared, will give 8 modulo 

13.

It will be shown in a later section why quadratic residues play an especially im portant 

role in elliptic curve cryptography. Because of their importance, it is valuable to know some 

key properties of quadratic residues. These properties can also be found in any number 

theory book.

P ro p o s it io n  4 .1 . Let p be an odd prime number.

1. The product of two quadratic residues modulo p is a quadratic residue modulo p.

2. The product of a quadratic residue and a quadratic nonresidue modulo p is a quadratic 

nonresidue modulo p.

3. The product of two quadratic nonresidues modulo p is a quadratic residue modulo p.

D e fin itio n  6 . [4] Letp be an odd prime and a be an integer not divisible by p. The Legendre 

Symbol is defined as

11 if a is a quadratic residue of p 

— 1 if a is a quadratic nonresidue of p.

Using this definition, a is a quadratic residue of p if and only if ( -  ) =  1. The next
\ P j

theorem states some of the basic properties of the Legendre Symbol.
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T h e o re m  4.2 . Let p be any odd prime and a and b be integers not divisible by p. Then

1. if a =  b (mod p), then (jfj =  ( j^ .

*• I

3. ( ^ )  = 1 .

T h e o re m  4.3 . [4] Let p be an odd prime, then

V

1 ifp  =  1 (mod 4) / 2

— 1 if p =  3 (mod 4),

1 if p =  1 or 7 (mod 8)

— 1 if p =  3 or 5 (mod 8).

1 if p = 1  or 11 (mod 12) 

1 if p =  5 or 7 (mod 12),
and

1 if p =  1 or 4 (mod 5)

— 1 if p =  2 or 3 (mod 5).

Theorem 4.4 (T he Law of Q uadratic  R eciprocity). [4] Let p and q be distinct odd primes.

Then

T h e o re m  4.5.

-  -  qj  \ p
( - 1) 2 2

if p =  1 (mod 4) or q =  1 (mod 4) 

if P =  3 (mod 4) and q =  3 (mod 4)

Some equations of the form x3 +  Ax +  B can be factored as (x — a)(x — a2)(x +  a +  a2) 

where a G Z. We consider this factorization of an elliptic curve a special case of interest.
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Recall Example 6. Notice th a t this curve does not have a y-intercept. A question naturally 

asked is: using the previous factorization, can we predict the number of a values th a t will 

result in curve with a ^/-intercept?

Methodology

L et’s assume we work with a finite field, Zp where p is an odd prime. As mentioned earlier, 

there is one condition th a t must hold for elliptic curves, th a t is, 4A3 +  27B2 ^  0. This 

requires th a t the curve not have any double roots. In other words, all factors are distinct. 

This restricts the possible a values in our factored form. For any prime p, a ^  0,1, —2, (—2)“ 1 

in order to guarantee th a t (x — a)(x — a2)(x +  a +  a2) does not have any double roots in Zp.

In order to explore the p-intercepts of the curve, we set x =  0. The equation be­

comes y2 =  a4(a +  1). For a solution to exist, a +  1 =  b2 for some b £ Zp. Thus 

y2 =  a4b2 =  (a2b)2 =+ y =  ± a 2b.

In this case, two solutions exist: (0, a2b) and (0, — (a2b)). However, if a2b — —(a2b) then 

2 a2b =  0.

W ith the condition th a t a ^ 0 , l ,  —2, (—2)-1 in Zp, this implies th a t p | ( a + l )  or p\b which 

implies th a t a =  — 1. Thus, the curve has p-intercepts if and only if a +  1 is a quadratic 

residue of p. W hen a +  1 is a quadratic residue, there exists two p-intercepts if and only if 

a 7̂  —1.

D e f in itio n  7. For an odd prime p, define Sp =  {Ea(Zp)\y2 =  (x — a)(x — a2)(x +  a +  a2) 

mod p where a G Z , a / 0 , l ,  —2, (—2)-1 mod p}

Now the question is: for a fixed prime p, how many Ea(Zp) 6 Sp intersect with the y-axis? 

We know th a t a ^  0,1, —2, (—2)_1 thus a +  1 ^  1,2, —1, (—2)-1 +  1. To know how many a ’s, 

for a set p, will have a solution, we need to remove the values listed above th a t are quadratic
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residues. One should note th a t if 2 is a quadratic residue then 2_1 is a quadratic residue. 

However, (—2)_1 +  1 =  2_1 so (—2)-1 +  1 is a quadratic residue which can also be proven 

using Legendre symbols.

T h e o re m  4.6. Consider Ea G Sp. Assume p =  r mod 8 (0 <  r  <  8). There are mr many 

a ’s G Zp such that the elliptic curve Ea has a y-intercept.

' p +  r

mr p +  r  — 4

p +  r  — 12

if r  =  1,5 

if r  =  3 

if r =  7

(3)

Proof It is known th a t for a given p, there are exactly yy- quadratic residues. We investigate 

how many values of a +  1 can be quadratic residues. Since a ^ O j a + l ^ l s o  can be 

quadratic residues. W ith the added condition th a t a +  1 ^  2, — 1, 2—1, we can count how 

m any a ’s such th a t a +  1 is a quadratic residue. This all depends on how many amont the 

three values: 2 , - 1 ,  2-1 are quadratic residues of p. We will subtract the values from

1. If p =  1 mod 8 =+ —1,2, (—2)—1 +  1 are quadratic residues so there are (p — 7)/2 

quadratic residues.

2. If p =  3 mod 8 => —1, 2, (—2) 1 +  1 are not quadratic residues so there are (p — l )/2 

quadratic residues.

3. If p =  5 mod 8 +> — 1 is a quadratic residue but 2 and (—2) 1 are quadratic residues 

so there are (p — 3)/2  quadratic residues.

4. If p =  7 mod 8 =+ 2, (—2)-1 are quadratic residues but —1 is not so there are (p —5)/2 

quadratic residues.

□
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E x a m p le  8 . Consider the special elliptic curve with p =  11. Since 11 =  3 mod 8, r  =  3. 

Therefore, p+”~4 =  1-:y - -  =  5. There are 5 values for a which, when x =  0, will provide 

a y-intercept on the curves. These a values are the following: 2, 3, 4, 3, 10. For example, 

when x =  0 and a =  2, y2 — 4. Therefore, the points (0, 2) and (0,9) are y-intercepts on the 

curve y2 — (x — 2){x — 4)(x +  6).

5 A pplications in Education

This research was funded by the National Science Foundation through a program called 

“GK-12: Fellows in the Middle” a t Montclair State University. Through this program, m ath 

and science graduate students are paired up with a team  of middle school science and m ath 

teachers, and their research advisors. The graduate students, or fellows, a ttend  the middle 

school once a week to teach integrated m ath and science lessons. The author of this paper, 

the m ath  fellow, was paired with Jessica Evans, the science fellow. Our team  worked in 

cooperation with Noreen Wiggins and Catherine Sickinger, the 6th  grade m ath and science 

teachers, respectively, a t the Franklin School in Kearny, New Jersey. There are several goals 

for the GK-12 program. At the very least, the program aims for the middle school students 

to experience m ath and science in a whole new light. The middle school students have 

the opportunity  to observe the graduate fellows in fields of which the young students may 

have never heard. The integrated lessons are refreshing and the students are often sparked 

with new interest in m ath  and science. Another im portant goal of the GK-12 program is 

to provide the teachers with sample integrated lessons and general ideas on how to increase 

students’ interest in STEM fields. Teachers are often overwhelmed with the amount of cur­

riculum they are required to teach. By integrating m ath with science, previous concepts can 

be reinforced while teaching a new idea. An additional im portant goal of the GK-12 Program  

is to allow the graduate students to enhance their own communication skills. Consequently,
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the fellows are asked to create middle school lessons based on their research topics. As cryp­

tography is often unheard of in a middle school classroom, the author of this thesis took the 

opportunity  to show the students a brand new side of m ath. Displayed below is a lesson 

titled  “Shift Cipher Shenanigans.” The lesson introduces the concept of Cryptography to the 

students. They then learn the most basic cryptosystem, the Shift Cipher. Two additional 

lesson plans can be found in the appendix. The first, titled  “How to Sound Like a Secret 

Agent” reviews more vocabulary and introduces the Substitution Cipher. The second is a 

lesson plan th a t explores the basics of m odular arithmetic. It is titled  “Modeling Modular 

A rithm etic.” Through these lessons, key middle school concepts are reinforced. For example, 

dividing with a remainder is relevant to m odular arithmetic.

Lesson: Shift Cipher Shenanigans 

Grade: 6

Time: One 45 M inute Class Period 

Materials:

•  Jumble Warm-Up

» W heel W orksheet printed on Cardstock (20)-precut to save time 

« Practice Sheet

• Paper Fasteners (25)

Goal: The students will be introduced to cryptography and specifically, the shift or Caesar 

cipher.

Objective: Students will code and decode various messages using the shift cipher cryptosys­

tem.
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Standards Addressed:

-M ath Common Core: 6.EE .2, 6.EE.4 

-NJCCCS Science: 5.1.4.A..2, 5.1.4.A.3, 5.1.4.B.2 .

Procedure/ Lesson:

•  Warm-Up: Find the daily jumble @ http ://jum ble.com /gam es/info /13

• Tell the students th a t we are going to s tart with a game today. The object is to jumble 

the letters around to find the right word. Make it a class effort. If necessary, click hint. 

Note: This may be necessary as some words may be above their vocabulary. **Dont 

let the warm-up go beyond 7-8 minutes.

• Ask the students if they liked th a t activity. Some may love the activity and some may 

not. Explain th a t puzzle solving can be very similar to M athem atics is several ways. 

One m ajor way th a t puzzle solving is related to M athem atics is through Cryptography.

• W rite the word “cryptography” on the board so the students can see it. Describe 

cryptography to  the students in the following way.

— Cryptography is a whole area of m athem atics dedicated to sending and receiving 

secret messages. There are m athem aticians th a t spend quite a bit of time study­

ing— different ways of sending and receiving these messages in a secretive way. 

Today, we are going to learn just one of those ways.

• Let us take a moment to think of why we need to send messages in a secret way.

•  If I wanted to  send a message to Ms. Wiggins without anyone else (student OR teacher) 

reading it, how can I do that?
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— Students may respond in the following ways and the following responses should 

be given:

— Text Message - W hat if someone sees her phone and reads her messages?

— Email - If it is accidentally left open, someone could read it!

— Note - W hat if it is left somewhere and someone gets a hold of it?

•  Here is an idea! W hat if we wrote the message in such a way th a t even if someone saw 

it, they simply would not understand it. T hat is the general idea of cryptography.

» Now, le t’s think. How many letters are there in our alphabet? (26)

• W rite the alphabet in large letters on the board. (To save time - this can be done prior 

to the beginning of class.) Label the alphabet original.

• Today we are going to learn what is called a “shift cipher” . Here‘s the trick - we will 

take the alphabet and shift every letter a certain number of places to the left or right. 

For example, if we shifted the alphabet two places to the right, an “a” would be in 

the “c” spot, a “b” would be in the “d” spot ***Write the new (shifted) alphabet 

underneath while doing this- explain th a t when we get to the end of the alphabet, we 

must wrap around back to the beginning. Label the new alphabet as “new” .

•  Now if we wanted to write the word “A PPLE” with our new alphabet, we would have 

to use a “C” instead of an “A” , an “R” instead of a “P ” . (By now the kids will have 

caught on). W hat would “A PPLE” look like in the final product? (CRRNG)

— CRRNG -  APPLE

• If I wanted to tell Mrs. Wiggins th a t “I would like an apple.” I might send her a 

message th a t says “I would like a crrng.” This way if someone saw the message, they
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would not understand. It would be even better if we translated the whole sentence.

At your seats, please translate the sentence: “I would like an apple.”

» The original and new alphabets we have created are often seen in circular form. Today, 

you will each create your own wheel so th a t you can easily shift the alphabet however 

many places you’d like in whatever direction you would like. Pass out cardstock and 

assist students with making shift cipher wheels. The attached cipher wheel model was 

taken from the following website: h ttp :/ /tutorialsoneverything.blogspot.com /2011/05/cryptology- 

substitution-and-shift.htm l.

•  W hen the students finish their wheels, ask them  to come up and receive the following 

worksheets.

• For homework: The shift cipher has another name. Find out the other name for a shift 

cipher and where this name comes from.

Extension:

For the more advanced students, here are some possible follow-up questions:

a) W hat is the to tal number of ciphers th a t can be created with shift cipher wheels?

b) W hat is the to ta l number of ciphers th a t can be created with the letters of the English 

alphabet?
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N am e_________________________________Date________________________

Shift Cipher Worksheet

1. After shifting your alphabet 5 spaces to the right, rewrite the phrase: 

FRANKLIN SCHOOL IS THE BEST

2. Shift your alphabet 22 spaces to the right. Rewrite the phrase: 

LETS GO YANKEES

3. If you were to shift the alphabet 22 spaces to the right, how can we arrive at the same 

letters by moving to the left?

4. The following message was created by shifting the alphabet 21 places to the right, 

or five places to  the left. Find the original message. (Hint: S tart from the inside of your 

wheel.)

ADIY EVHZN W JIY

5. The following message was created by shifting the alphabet 4 places to  the right. How 

many left could it also be shifted? Find the original message.

XS KIX XS XLI SXLIV WMHI
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6 C oncluding Rem arks

The two cryptosystem s found in this thesis use simple applications of number theory in­

cluding the Knapsack Problem and superincreasing sequences. Both cryptosystems require 

th a t the message be of binary nature but by our concept of generalized superincreasing se­

quences, these systems can be adapted to messages of a non-binary system. The security of 

the second version of our cryptosystem  lies in the hidden, shared key. The key is made in a 

unique way so th a t even if a th ird  party  intercepted one number in the sequence, they would 

not know how to find the others as it is hidden in the Fibonacci subsequence. However, 

future research could be done to further examine the security and complexity of the system. 

This project also found several interesting properties of the Fibonacci sequence which are 

used in the development in the cryptosystem. It is natural to consider similar sequences 

for the same purpose. In fact, a sequence th a t is defined with the same recursive pattern  

as the Fibonacci sequence can be created using any random pair of starting  numbers. Any 

nonconsecutive subsequence of this new sequence may also be superincreasing. Future work 

can elaborate on this idea and explore the nature of Lucas sequence in order to incorporate 

it into the cryptosystem.

34



R eferences

[1] Anshel, Iris., Michael Anshel, Dorian Goldfeld. “An Algebraic M ethod for Public-Key 

Cryptography,” M athem atical Research Letters. 6. 1999.

[2] Bartholdi, John J., “The Knapsack Problem ,” Georgia Institu te  of Technology. 2008.

[3] Dudley, Underwood. “A Guide to Elementary Number Theory,” M athem atical Associ­

ation of America. 2009.

[4] Hoffstein, J., Pipher, J., Silverman, J.H.. “An Introduction to M athem atical Cryptog­

raphy,” Springer. 2010.

[5] Koblitz, Neal. “A Course in Number Theory and Cryptography,” Springer-Verlag, 1987.

[6] Luma, A., Raufi, B. “Relationship between Fibonacci and Lucas Sequences and Their 

Application in Symmetric Cryptosystem s,” Latest Trends on Circuits, Systems and 

Signals, 2010.

[7] Matousesk, Radomil. “Knapsack Cipher and Cryptanalyst Using Heuristic M ethods,”

Institu te  of Autom ation and Com puter Science, Brno University of Technology,___

[8] Menezes, A., Vanstone, S., “Elliptic Curve Cryptosystems and Their Im plem entation,” 

Journal of Cryptology, 1993.

[9] Paterson, Kenneth G. “Cryptography from Pairings: A Snapshot of Current Research,” 

Information Security Group, University of London. November, 2002.

[10] Raphael, A. Joseph, Sundaram, Dr. V., “Secured Communication through Fibonacci 

Numbers and Unicode Symbols,” International Journal of Scientific and Engineering 

Research, Vol. 3, Iss.4, April, 2012.

[11] Rosen, K enneth H. “Elem entary Number Theory ans its applications,” Pearson. 2005.

35



[12] Singh, Thokchom C hhatrajit. “Lucas Numbers and Cryptography,” M aster’s Thesis

National Institu te  of Technology Rourkela. 2012

[13] Weiss, Edwin. “Algebraic Number Theory,” McGraw Hill. 1963.

7 A ppendix

36



A A C ryptosystem  A lgorithm  U sing Sage

print ’Enter "n" (the message space). The following will check the necessary conditions 

n=4

pl= int(2~(10*n-7)/sqrt(5))

#print pi

p2=pl+2~33 #Makes p sufficiently large 

p = next_prime(p2) 

print ’Our prime i s ’, p 

h=int(log (sqrt(5)*p,2)-10*n+9)

print ’Enter a g value greater than 1 but less than or equal t o ’, h 

g=2.0

a=7

k=ll

print ’Check to see if p divides g: p/g = ’,(p/g)

print ’Check to see if a and p-1 are relatively prime: gcd(a,p-l)=’, gcd(a,p-l)

print ’Check to see if k and p-1 are relatively prime: gcd(k,p-l)=’, gcd(k,p-l)

A=mod(g~a,p)

print ’Alice sends to Bob A=g~a mod p, A = ’, A

print ’Bob: Enter plaintext message x in the next box and hit "evaluate" ’ 

##################################################### 

x = v ector([1,0,1,1]) 

print ’Encryption Process:’

K=mod(A~k,p) 

print ’K = ’, K

u = i n t ((log(sqrt(5)* p ,2)-g-1)/ (n-1))
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print ’u = ’,u 

if K < u:

print ’Case 1: K < u ’

K=int(K)

r=vector ([])

for i in range(0,n):

r=vector(list(r) + list(vector([fibonacci(g+i*K)]))) 

print r

print ’Dot product of r and x ’, r .dot_product(x)

cl=mod(g~k,p)

c2=mod(A~k*(x*r),p)

print cl

print c2

C =mod((cl~(a))~-l*c2,p) 

print C

e l s e :

print ’Case 2: K >= u ’

K=int(K)

w=int(K/u)+l

v=int(K/w)

r=vector ([])

for i in range(0,n):

r=vector(list(r) + list(vector( [fibonacci(g+i*K)]))) 

print ’The superincreasing sequence r i s ’, r 

m = r .dot_product(x) 

cl=mod(g~k,p)
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c2=mod(A~k*m,p) 

print ,c _ l = ’,cl 

print ,c _ 2 = ’,c2 

C =mod((cl"(a))~-l*c2,p)

print ’Alice now needs to solve the Knapsack Problem with (r, C ) ’ 

print ,r = ,,r 

print > C = } , C

B Lesson Plan 2: How to Sound Like a Secret Agent

Grade: 6

Time: One 45 M inute Class Period 

Materials:

•  Paper

•  Pencil

•  A ttached Substitution Keys 

Goal:

•  Students will be introduced to the im portant terminology often used in cryptography. 

•T hey will understand the difference between a substitution cipher and a shift cipher. 

Objectives:

•  Students will use correct vocabulary when working with cryptography.

•  Students will encrypt and decrypt messages using a substitution cipher.

Standards Addressed:

-M ath Common Core: 5.0A.3, 4.0A .5
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-NJCCCS Science: 5.1.4.A..2, 5.1.4.A.3, 5.1.4.B.2 .

P rocedure/ Lesson:

• As a warm-up, ask the students to report on what they found as the alternate name 

for a shift cipher and why. They should respond with the name “Caesar Cipher” as 

Julius Caesar used the m ethod to communicate with his troops.

• Ask one student to stand and give just a summary of what went on in the “Shift Cipher 

Shenanigans” lesson. This will be helpful for any student th a t was absent but it is also 

im portant for the students to be able to reflect back on th a t lesson.

• Im portant ideas to be sure are covered:

— Wheel

— “original alphabet” and “new alphabet”

— Apple =  crrng

• We are going to learn the technical term s used in cryptology. We will sound like 

complete secret agents after today! (as a new word is introduced, write it on the 

board)

•  L et’s s ta rt w ith the term  plaintext message. Last week, when we took “apple” and 

turned it into “crrng” , “apple” was the word we were trying to secretly send. The 

plaintext message is the original word th a t you want to send.

— The “crrng” is what we call the ciphertext. It is the message after it has been 

hidden.

— W hat is another example of a plaintext message and a ciphertext th a t we worked 

with last week?
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•  The process th a t took “apple” and made it “crrng” is what we call encryption. It is 

the process of encoding or hiding a message.

• If we were to  take the ciphertext, and decode it or unjumble it, th a t is what we call 

decryption.

— Summary: A PPLE CRRNG =  ENCRYPTION

— CRRNG A PPLE -  DECRYPTION

• The wheel th a t we used to encrypt and decrypt certain words and messages is called 

a key. If the key is known by many others, it is considered to be a public key. If the 

key is a secret, it is called a private key.

•  At this point, ask the students to recap and name the term s just discussed.

— W hat do you call the process of hiding a message? (encryption)

— W hat do you call the message after it is hidden? (ciphertext)

— W hat do you call the tool used to code or decode a message? (key)

— W hat do you call the process of uncovering a message after it has been hidden? 

(decryption)

— W hat do you call a message th a t you would like send in a secret manner? (plain­

text message)

• Tell the students th a t from now on, we will use these term s in the classroom when 

working on cryptography related work.

• Display a summary of the vocabulary words on the sm art board for the students to 

reference throughout the rest of the lesson.
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• OKAY! L et’s go back to sending secret messages. Last week, we encrypted messages by 

shifting the alphabet a certain number of spaces. Those keys th a t we created are great 

but they could be predictable. Once someone realizes the pattern , they can uncover 

the entire message!

« There is another m ethod th a t is even safer than  the shift cipher. This cipher is called 

the substitution cipher. The substitution cipher is used in the same way but there is 

no pattern  to the key. L et’s look at the following example: 

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z  

Q W E R T Y U I O P A S D F G H J K L Z X C V B N M

«► W hat you will notice is th a t the bottom  row, the row used for decryption, does not have 

any particular pa ttern  to it. Therefore, using a substitution cipher is secure because if 

someone discovers one letter, they do not necessarily know any others.

• Use this key to decrypt the following message:

DOLL H. SGCTL ZXKZSTL (MISS P. LOVES TURTLES)

• Now we are going to play a game and act like secret agents.

— Group the students into heterogeneous team s of 3. They should sit (or stand) in 

a row and they will need a pencil. Every Player 1 will receive a copy of the public 

key. Players 2 and 3 will each get their own copy of another substitution key.

-  Each Player 1 will receive an encrypted message. They should decrypt the message 

and pass it on to Player 2. This should be done quietly, as every Player 1 will 

receive the same message. All Player 2’s will have different substitution keys. 

It is their job to then encrypt the message again after receiving it from Player 

1. Once encrypted, they are to pass the ciphertext to Player 3 (who’s keys will 

m atch Player 2’s) to decrypt it. The team  of three to get passed through all three
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steps correctly wins! Note: it will be easy to tell if the message is correct as it 

will be the same message th a t was originally given to Player 1. It will simply be 

encrypted and decrypted again using a different key.

— Attached is the original message for Player 1, and 7 different substitution keys. 

Each key should have two copies, one for Player 2 and one for Player 3.

— At the end of the game, each Player 2 will have a different encryption of the same 

message! The students will see th a t any message can be encrypted and many 

different ways.

Original Encrypted Message to be given to Player 1 for decryption: They are to use the 

substitution key above which will be displayed on the board. ZIT JXOEA W KGVF YGB 

PX D H TR GCTK ZIT SQMN RGU

(THE QUICK BROWN FOX JUM PED OVER THE LAZY DOG)

Below are Keys to be copied and given to Players 2 and 3:

Key 1:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

H I Y T U R P O E W Q A S L K J G D F B N V M C Z X

Key 2:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

P O I U Y T R E W Q L K J H G F D S A Z M N B V C X

Key 3:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

M A Q W S Z X D E R F V B G T Y H N J U I K O L P C
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Key 4:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

P I Z G O N F R A C E S J V W Y T Q U L K H D M X B

Key 5:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Z X C V B N M L K J H G F D S A Q W E R T Y U I O P

Key 6:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

N B K M L J H G V C S X Z A D F P U O Y I T R E W Q

Key 7:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

A L S M D K F J G H Q P W O E I R U T Y Z X C V B N

C Lesson Plan 3: M odeling M odular A rithm etic

Grade: 6

Time: One 45 M inute Class Period 

Materials:

•  Pencil

•  Paper
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•  A ttached Sheets: W arm Up, Classwork 1 and Classwork 2

Goals:

-Students will be exposed to m odular arithmetic.

-They will see a whole new exciting way to add, subtract, multiply, etc.

Objectives:

-Students will complete exercises similar to those th a t I work with in my own research ex­

perience.

-They will solve various m odular problems with varying levels of difficulty.

Standards Addressed:

-M ath Common Core: 6.NS.2, 6.EE .3, 6.EE.4 

-NJCCCS Science: 5.1.4.A.3, 5.1.8.A.2, 5.1.4.B.3, 5.1.4.B.3 .

P rocedure/ Lesson:

• Begin with the attached warm-up. They should take their tim e as this activity will 

get them  thinking outside the box. It will cause them  to get into thinking in a cyclic 

manner. Be sure to work slowly through this lesson. It can feel overwhelming to them 

if it is not done in an understandable manner.

•  Explain today’s goal: We will learn m odular arithm etic which you have all been doing 

for years without even realizing it. L et’s go back to th a t warm-up.

— We use a clock to tell time and yet it only involves 12 numbersdoes th a t mean we 

can only have maximum 12 hours in a day? W hat do we do 13,14,15 hours later? 

Well sure - we wrap around the clock. This type of wrap around idea is what we 

call m odular arithmetic.
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— T hat being said, what would we do if our clock only had six hours on it, or the 

numbers 1-6? (Draw the clock.) W hat would 10:00 look like on this clock? (4:00)

— W hat about a 9 hour clock? (Try and see if they know it without drawing it) 

W hat would 20 hours later look like if we are starting  at the top which would be 

“9:00”? (2:00)

• L et’s ditch the clocks. If it is helpful, we can think of a number line but instead of a 

straight line le t’s th ink of it in the shape of a circle. The number of digits on our clock, 

or the number of numbers on our new number line is what we call the “modulus” . The 

modulus tells us what to go up to before we begin to wrap around.

— W hat would the modulus be on our usual clock? (12)

— W hat is the modulus for the days of the week? (In other words, what number of 

days do we have before we sta rt the week over again?)

— W hat is the modulus for the number of seconds in a minute? At what number do 

we s ta rt over?

• Now, le t’s put our m athem atician faces on. (Make a fun face! Try to get the students 

to do it too!)

•  Earlier I asked what 10:00 would look like on a clock with only six digits and we 

all agreed it would be 4:00. To say this mathematically, we would say “10 mod 6 is 

congruent to 4” w ritten as

• W hat about the 9 digit clock? We know it would be modulus 9. How would we say 20 

hours later? (20 modulus 9 is congruent to 2 or .)

•  One im portant idea with m odular arithm etic is th a t when we reach our modulus, we 

consider it to be a 0 since we begin again with 1 after that. In other words, think of
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the clock with a 0 in the 12 spot. Something with modulus 14 would have the numbers 

0,1,2,3,4,5,6,7,8,9,10,11,12,13. There are still 14 numbers but instead of numbers 1-14 

we use 0-13.

• Now have the students try  the attached Classwork 1 problems.

•  L et’s take things up a notch. M odular Arithm etic is sometimes called Remainder 

Arithm etic. Can you think of any reason why? (More advanced students may arrive 

a t this answer quickly. If they do, ask them  to explain.)

• L et’s look at some larger numbers. W hat would 29 mod 3 be? (2) How do we know 

this?

•  Explain th a t you can certainly make a clock and wrap around a number of times. The 

other way to think of it is th a t 27 is a multiple of 3 which means we will work around 

the clock how many times? (9) Nine times around brings us back to 0. W hat is left? 

29-27= 2. Therefore, the answer is 2. In other words, The remainder is your real 

answer!

•  The normal operations can be performed with m odular arithm etic as well. Remember 

when 2+ 2= 4  back in first grade? Well now youre in 6th and 2+2 can be something 

else!

•  Now try  the Classwork 2 Assignment. The numbers are larger but if you get confused 

ju st divide and find the remainder!

W arm-Up (May take up to 10-12 minutes) Think through and solve the following prob­

lems:
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1. The clock strikes midnight. In the extended version of the story, Cinderella must be 

back home in 36 hours. W hat tim e will the clock say when she gets home if she just meets 

curfew?

2. It is 1:00 in the afternoon. The detective determines th a t the crime was comm itted 

13 hours ago. W hat tim e was it when the bank was robbed?

3. Miss P ’s tu rtle  named “Yurtle” began a journey across her room. He began at one 

end of her room at 11:00 am and it took him 7 hours. W hat time did he reach the other 

side?

4. The movie began at 3:00 pm. Movie reviews said the movie was 110 minutes long. 

W hat tim e will the movie end?

48



Classwork Assignment 1

1. If you made a clock w ith 4 numbers on it, where does 17 hours bring you to? Draw a 

picture if necessary. W hat m odular expression can you write for this?

2. Can you think of a real life modulus example? Examples would be the 12 hours of a 

clock or 60 minutes to an hour. We mentioned a few others earlier. Can you come up with 

any new ones?

3. W hat would 15 modulus 6 be? W rite the m odular expression.

4. 23 mod 9 = _____________

5. 34 mod 17 = _____________ *This one is tricky!

6. 18 mod 5 = _____________

7. 19 mod 3 - _______ _____

Classwork Assignment 2 Try these problems on your own! It may help to think about 

the remainder method!

1. 65 mod 8 = _____________ 2. 100 mod 3 = ____________

3. 97 mod 4 = ____________  4. 38 mod 5 = _________

5. 99 mod 30 = ____________  6. 56 mod 6 =.________

7. In ordinary arithm etic, 8 7 = _________ which i s _____

8. In ordinary arithm etic, 9 10 = _________ which i s ____

9. In ordinary arithm etic, 8 +  73 = _________ which is___

10. In ordinary arithm etic, 14 +  30 = _________ which is

modulus 5.

_ modulus 3.

_  modulus 4. 

____ modulus 16.
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