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Abstract

This thesis provides a unique cryptosystem comprised of different number theory
applications. We first consider the well-known Knapsack Problem and the resulting
Knapsack Cryptosystem. It is known that when the Knapsack Problem involves a
superincreasing sequence, the solution is easy to find. Two cryptosystems are designed
and displayed in this thesis that allow two parties often called Alice and Bob use a
common superincreasing sequence in the encryption and decryption process. They
use this sequence and a variation of the Knapsack Cryptosystem to send and receive
binary messages. The first cryptosystem assumes that Alice and Bob agree on a shared
superincreasing sequence prior to beginning encryption. The second cryptosystem
involves Alice and Bob constructing a common, secret, superincreasing sequence built
from subsequences of the Fibonacci sequence during the encryption process. Elliptic
curves were explored on a smaller scale as they are also applied in cryptography. For a
fixed prime number p and a special class of elliptic curves over Zp, we investigate how
many of them intercept the y-axis. Additionally, the research presented in this paper
was successfully implemented into a middle school classroom.

Chapter 1includes introductory material about cryptography. Chapter 2 discusses
superincreasing sequences and their appearance in Fibonacci subsequences. It also
includes important properties of the Fibonacci sequence. The two cryptosystems are
presented in Chapter 3 followed by the brief findings of the intersection of elliptic curves
with y-axis in Chapter 4. Finally, Chapter 5 introduces a middle school lesson plan
that provided students the experience of cryptography and increased their appreciation
of mathematics. A few other lesson plans are provided in the appendix.
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1 Introduction to Cryptography

Cryptography is a branch of mathematics that has been incorporated into our daily lives.
As the science of creating secure and efficient codes, it uses various algorithms, known as
cryptosystems, to send and receive secret messages. Originated in ancient civilizations, cryp-
tography plays an ever important role in today’s society. Every time a credit card is swiped
or a computer is used, a security method built from a cryptosystem is applied. It is most
significant in matters related to cyber and national security. Deeply rooted in the processes
of cryptography is a discrete branch of mathematics known as Number Theory. This project

will focus on specific applications of Number Theory in their relevance to cryptography.

Basic Terminology

It is important to be familiar with the various terminology of crytography. Two parties,
often named Alice and Bob, are trying to communicate in such a way that an adversary,
often named Eve, cannot understand the message. lIdeally, the cryptosystem should be built
so that even if Eve intercepts a message, he or she cannot uncover its meaning. Therefore,
it is crucial that a cryptostem is both efficient and secure.

Encryption

Encryption is the process of taking a plaintext piece of information and encoding it in such a
way that only the intended recipient can receive and understand the message. The plaintext

is coded using an algorithm and turned into a ciphertext.

Decryption
Decryption is the method used to uncover a ciphertext. Through a reverse algorithm,the

message is discovered and translated back into the plaintext message.



Keys
The algorithm involved in encryption and decryption often uses a key. There are two types
of keys: public and private. A public key is one that can be known to someone other
than the two communicating parties. A private key can be used by a single communicating
member. It is kept secret for all other members and outsiders. Cryptosystems can often use
a combination of both public and private keys.

Throughout the project, we assume the message space is built from integers, integers

mod a positive integer, or vectors of integers.

2 Superincreasing Sequences

Preliminaries

The first application in Number Theory involves a superincreasing sequence which is defined

below.

Definition 1. A sequence r = {ri,r2,...,rn} of positive integers is superincreasing if ri+1>

\f + r4_i H——-+ ri for all i with 1< i< n—1.

An example of a superincreasing sequence is {2,3,7,15,31} as each number is greater
than the sum of the numbers before it. These sequences are relatively easy to create and are
of great importance to the well-known Knapsack Problem [5]. A simple decipher method is

based on the following problem:

Problem 2.1. The Knapsack Problem

Given avector a = (ai, 02,..., a*) of positive integers and a positive integer A, the Knapsack

Problem for (a, A) is to find a k-vector b= (6i, 62, *ee, hif) £ such that ~2 afti = A and k

is a positive integer.



Example 1. The solution to ((1,3, 7,20,42,107), 115) is (1,0,1, 0,0,1).

Note that the Knapsack Problem may have no solution, exactly one solution, or more
than one solution. It is known that when the vector a is formed by a superincreasing sequence
and the solution to the Knapsack Problem exists, then the solution is unique [4]. In this
case, a simple algorithm can be applied to find the solution. This algorithm is a key player
in the Knapsack Cryptosystem which will be explained shortly.

The Knapsack Problem was first recognized in 1957 by George Dantzig. Dantzig, known
for his contributions to Operations Research, connected this problem with other maximiza-
tion problems in the field. Work on the Knapsack Problem continued in the direction of
approximation algorithms and other solution methods in the 1980’s [2]. The work on var-
ious solution techniques may have been sparked by the use of the Knapsack Problem in a
public key cryptosystem. This system, as previously mentioned, is known as the Knapsack
Cryptosystem and is shown below.

The basic premise of the Knapsack Cryptosystem is provided [4]:

1. Alice has a secret key that is a superincreasing sequence r = {r*i,rq,..., rn}.

2. Alice chooses two private, large integers A and B such that B > 2rnand gcd(A,B) = 1

3. Alice creates a public key M = (MI5M2,... Mn), which is an n-vector in Zn, by

calculating Mi = A «r* mod B with 0 < Mi < B.

4. Encryption process: Bob chooses a plaintext message x = (aq,:”, ***,Xxn) which is a

binary n—vector. He computes and publishes the ciphertext C —x «M = YH=i xi *Mi

5. Decryption process: Alice computes

n n n
C'= A~XC = A~I XiMi = A~I XiAri = agr* mod B.
=i it i=1



As Alice knows r, she can use Proposition 2.2 below to uncover the plaintext x from

c.
Note that in Step 5, C' = Y~i=\xKi m°d B. As B > 2rn,C' < r—rn+rn—
2rn < B Therefore, the solution to C' = xKi m°d & is equivalent to C" = XIILi xKi

so Proposition 2.2 can be used.

Proposition 2.2. [f] Let r — {ri,...,rn} be a superincreasing sequence and let C' be a
positive integer. Consider the Knapsack Problem for r and C'. Assuming that a binary
solution x — (xi,... ,xn) exists, then it is unique and can be computed with the following

steps:

1. Determine xn first.

IfC'>rn, xn=1. IfC <rn, xn—~0.

2. A new sum is assigned:

n
C':=7"2xpri=C - rnxn.
2=1

Repeat the same procedure in Step 1 to find xn-\.

3. Continue through the procedure until all xfs are determined.

The steps above are based on a well-known algorithm for solving the Knapsack Cryp-
tosystem. It is important to note that this algorithm not only finds a solution, but that

solution is in fact unique. A proof for the uniqueness of x follows:

Proof. Let C' = XX X+ x2r2H------ bxnrn = yirl+y2r2------ by~n where x = {Xi,x2,... ,xn)
and y = {yx,y2,...yn) are both in Z*.
Then

(yn~ xn)xn= (xi - yi)n H--—--- b{xn-i - yn-i)rn-i



which implies

n—1 n—1
Vn - Xnvn < \xj - 2/ih <} n since -yiv< 1foralH=1,2,...,n- 1
=1 i-1
If xn ™ yn, then [xn —yn\ = 1. Thus rn < rA. This is a contradiction as r is

a superincreasing sequence. Thus, xn = yn. By mathematical induction, X\ —y\, X2

42,¢0¢ XN =Yynso x = V. O

Example 2. Consider the Knapsack Problem in Example 1: ((1, 3,7,20,42,107), 115).

Following Step 1 shown above, we compare 115 and 107. As 115 > 107, we assign xq = 1.
For Step 2, our new C' — 115 —107 = 8. Continuing to r5 = 42, we compare 8 and 42.
Tls 8 < 42, we assign £5 = 0 and therefore C' remains 8. Similarly, we would find £4 = 0.
Comparing r% 8 > 7 50 X%6= 1. Our new C' —I and trivially, X2 = 0 and X\ —1. Therefore,

the solution is (1,0,1,0,0, 1).

For convenience, with superincreasing sequence r — In, 72,..., rn}, we denote r =
{rhr2,ee¢?"n) and call it a superincreasing vector. We will now show an example of the

Knapsack Cryptosystem.

Example 3.

1. Alice has a secret key r —(1,2,5,13, 34, 89, 233, 610) which is superincreasing.

2. She chooses A = 101 and B = 1221. Note that B > 2rn and gcd(A,B) = 1

3. Alice calculates the non-negative residue of M = A« mod B and obtains M =

(101,202, 505,92,992,442,334,560) and sends this to Bob.

4- Encryption: Bob has a plaintext message x = (0,0,1,1,0,0,1, 0). He computes C =

X *M = 931 and sends it over to Alice.

10



5. Alice computes C' = A~IC mod B. Here, A~l = 677 which can be found using the
Euclidean Algorithm. Thus, C' = (677)(931) mod 1221 = 251. Using Proposition 2.2,

she achieves the plaintext message x —(0,0,1,1,0,0, 1,0).

Properties of the Fibonacci Sequence and Related Sequences

Because superincreasing sequences are so relevant to the Knapsack Cryptosystem, we ex-
amined a few different sequences for their superincreasing nature. One of the most com-
monly known sequences is the Fibonacci sequence (Fn}£°. The numbers in this sequence
are created by adding the two previous numbers in the sequence. The first few terms are

{0,1,1,2,3,5,8,13,..}.

Definition 2. The Fibonacci sequence is defined as: FO= 0, Fi = 1, Fnt2 —Fn+ Fn+1for

all non-negative integers n.

The Fibonacci sequence has several important properties. The following property is of

utmost importance to this paper.
Property 2.3. [12] Fn+2 = FI + F2H-—-- \-Fn+ I.

On the surface, the Fibonacci sequence appears to follow a recursive formula. However,
Binet derived an explicit formula for the sequence in 1843 based on the Golden ratio a =

The formula follows.

Proposition 2.4. Leta = and 3 = so that a and (3 are roots of the equation

x2= X+ 1. Then Fn= for alln > 1.

The number a is known as the Golden Ratio. The following corollary is a direct result

of the above formula.

Corollary 2.5. Foranyn GZ+,Fn <



Proof. From Binet’s formula, we know that a = 1#2 , @ - 12" and Fn = a” . Now
since |<d > /3|, and |a] > 1, we can say that \a\n > \(3n. Therefore, an+ \(3n < 2an.

Because of this, we can say that Fn= a-fJQ- < A and since a < 2, we can conclude that

on+l
F»< V - m

Lemma 2.6. Consider positive integers n,g > 1. Letp be aprime number such thatp > g.

H log2(VEp)-g-I . .
Then if0 < R < 1 , then F5+i?(n_i) < p

Proof. We know that R < '°920/50)a-1 - 1002(FSR)-0°1 g5 R(n—)+g+1 < log2(Ve6>) which

n

2R(n-1)+g+I < A p

2R(n-1)+g+I

Thus from Corollary 2.5, Fg+*"n™ < 7T

<p.

O

As previously mentioned, superincreasing sequences play a key role in the Knapsack
Cryptosystem. As we move to the Fibonacci sequence, it can be shown that this is not a
superincreasing sequence. We will also prove that any consecutive subsequence of length at

least three is also not superincreasing.

Lemma 2.7. The Fibonacci sequence is not a superincreasing sequence. In particular, any

consecutive finite subsequence {Fm, Fm+1,..., Fm+r} where r > 2, m > 0 is not superincreas-
ing.

Proof. A simple counterexample will prove that Fibonacci sequence is not superincreasing.
Consider the first few terms of the sequence: {0,1,1, 2,3,5,... }. It can easily be seen that
3<0 + 1+ 1+ 2 In other words, F4" Y~=0

Now consider the sequence {Fm,Fm+1, ..., Fm+r} for m > 0,r > 2. A simple check shows

that Fmjr3 —Fijji2T Fm+l  Fmjra T Fm+l T Fm. Thus, FIZB A Fm+2T Fmt+1-l- Fm. D

12

implies



This project considers not only the Fibonacci sequence, but also Lucas sequence. The
Lucas sequence {Ln}g°, while very similar to the Fibonacci sequence, begins with the integers
2 and 1 and follows the same rule after the first two numbers. Thus by definition, Lg —
2,L\ = 1and L2 = Ln+ Ln+i if n > 0,n G Z. Therefore, Lucas sequence is as follows:
{2,1,3,4,7,11, ... } which is not superincreasing. Lucas sequence can be directly linked to

the Fibonacci sequence with the following formula. [12]
Lemma 2.8. Ln= Fn_i + Fntl = Fn+ 2Fn_i

Lucas sequence is expressed in Lemma 2.8 as a linear combination of certain Fibonacci

numbers. Therefore, it is no surprise that Lucas is not a superincreasing sequence.

Superincreasing Subsequences ofthe Fibonacci Sequence and Lucas
Sequence

Although the Fibonacci sequence is not a superincreasing sequence, a closer look shows that it
does have many superincreasing subsequences. For example, the even terms of the Fibonacci
sequence, {0,1,3,8,21,...,}, form a superincreasing sequence. In fact, any subsequence that

does not use consecutive Fibonacci numbers forms a superincreasing sequence.

Theorem 2.9. A subsequence S —Y¥m”" FmYrinml..., FA-)-ri+r24—  eee} of the Fi-

bonacci sequence is a superincreasing sequence ifd > 1, with all r > 2.

Proof. Let d be a positive integer. Then by Property 2.3 above,

Fm\+H2-\ Hd~ Fi + F2T **T Fm. Ma-2T 1.

Since all > 2and —2 > 0, then m-\-ri + r2 \------ b i + —2>m+ri+r2H-—-- brn-x

13



which implies that

Fm+Hi+2-{-— \-TcH+d 4 -Mmri T e’ T -fm+ri+"H-—hrd-i-

for all positive integers d. Thus, S = {Fm, Fm+ri, Fm+n+r2, ..., Fm+ri+r2+..+rd, ... } is super-

increasing. O

If all  are the same, we obtain a special case of the above theorem. This case creates
a subsequence of the Fibonacci sequence with evenly spaced terms. For example, 0, 1, 1,
2, 3, 5,8, 13, 21, 34, 55, 89.. is Fibonacci Sequence out to the 12th term. Consider
the subsequence created with every third number: 1, 5, 21, 89. This subsequence is a

superincreasing sequence.

Corollary 2.10. A subsequence D = {Fm, Fm+d, Fm+2d, Fm+3d, ..., Fm+kd} of the Fibonacci

sequence is a superincreasing sequence for alld > 1 and k > 0 .

Proof. If k = 0, we have {Fm} which is trivially superincreasing. If k > 0, this is a direct

result of the previous theorem. O

The above theorems show that there are an infinite number of superincreasing subse-
quences of the Fibonacci sequence. Moving on to Lucas sequence, we can follow the same
logic. As previously stated, Lucas sequence is a linear combination of Fibonacci sequences.

Consider the following lemma. [12]

Lemma 2.11. Ifan and [ are superincreasing sequences, then aan+ b(3n is superincreasing

for all a,b> 0.

We can create superincreasing subsequences of Lucas sequence if we use a linear combi-

nation of superincreasing Fibonacci subsequences.

14



Generalized ¢-Superincreasing Sequences

Proposition 2.2 is the main piece to the Knapsack Cryptosystem but the solution must be
binary. With such a valuable proposition, one might ask, “Can we find other sequences that
guarantee the uniqueness of the solution to a Knapsack Problem and the solution can be
retrived similarly?” A generalization of superincreasing sequences, callled t—superincreasing

sequences, is defined below.

Definition 3. A sequence r —(ri,r2,...,rn} of positive integers is t-superincreasing ifrn >

(t—D(ri +r2+ eee+ rn_i).

The superincreasing sequence, defined earlier in this paper, is a 2-superincreasing se-
quence. We now consider a 3-superincreasing sequence r = {ri,r2,..., rn} such that >

2 + r2 H-—-——-- br<_i) foralH = 2,3,..., n.

Theorem 2.12. Consider the Knapsack Problem for a 3-superincreasing sequence r =
(ri, r2,...,rn} and a positive integer S.

1. If a solution exists in Z3, then it is unique.

2. Let x —(xi, x2,... ,xn) € Z3 be a solution then

0 if S<rn
1 if rn<S<2r (|)

2 if > 2rn.

Proof 1. S < rnifand only if xn —0 because
S <rn& xXprx+ xX2r2 H------ bxnrn < rn
Xin + x2r2 H------ bxn_ir,,_i < rn(l - xn)

N xn= 0 since x\n + Xx2r2 H------ bxn-\rn-\ > 0.

15



2. rn< S < 2rnif and only if xn—1 since
r< S <2rm rn<Xxin + X2r2H--—-- ixnrn< 2rn
rn(l- xn) < xin + x22 H--—-- hEn_irn_i < rn(2- xn)
<mxn = 1since aqri + £2"2+ eee+ xn_irn_i > 0 and

rn> 2(ri + r2H--—-- hrn_ i) > ~ri + X2r2H---—--- hxn_irn_i.

3. S > 2rnif and only if xn = 2 because
S >2rn <M xiri + x2e2 H-—-—-- hEn_irn_i > rn(2 - an)

xn = 2 for similar reasons named above.

This algorithm can truly be applied to any t—superincreasing sequence.

Theorem 2.13. Consider a Knapsack Problem (r,S) where r is the t-superincreasing se-

quence created from r and S is a positive integer.

1. If a solution exists in Z™ then it is unique.

2. Letx = (#i,x2,..., xn) GZ” be a solution then

0 if S<rn
1 if rn< S <2rn
Xp < 2 if 2rn< S < 3r, )

J -1 if S>(t- Drn

The proof of this theorem is similar to the previous proof. Therefore, it has been omitted.

16



3 Cryptosystem using the Fibonacci Sequence

Two Variations of the Cryptosystem

Using our knowledge of the Knapsack Cryptosystem and superincreasing sequences, we cre-
ated the following cryptosystems. The first cryptosystem assumes that Alice and Bob possess
a common key in the form of a superincreasing sequence before any interactions take place.
The second cryptosystem allows Alice and Bob to create a common shared key amidst the
system.

Cryptosystem Version 1. Secret Key Provided

Alice and Bob share a common key in the form of a superincreasing sequence which is pro-
vided beforehand and represented by the vector r —(n, 7,..., rn).

The public keys include g £ Z+,<7f~ 1, and a large prime p such that p > 2rn. Alice has a
secret key a £ Z+ such that gcd(a,p —1) = 1 and Bob has a secret key k £ Z+ such that

ged(k,p —1) = 1.

1. Alice computes A = ga mod p and sends A to Bob.

2. Bob encrypts his plaintext message x € Z£ by sending (01,02) to Alice where Q\ = gk

mod p and @ = Ak(x er) mod p.

3. Alice decrypts the messages by doing C' = (ci)~a(c2) mod p. She then solves the

Knapsack Problem with {r, C"} to get back to the plaintext message X.

Proof.

(ci)~a(c2) mod p = (gka)~lgkax m = x of

Because p > 2rn, this result is just a Knapsack problem with (r, x *r) and Proposition 2.2

can be used to solve for X. O

17



Example 4. Alice and Bob have the common, secret key f = (1,2,5,13,34,89,233,610)
which is superincreasing.
Public Keys: g = 99 and p = 1223.

Private Keys: Alicesa—7 Bobs k —3.
1. Alice computes A = ga mod p = 856 and sends this to Bob.

2. Bob has the plaintext message x = (0,0,1,1,0, 0,1, 0). He computes (01,02 where

Q = 460 = gk mod p, and @ = 45 = AK(x *r) mod p. Bob sends (460,45) to Alice.

3. Alice computes C' = (ci)~a(c2) mod p. cfa = 351-1 modp = 233. C' = 251
She solves the Knapsack Problem for (r, 251) to recover the plaintext message x =

(0,0,1,1,0,0, 1,0).

The above cryptosystem is based on the fact that Alice and Bob already have a common
superincreasing sequence. This is a fairly large assumption so we have created another
similar cryptosystem that creates a common superincreasing sequence based on Fibonacci

subsequences.

Cryptosystem Version 2: Secret Key Created

The following are public keys: a fixed n £ Z+ such that n > 2, a large prime p »  2I°7™ ,
and g £ Z+ such that 1< g < log2(v/5p) —10n + 9, and p\ g.

Alice has a secret key a £ Z+ such that gcd(a,p —1) = 1 and Bob has a secret key k £ Z+

such that ged(k,p —1) = 1.

1. Alice computes A —ga mod p and sends A to Bob.

2. In order to encrypt his plaintext message X £ Z£, he needs to create a superincreasing

18



vector r. Bob computes K = Ak mod p. He then computes

log2(V$p) - g- 1
n—1

If K <u,

r = {Fgi Fg+K, Fg+2Kl1e1lFg+(n- 1) #}’

If K > u,

T ~ {Fg, Fg+tVI Fg+2w) e e« 1 Fg+(n—)«}

where v = |y and w —Iggl + 1.
Bob can now encrypt x by sending (ci,C2) to Alice where cv —gk mod p and Q@ =

AK(Xx *r) mod p.

3. Alice computes K —c\ = gka mod p. She then creates a superincreasing vector r in

the same manner as Bob. They now have a shared, secret, superincreasing sequence r.

4. Alice decrypts the messages by computing C = (ci)-a(c2) mod p. She then uses the
special proposition with C and r to get back to the plaintext message X. This result

occurs because (ci)_a(c2) mod p = (gka)~Igkax «r = x ®f mod p.

Proof. Because p > 2I*h ,\fhp > 210n 7. This implies log2{\[hp) > 10n —7 so log2(V"p) —

10n+ 9> 2. As g < log2(y/bp) —10n + 9, we can conclude that g > 2.

1. Case 1. K < w, r = {Fg, Fg+Kj Fg+2K :eeem> Fg+(
We need to show that K > 2 so that r is superincreasing.
Because gcd(a,p —1) = land gcd{k,p —1) = 1, K = gak mod p > 1. Thus K > 2
Then from Theorem 2.9, we know that f creates a superincreasing sequence. To prove

Fg+(n—)K P

19



log2(y/bp) - g
n

Because K <

we can use Lemma 2.6 to show that Fg+" i) K < p. Because the last number in our

sequence is less than p, Proposition 2.2 can now be used to uncover the message.

. Case 2. K ~ri, T {Fg, Fgti 24j om Fg+(n—hv}'

We need to prove v > 2

Pl 2%E7 so > 210n 7 > 2109 => log2(V~p) —10n + 9> 0

Since g < log2(V~p)~10n+9, then g+10n—9 < log2(V”™p) => g+n+9n—9 <log2(y/&p)

Thus 9(n —1) < log2(VEp) —g —n 9 < Z"p|~g~n = —1

From here, we know that 9 < [°92(V5p)-g-i _ \ < u Thus 6 < u—3. Then
<1=> < ti < iL in this case.

Therefore, K > >Ku-3K>QurK>6+ — —3@2+ —

This implies iL > 3(1 + |_"J) so K >3w or in other words F > 3.

Lastly, v — > F —1> 2 Because u > 2, from Theorem 2.9,we know that r

creates a superincreasing vector.

To prove FgH{jl_lv < p:

K K
<
u Ufj+jJ

log2(V5p) - g- 1
n—1
Now using Lemma 2.6, we can show that Fg+(n-i)v < p. Because the last number in
our sequence is less than p, Proposition 2.2 can now be used to uncover the message.

O

20



Example 5. Public Keys: n = A,g = 2,p = 12431470127

Private Keys: Alices a= 7, Bobs k= 11

1. Alice computes A = ga mod p, A = 128.

2. Bob has the plaintext message x = (1,0,1,1). He computes K = Ak mod p, K =
8362875137 and u — 10. Because K > u, Bob finds r —(1,89,6765,514229) which is

superincreasing. He then sends Alice (01,02) = (2048,9618950101).
3. Alice computes K = ¢\ mod p. She similarly finds r —(1,89,6765,514229).

4- Alice decrypts the message by computing C' = (ci)_a(c2) mod p. Shefinds C' = 520995
and uses Proposition 2.2 to solve the Knapsack Problem for (r,C") to get back to the

plaintext message x = (1,0, 1, 1).

Version 2 of the cryptosystem has quite a few intricate steps. To increase the feasibility
of the computations, an algorithm for the cryptosystem has been written using the software
SAGE and can be found in the Appendix. The next part of this paper will consider another

piece of cryptography that uses many applications in Number Theory.

4 A Special Case of Elliptic Curves and the Points on

the Y-AXis

Elliptic curves are becoming increasingly important in the world of cryptography. Elliptic
Curve Cryptography, or ECC, represents one of the most modern methods used today. In
this chapter, we will examine a special class of elliptic curves and establish when this set of
curves will have a ~-intercept. An elliptic curve E over a field F is defined by an equation

of the form y2= x3+ Ax + £, where A, B E F satisfy 4A3+ 27B2 0. A pair (x,y) where
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X,y E F, is a point on the curve if (X, y) satisfies the above equation [4]. Elliptic curves have
their own binary addition defined in a specific way. ECC uses the algebraic structure of the
curve y2 = x3+ Ax + B over a field F to encrypt and decrypt messages. Precisely, E is

defined as follows:

Definition 4. E(¥) = {(x,¥y) \ X,y E F,y2 = x3+ Ax 4- B} |3{(9}, where O represents
the identity of this closed algebraic group. The operation of the group is represented as ©,
defined below:[4]

Let P\ = (xi,yi) and P2= (x2,y2) be points on E.
1 ForeveryP6 E(F),P@0 =P=0®P
2. Ifx\ —X2 and y\ = —y2, then Pi © P2= 0.

3. Ifx1/ x2,Pi © P2 = (x3,23) where

x3= A2- xi- x2 and y3= X(xi - x3)- 21

for

I (- yi)(x2- Xi)-1 ifPi

I+

P2

P2

\ (2x2+ A)(2yi)-1  ifPi

Example 6. For example, if E is an elliptic curve E F7, then the curve y2= x3+ I0Ox —2

consists of the following points:

{0, (1,3), (1,10), (2,0), (3,4), (3,9), (5,2), (5,11), (6,1), (6,12), (11,3), (11,10), (12,0)}.

Elliptic curves, as previously mentioned, are curves of the form y2= x3+ Ax+ B. It s
important to notice that the left hand side must be a perfect square. In a finite field, perfect

squares are called quadratic residues.
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Definition 5. [11] If m is a positive integer, we say that an integer a is a quadratic residue
of m if (a, m) = 1 and the congruence x2 = a mod m has a solution. If the congruence

x2=a mod m has no solution, we say that a is a quadratic nonresidue of m.

Example 7. 3 is a quadratic residue modulo 13 because 42 = 3 mod 13. On the contrary, 8
is a quadratic nonresidue because there is no integer which, when squared, will give 8 modulo

13.

It will be shown in a later section why quadratic residues play an especially important
role in elliptic curve cryptography. Because of their importance, it is valuable to know some
key properties of quadratic residues. These properties can also be found in any number

theory book.

Proposition 4.1. Let p be an odd prime number.
1. The product of two quadratic residues modulo p is a quadratic residue modulo p.

2. The product of a quadratic residue and a quadratic nonresidue modulo p is a quadratic

nonresidue modulo p.
3. The product of two quadratic nonresidues modulo p is a quadratic residue modulo p.

Definition 6. [4] Letp be an odd prime and a be an integer not divisible by p. The Legendre

Symbol is defined as

1 if a is a quadratic residue ofp

—1 ifa is a quadratic nonresidue ofp.

Using this definition, a is a quadratic residue of p if and only if (- ) = 1. The next
\Pj

theorem states some of the basic properties of the Legendre Symbol.
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Theorem 4.2. Letp be any odd prime and a and b be integers not divisible by p. Then
1 ifa= b (mod p), then (jfj = (J».

% I

Theorem 4.3. [4] Letp be an odd prime, then

1 ifp=1 (mod4) /2 1 ifp=1 or 7 (mod 8)

—1 ifp=3 (mod 4), —1 ifp=3 or 5 (mod 8).

1 ifp=1 or 11 (mod 12)
and

1 ifp=5 or 7 (mod 12),
1 ifp=1 or 4 (modD5)
—1 ifp=2 or 3 (mod 5).

Theorem 4.4 (The Law of Quadratic Reciprocity). [4] Let p and g be distinct odd primes.

Then

. -1) 2 2
gj \p (-1

Theorem 4.5.

ifp=1 (mod4) or qg=1 (mod4)

ifP=3 (mod4) and q=3 (mod 4)

Some equations of the form x3+ Ax + B can be factored as (x —a)(x —a2)(x + a + a2)

where a G Z. We consider this factorization of an elliptic curve a special case of interest.
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Recall Example 6. Notice that this curve does not have a y-intercept. A question naturally
asked is: using the previous factorization, can we predict the number of a values that will
result in curve with a ~/-intercept?
Methodology
Let’s assume we work with a finite field, Zp where p is an odd prime. As mentioned earlier,
there is one condition that must hold for elliptic curves, that is, 4A3+ 27B2 ~ 0. This
requires that the curve not have any double roots. In other words, all factors are distinct.
This restricts the possible avalues in our factored form. For any primep, a » 0,1, —2, (—2)“1
in order to guarantee that (x —a)(x —a2)(x + a+ a2) does not have any double roots in Zp.
In order to explore the p-intercepts of the curve, we set x = 0. The equation be-
comes y2 = ad(a + 1). For a solution to exist, a+ 1 = b2 for some b £ Zp. Thus

y2= adh2 = (a2b)2=+y = ta2h

In this case, two solutions exist: (0, azb) and (0, —(a2b)). However, if a2b ——a2b) then

2a2b= 0.

Wi ith the condition that a~ 0,1, —2, (—2)-1 in Zp, this implies that p|(a+1) or p\b which
implies that a = —1. Thus, the curve has p-intercepts if and only if a+ 1 is a quadratic
residue of p. When a+ 1is a quadratic residue, there exists two p-intercepts if and only if

am™—1.

Definition 7. For an odd prime p, define Sp = {Ea(Zp)\y2 = (x —a)(x —a2)(x + a + a2)

mod p whereaGZ,a/0,1, —2, (—2)-1 mod p}

Now the question is: for a fixed prime p, how many Ea(Zp) 6 Sp intersect with the y-axis?
We know that a» 0,1, —2, (—2) 1thusa+ 17 1,2, —1, (—2)-1 + 1. To know how many a’s,

for a set p, will have a solution, we need to remove the values listed above that are quadratic
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residues. One should note that if 2 is a quadratic residue then 2_1 is a quadratic residue.
However, (—2) 1+ 1= 2 1so (—2)-1 + 1is a quadratic residue which can also be proven

using Legendre symbols.

Theorem 4.6. Consider Ea G Sp. Assumep = r mod 8 (0 < r < 8). There are mr many

a’s G Zp such that the elliptic curve Ea has a y-intercept.

+
prr if r=15
Y r—4
mr prr if r=3 @)
+r —12
P it r=7

Proof It is known that for a given p, there are exactly yy- quadratic residues. We investigate
how many values of a + 1 can be quadratic residues. Sincea” O ja+I1”~1lso can be
quadratic residues. W ith the added condition that a+ 1~ 2, —1,2—%, we can count how
many a’s such that a + 1is a quadratic residue. This all depends on how many amont the

three values: 2,-1, 2-1 are quadratic residues of p. We will subtract the values from

1 Ifp =1 mod8 =+ —1,2, (—2)—2+ 1 are quadratic residues so there are (p —7)/2

quadratic residues.

2. Ifp=3 mod 8=>—1,2,(—2) 1+ 1are not quadratic residues so there are (p —I1)/2

quadratic residues.

3. Ifp=5 mod 8 +> —1 is a quadratic residue but 2 and (—2) 1are quadratic residues

so there are (p —3)/2 quadratic residues.

4, Ifp =7 mod 8 =+ 2, (—2)-1 are quadratic residues but —1 is not so there are (p—5)/2

quadratic residues.
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Example 8. Consider the special elliptic curve with p = 11. Since 11 = 3 mod 8,r = 3.
Therefore, p+"~4 = 1y -- = 5. There are 5 values for a which, when x = 0, will provide
a y-intercept on the curves. These a values are the following: 2, 3, 4, 3, 10. For example,
when x = 0 and a = 2,y2—4. Therefore, the points (0, 2) and (0,9) are y-intercepts on the

curve y2 —(x —2){x —4)(x + 6).

5 Applications in Education

This research was funded by the National Science Foundation through a program called
“GK-12: Fellows in the Middle” at Montclair State University. Through this program, math
and science graduate students are paired up with a team of middle school science and math
teachers, and their research advisors. The graduate students, or fellows, attend the middle
school once a week to teach integrated math and science lessons. The author of this paper,
the math fellow, was paired with Jessica Evans, the science fellow. Our team worked in
cooperation with Noreen Wiggins and Catherine Sickinger, the 6th grade math and science
teachers, respectively, at the Franklin School in Kearny, New Jersey. There are several goals
for the GK-12 program. At the very least, the program aims for the middle school students
to experience math and science in a whole new light. The middle school students have
the opportunity to observe the graduate fellows in fields of which the young students may
have never heard. The integrated lessons are refreshing and the students are often sparked
with new interest in math and science. Another important goal of the GK-12 program is
to provide the teachers with sample integrated lessons and general ideas on how to increase
students’ interest in STEM fields. Teachers are often overwhelmed with the amount of cur-
riculum they are required to teach. By integrating math with science, previous concepts can
be reinforced while teaching a new idea. An additional important goal ofthe GK-12 Program

is to allow the graduate students to enhance their own communication skills. Consequently,
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the fellows are asked to create middle school lessons based on their research topics. As cryp-
tography is often unheard of in a middle school classroom, the author of this thesis took the
opportunity to show the students a brand new side of math. Displayed below is a lesson
titled “Shift Cipher Shenanigans.” The lesson introduces the concept of Crypt