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ABSTRACT

Title of Thesis: ESCAPE RATES FOR COUPLED PARTICLES IN A
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Gregory Slusarczyk, Master of Science, 2011

Thesis directed by: Dr. Eric Forgoston

Department of Mathematical Sciences

A particle placed in a deterministic, overdamped potential well will move towards 
an attractor located at the bottom of the well. Once the particle reaches the attractor, it 
remains there forever since no other forces are acting on the particle. However, if weak 
stochasticity is introduced, the particle will fluctuate around the attractor. As a rare event, 
the noise can organize itself in such a way that a large fluctuation is created that causes 
the particle to escape from the basin of attraction. The escape rates/escape times can be 
found both analytically and numerically. Furthermore, it is possible to predict the most 
probable trajectory of escape, called the optimal escape path, for the particle. In this 
work, we investigate the noise-induced escape of a single particle as well as two coupled 
particles from an overdamped double-well potential. For
the coupled particles problem, we have developed new analytical tools needed to study 
the escape problem for different values of coupling, and our results are confirmed 
numerically.
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1 Introduction
When modeling physical and biological phenomena, it is often necessary to include 
the effect of stochasticity or-noise on the system. Some of the fields that involve 
stochastic dynamical systems include epidemiology [4, 8, 9, 21], chemistry [19], biology 
[2], medicine [1], animal and robotic swarm behavior [11, 17], economics [14], and 
laser dynamics [5]. One important feature of many stochastic dynamical systems is 
the existence of a metastable state. In the absence of noise, these states are simply 
stable steady states. If weak noise is present, the system will fluctuate about this 
steady state. However, as a very rare event, the noise can organize itself and induce a 
large fluctuation that causes the system to escape from the metastable state. In many 
instances, the system will switch from one metastable state to another metastable state.

F igure 1: (a) Schematic diagram showing a particle in a quartic potential well. The particle fluctuates 
about the attractor located at the bottom of the well. After a long period of time, the noise causes 
the particle to escape from one basin of attraction to the other basin of attraction, (b) Numerical 
simulation showing the position of a particle in a quartic potential as a function of time. The particle 
fluctuates about the attractor located at x =  — 1 and after some finite period of time the particle 
escapes over the saddle located at x =  0 and starts oscillating about the other attractor located at 
x =  1.

Figure l(a)-(b) reveals the behavior of a particle placed in a quartic potential well 
in the presence of a stochastic force. Figure 1(a) shows a schematic diagram of a 
particle placed in a double-well potential. The particle fluctuates at the bottom of 
the potential well about one of the attractors. After a long period of time, the noise 
causes the particle to escape to the other potential well. Figure 1(b) shows results 
from a numerical simulation. One can see the fluctuations of the particle about the 
attractor located at x =  — 1. As time progresses, a large fluctuation causes the particle 
to escape to the other potential well, where the particle starts to fluctuate about 
the other attractor located at a; =  1. This switching from one metastable state to 
another metastable state can lead to significant changes in physical and biological 
systems. Several examples of noise-induced switching can be seen in nucleation at 
phase transitions [3], chemical reactions [16], protein transport in biological cells [6] 
and failures of electronic devices [18].

Although the outcome in all instances of escape is the same, as the particle switches 
from one metastable state to another metastable state, the actual path it takes to 
escape may be different for each event. However there is a path that is most likely to 
occur and we call this path the optimal escape path. Also there is a specific realization 
of noise associated with each specific path. In particular, the optimal escape path
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has an associated optimal noise realization. Another important quantity that is often 
of interest is the escape rate from which one can find the escape time. Improving 
our knowledge of escape behavior leads to increased understanding of the fluctuation 
dynamics and ways of controlling the process.

For example, in epidemic modeling, stochasticity can cause a disease to go extinct. 
The stochastic fluctuations can arise from various sources and include internal noise due 
to the random interactions of individuals within a population, as well as external noise 
due to migration and fluctuations in birth rates. Typically, the number of infectious 
individuals in a population fluctuates about the metastable endemic state. As a rare 
event, and as described previously, the noise can organize itself to generate a large 
fluctuation that causes the disease to move away from the endemic state to the disease 
free state (i.e. extinct state). By determining the optimal path of escape/extinction 
as well as the escape rates, one can then employ control procedures to accelerate the 
process of extinction. In other words, by locating the optimal path, it is possible to 
use vaccine and other control measures to speed up extinction [8, 21].

The study of fluctuation dynamics that leads to escape of an object from a region 
of the ocean provides another example. The example is motivated by the need for 
profound understanding of processes governing the ocean dynamics. The processes 
have significant impact on weather, climate, marine fish and mammal populations, 
and contaminant transport [10], and therefore they are of great interest not only to 
basic science itself but also, due to its direct applications, to military and industry. 
However, to understand and predict the dynamics of such a complex environment, we 
need to constantly monitor the region of interest and gather data such as temperature, 
salinity and density. Scientists have used different devices for collecting these physical 
quantities, including surface drifters and submerged floats. One of the most promising 
are autonomous underwater gliders. In using these vehicles or sensors, one is often 
interested in positioning the glider in a particular monitoring region for long periods 
of time. Also of interest is the repositioning of a glider from one region to another 
region. Both of these require glider control. However, one of the major limitations of 
underwater gliders is the battery life. If one wishes to reduce the battery usage, one 
must reduce the amount of total control actuation that is used. To accomplish this, we 
will take advantage of the underlying structure of the stochastic ocean environment. 
The battery is used just to provide small corrections to maintain the desired course 
of the glider i.e. to keep it within a monitoring region of the ocean or to facilitate 
the escape from one region to another. As a first step, we shall consider a simplified 
model. Specifically, we consider a quartic potential that contains a particle subjected 
to stochastic noise. The particle represents the glider operating in the stochastic ocean, 
which is represented by the potential well. As a next step, we will investigate a col­
lection of gliders whose members interact among each other. This collection can be 
seen as a robotic swarm [11, 17]. However, the investigation of a collection of hundreds 
or even tens of the gliders and their interaction parameters such as coupling or com­
munication delay is extremely complex. Therefore we begin by introducing a system 
consisting only of two gliders and study the interaction between them in the presence 
of noise. For simplicity, the gliders will again be represented by two particles and the 
region of ocean will be substituted by an overdamped double-well potential.

The objective of this work is to formulate a general model that describes the dy-
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namics of two coupled particles interacting with each other in a quartic potential and 
in the presence of noise. In particular we have determined analytically the escape rates 
of the particles for different regions of coupling, and we show that these results agree 
well with the numerically computed rates. Section 2 presents the 'general theory for 
both analytical and numerical results for one particle. In section 3, we extend our 
investigation to two coupled particles. We introduce analytical tools to study the es­
cape problem and our results are confirmed numerically. Section 4 contains concluding 
remarks.

2 Single particle in a potentia l well

2.1 T heoretical escape tim e /e scap e  ra te
We consider the following first-order differential equation

dV{x)
dx ( i )

where V (x) represents a general potential function with multiple metastable states [12]. 
By adding a stochastic term \f2D(f)(t) to the deterministic differential equation given 
by Eq. (1), we obtain the Langevin equation

x = -V'(x) + V2D0(i), (2)
where (f)(t) is a white stochastic force of intensity D that is characterized by the fol­
lowing correlation functions: ((f>{t)) — 0 and {</!>(£) </>(£')) =  8(t — t') .

As mentioned in Sec. 1, the noise can generate a large fluctuation that causes the 
system to switch from one metastable state to another. Thus we can expect in some 
finite time that the particle overcomes the barrier between metastable states and goes 
from one basin of attraction to another basin of attraction. This switching behavior 
can be observed in Fig. 1(b). At the initial time, the particle was placed near the 
left attractor. Figure 1(b) shows the stochastic fluctuations of the particle about that 
attractor. After some time, the noise organizes itself to create a large fluctuation 
that pushes the particle over the barrier and into the right basin of attraction. After 
descending into the right well, the particle fluctuates about the attractor for a long 
period of time.

The noise in the Langevin equation [Eq. (2)] can be expressed as

(¡){t) =
x +  V'(x ) 

V2D (3)

Equation (3) shows that the stochastic term (f>{t) can be written in terms of determin­
istic quantities. By applying Feynman’s path integral formulation [7], it is possible to 
compute the probability of escape which is given by

P{%esc) =  exp [4>opt(t)}2dt = exp
2D

[x +  V'(x)]2dt (4)
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where (f)opt(t) represents the stochastic fluctuations associated with the optimal escape 
path [12]. To maximize the probability of the escape, the exponent of Eq. (4) has to be 
minimized. Using variational calculus [15], we know that x must satisfy the following 
Euler-Lagrange equation

Z/X(t, x, i)  ^ L x(t:x,x^

where the operator L is the Lagrangian given by
(5)

L(t,x ,x)  = [x + V'(x))2. (6)

By solving Eq. (5), we can find the optimal escape path xesc, and once it is known, we 
can use Eq. (3) to find the optimal noise

We can find the escape time/escape rate using the associated Fokker-Planck equa­
tion [13], which is given by

dtp(x, t) = dx[V\x)p(x,t)] +  Dd2xp{x,t), (7)

where D represents the intensity of the noise, V'{x) is the derivative of the potential 
function V(x), and p(x , t) denotes the probability that the particle is located at position 
x at time t. Since the particle sits for long periods of time in the bottom of the potential 
well before escape, we can assume that it is in a quasi-stationary state and therefore 
we may write dtp(x, t ) =  0. This means that the probability distribution p does not 
change in time. Therefore we can compute the mean escape time r  from one basin of 
attraction to another using Eq. (7) with dtp(x, t) = 0 so that

dx [V'(x)p(x, t)] +  Ddxp(x , t)] =  0. (8)

Figure 2: The double-well potential. The local minima are located at a and c, and the local maximum 
is located at b.
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Integrating Eq. (8) twice, we can find the stationary probability distribution

f , v ( m y + c „ / Y Mps(x) = exp 

=  C exp

as well as the escape time

1 f c
T =

D

YM
D

v{x')  \ j  ,exp ( —r— 1 dx exp V(x") dx",

(9)

( 10)
D Ja  V D J7-00 V D 

where a, b and c are the local extrema of a quartic potential as shown in Fig. 2.
As x' —> b, exp increases (local maximum at x' =  b, the saddle point).

Employing a Taylor series expansion about b and evaluating at x' , we get

V{x ')«  V(b) + V'(b)(*' -  b) + \v"{b){x '-  b f  =  V(b) -  -  6)2 (1 1 )

where V'(b) vanishes since x' = b is the local maximum. Thus

exp V & )
D

(V{b)
e x p l ^ 2D \ v " ( b w - b y ( 12)

For x' e  (—oo, b), exp dx" has the largest contribution near x" = a (local
minimum located at the bottom of a well. Therefore using a Taylor series expansion 
about a and evaluating at x", we obtain

w  7 V{a) V " (a ) ,„
/  l e x p ( ' D 2D 

and after some simple manipulation we get

-(x" — a)2 ) dx", (13)

exp Y M
D

exp

2-1

(x" — a)
2D 

V"(a)

dx". (14)

The above manipulation was done to express Eq. (13) in the form of a Gaussian integral 
given by Eq. (14). In general, the solution of a Gaussian integral is given by

/ exp i—kx2)dx = \ —.
-OO V ^

Using Eq. (15) to evaluate Eq. (14) we find that

(15)

exp

=  exp Y M
D

exp

1 2irD 
V"(a)

(x" — a)
2D 

V"(a)

dx'

(16)



Therefore Eq. (10) becomes

D
exp V(a)

D
1 2txD [ r

exp
V(b) (xf -  b)

D
dx'.2 D 

V"(b)

(17)

Evaluation of Eq. (17) leads to the following expression for the escape time

1 / 2irD I 2ttD f V ( b ) - V ( a ) \
T ~  D \ IV " (a ) \ ]  |V"(6)|eXP (  D )

v / s > r i V d
The escape rate is given as

w(D)  =  i  =  Æ E E M exp .
r  2tt \  D J

(18)

(19)

2.2 A pplication  of th eo ry  to  double-well p o ten tia l
In this section, we will apply the general theory from Sec. 2.1 to a specific example. 
We consider the following potential

V(x) (20)

With this potential Eq. (1) describes the behavior of a particle in a one-dimensional, 
overdamped double-well potential. The evolution equation of motion is

x = x — x3, (21)
where x  and x  respectively represent the velocity and position of the particle. In the 
deterministic case, when the particle is placed in the quartic potential given by Eq. 
(20), it will move ‘downhill’ to one of the local minima located at x = ±1 correspond­
ing to stable equilibria. Once the particle reaches the minimum, it stays there forever 
due to the heavy damping [22].

Using Eq. (3), the noise is given by

(f){t) =

and the probability of escape is given by

x — x + x 6 
V2D ’

^  J [ x -  x + x3]2dtP ( X e s c )  =  e x p  

where the integrand is the Lagrangian

L(t, x, x) — [x — x T  a;3]2.

(22)

(23)

(24)
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Moreover, since the Lagrangian given by Eq. (24) does not depend explicitly on the 
independent variable £, the Euler-Lagrange equation given by Eq. (5) can be expressed 
as a first integral. The Euler-Lagrange equation is therefore

L(x, x ) — xL±(x, x) — 0, 

which can be expanded to obtain

( i  -  x +  x3) 2 -  x-^r (x — x + x3) 2 =  - x 2 +  x2 -  2a:4 + x6 = 0. 
ax '

Simplifying, we obtain

x2 =  x2 — 2a:4 +  a;6 =  [x (x2 — l) ] 2 .

Using separation of variables , we solve Eq. (27). We begin with

-  = x ( x - 1 ) ,

and rearrange to obtain

By employing the partial fractions technique, we get

f  , f  dx C dx [  dxJ J x + J 2(x - 1) + J 2(x+ 1)
Then after integrating the above equation, we obtain

(25)

(26)

(27)

(28)

(29)

(30)

t T c = —In |a;| +  -  (In \x — 1| +  In \x +  1|) =  In yjx1 — 1
(31)

and further simplification leads to

exp (21 + c) (32)

In order to find the optimal escape path, we need to solve Eq. (32) for the variable 
x. After simple algebraic manipulation, we find that the optimal escape path is given 
by

= i /
1 +  exp(2t) ’ (33)

where the ±  sign denotes the initial location of the particle (minus for the left well 
and plus for the right one). Also we can clearly see that as t ->> —oo, xesc -» ±1, the 
location of the attractors, and as t —> oo, xesc —> 0, the location of the saddle point. 

The optimal noise is found using Eq. (3) to be

—

— x f + xi
V2D

(34)
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After substituting Eq. (33) into Eq. (34) and simplifying, we obtain

2 exp(2t) 1
(l +  exp(2i))§V2 K

Using Eq. (20) we find the location of the potential well’s extrema. The saddle 
point is located at b = 0 and the attractors at a = — 1 and c = 1. The value of V(0) =  0 
and V (Al) =  — Thus the depth of the potential well is A V  = \V(b) — V(a)| =  | ,  
V"{b) -  -1 , and V"(a) =  2 .

Using these, Eq. (19) allows us to compute the escape rate as

W{D) = - ^ e x p

The escape time is therefore

1

V2
d ) =~2 tt 6 X P

27T j( 1 \
7 I exp|V4 Dj-

Taking the logarithm of both sides leads to the fact that

1 \  . / 2 tt\  1
In

W (D )J  ln ( \/2 J 4D

1
4D

(36)

(37)

(38)

2.3 C om parison  of analy tical resu lts  w ith  num erical sim ula­
tion

We now compare the analytical results with numerical simulation by numerically in­
tegrating the stochastic differential equation given by Eq. (2) using a fourth-order 
stochastic Runge-Kutta method with constant step size h—0.001. A particle was placed 
in the left basin of attraction near x  =  — 1. Whenever noise caused the particle to es­
cape to the other basin, the escape time was recorded. For our purposes, the escape 
time is the time it takes the particle to completely cross the barrier located at x  =  0 
(by completely, we mean the particle reaches the point x = 0.2, to be sure that it will 
not come back to the same basin of attraction it came from) or when the maximum 
time of 108 is exceeded.
The computation was done for 10,000 particles using the same noise intensity and the 
mean escape time was calculated. The process was repeated for a range of the noise 
intensity D = <j2/ 2, by changing the standard deviation a of the noise (a runs from 0.3 
to 0.6 with an increment size of 0.02). Figure 3 shows both analytical and numerical 
results of the natural log of the mean escape time vs 1 / D. A line of best fit was found 
for the numerically computed data, and the slope of the best fit line was calculated to 
be to =  0.2583.

There is excellent agreement between the slope of the best fit line through the 
numerically computed data and the slope obtained using the analytical method (to =  
0.25). In Fig. 3, the vertical shift between these two lines is explained by the use of 
different conditions for escape. In the analytical derivation, the particle was required 
to reach the unstable saddle point at x = 0 to escape. However, for the numerical

11



8

2
4 6 8 10 12 14

1/D
16 18 20 22 24

Figure 3: Natural log of mean escape time vs 1/D. The analytical line (blue) has slope m  =  0.25, 
while the slope of the best fit line through the numerically computed data (red) is m =  0.2583.

computation the particle had to travel over the saddle point and descend to x =  0.2 in 
order to escape.

3 Two coupled particles in a potentia l well
We now consider the case of two coupled particles interacting with each other in the 
presence of noise and in a double-well potential. In addition to the global well potential, 
we now need to consider the local potential due to the interaction between the coupled 
particles. To model the interaction between the particles, we use a spring potential 
given by

where we assume that the mass of of each particle is mi =  m 2 =  1. In Eq. (39) 
A; is a coupling parameter, l represents a distance parameter, and x\  and x 2 denote 
the positions of the two particles. The force acting on the particles may change from 
being attractive to repelling and vice versa depending on the distance between the 
particles. In particular, if \x\ — x2| < /, the particles are repelled from each other,and 
if \x\ — x2\ > /, the particles are attracted to one another. The total kinetic energy is

(39)

(40)

where X\ and x 2 represent the particle velocities. 
Thus the total potential of the system is given as

V(xx ,x2) = Vsp{x1,x 2) + V ( x 1)- \-V(x2)

= 7}(x i - x 2 ~  0 2 + V(x i) +  V(x2). (41)
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Equations (40) and (41) allow us to formulate the Lagrangian to be

L ( x 1, x 2, x 1 , x  2) =  T ( x u x 2) - V ( x  i , x 2)
x, + x$ k ,  , v
— 2-------2 ^ 1 “  X2 ~ ^  ~ ~  V

The Euler-Lagrange equation is

d_ ( d L \
dt \  dii  ) =  0

for z =  1 , 2 .
Solving Eq. (43), we get the system of equations

(42)

(43)

xi  +  k(xi - x 2 - l )  + V'(xi) = 0, (44)

x2 -  k(x 1  -  x2 -  l) + V \ x 2) = 0. (45)
If we add damping terms, we obtain

xi +  axi  +  k(x 1 - x 2 - l )  + V'{xi) =  0, (46)

x2 +  ax2 -  k(x 1 -  z2 -  0  +  V \ x 2) =  0. (47)

In the case of an overdamped environment, the inertial terms x 1 and x 2 can be 
ignored. For simplicity we let a = 1, and the system given by Eqs.(46) and (47) takes
the form of the following governing equations:

¿ 1  +  k(x 1 - x 2 - l )  + V ' f a )  =  0, (48)

x2 -  k(x 1 - x 2 - l )  + V'(x2) = 0. (49)

The deterministic system of equations [Eq. (48) and Eq. (49)] can be made stochas­
tic by adding noise terms, and T]2(t), to each of the governing equations to obtain

¿ 1  =  - k ( x  1 - x 2 - l ) ~  V'(Xl) +  77j (t) = x2) +  Tj\(t), (50)

x2 = k(x2 - x 1 -  /) -  V \ x 2) +  rj2(t) = F2(x u x2) +  r}2(t). (51)

As in the case of a single particle, we solve for 771 (t) and r]2(t) so that

ni(t) = x 1 - F 1(xl i x2), (52)

V2(t) = x2 - F 2(x1,x2), (53)
which may be written in vector form as

f)(t) = £ - F ( x ) .  (54)
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We again employ Feynman’s path integral formulation [7], and compute the prob­
ability of the escape

P{xesc) =  exp j  

where the Lagrangian is given by

dt =  exp x — F(x)
T 2

dt , (55)

x) =  ^ x — F(x) = -  [(¿i -  F1(x1, x2))2 +  (x2 ~ F2(x! ,x2))2] (56)

Using Eq. (43), the Euler-Lagrange equations are

d (  d L \  (  d L \  n
dt\dxj°’ ^

d (  d L \  f  d L \
S f e ) - f e ) = °- (58)

After substituting Eq. (56) into Eqs. (57) and (58) and simplifying, we obtain

dF1(x1,x2) _  dF2(xi ,x2)l  . 

dx2 dxi  _ X2
dF1(xi ,x2) r , , N dF2(xu x2)
-----Ô------- r i ( x i , x 2) -------- —-------

O X i  O X \
F2(x i , x2) = 0, (59)

x 2 -
dF2(x i ,x2) dFi(xi ,x2)

dxi 
dFx (x\ , x2)

Xi

F1(x1,x2) -  dF2( * y X2)F2(xl t x2) = 0. (60)dx2 dx2

Let’s consider a specific example using the global potential given by Eq. (20). Since

and

we therefore have

Fi (x1:x2) = - k ( x i -  x2 -  l) -  V ’(xl), (61)

F2(x1, x2) =  k(xi -  x 2 -  l) -  V'(x2), (62)

V'(xi) = x \ -  xi, (63)

V'(x2) = x \ -  x2, (64)

F1(x1, x2) =  - k ( x i -  x2 -  l) + xi -  x\, (65)

F2(x \ , x2) =  fe(rci -  x2 -  Z) ■+ x2 -  x\. (66)
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Thus

dFl (x1,x2)
dx2

dF2(x i ,g 2)
dxi

dF1(x1,x 2)
dxi

=  K  

=  k,

=  —A; -f 1 3x 2
1)

aF2(rgi,rg2)
dxo

-k +  1 — 3x9.

After a little algebra, Eqs.(59) and (60) become

¿ 1  ~ {—k +  1 -  3xl)Fi(xi ,x2) ~ kF2(x i ,x2)

x2 -  kFi(x1,x2) -  (—k +  1 -  3xl)F2(x i ,x2)

0, (67)

0. (68)

3.1 T heoretical escape tim e /e sca p e  ra te : No coupling
If we consider Eqs.(50) and (51) and set the coupling parameter k to zero, then we 
obtain

V'(xi  ) + rj1(t)1 (69)

V'(x2) + 7/2W, (70)

which clearly describes two independent (non-coupled) particles in a potential well. 
We can treat them separately, one at the time, so that our results for a single particle 
in a double-well potential can be applied (Section 2.1).

3.2 C om parison  of analy tical resu lts  w ith  num erical sim ula­
tion : N o coupling

We numerically integrate the system of two stochastic differential equations given by 
Eqs. (50) and (51) with k = 0 using a fourth-order stochastic Runge-Kutta method 
with constant step size h = 0.001. Two particles were placed in the left basin of 
attraction. Whenever noise caused one of the particles to escape to the other basin (or 
if both escaped at the same time), the escape time was recorded. For our purposes, 
the escape time is the time it takes the particle to completely cross the barrier located 
at x  =  0 (by completely, we mean the particle reaches the point x = 0.2, to be sure 
that it will not come back to the same basin of attraction it came from) or when the 
maximum time of 108 is exceeded.
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The computation was done for 20,000 particles using the same noise intensity and 
the mean escape times for each of the particles was calculated. The process was re­
peated for a range of the noise intensity D = n2/2, by changing the standard deviation 
<7 of the noise (cr runs from 0.3 to 0.6 with an increment size of 0.02). Figure 4 shows 
both analytical and numerical results of the natural log of the mean escape time vs. 
l /D .  Lines of best fit were found for the numerically computed data for x\ and a;2, 
and the slopes of these lines were calculated to be m\ = 0.25406 and ra2 =  0.25368, 
respectively.

Figure 4: Natural log of mean escape time vs l/D . There is no coupling force between the particles. 
The analytical line (blue) has slope m = 0.25, while the slopes of the best fit lines through the 
numerically computed data for particle x\ (red) and X2 (green) are mi = 0.25406 and m2 = 0.25368, 
respectively.

Figure 4 shows strong agreement between the numerically computed slopes mi  and 
m 2 as well as the slope calculated in Section 2.1 using the analytical method (m =  0.25). 
The agreement is so strong that the best fit line for particle X\ (red) is almost totally 
obscured by the best fit line for particle x2 (green). The vertical shift between the 
two lines of best fit through the numerically computed data and the analytical line is 
explained by different conditions for escape. In the analytical derivation, the particle 
was required to reach the unstable saddle point at x = 0 to escape. However, for the 
numerical computation the particle had to travel over the saddle point and descend to 
x = 0.2 in order to escape.

3.3 T heoretical escape tim e /e scap e  ra te : S trong  coupling
When the coupling between the particles is large, the distance between the two particles 
is approximately maintained at a constant equilibrium distance given by l. Therefore 
we can let l = x i -  x2 or Xi =  x2 + 1. If we denote x2 =  x and Xi = x + l then the 
two-dimensional Eq. (41) can be rewritten as a one-dimensional potential. Thus we 
can apply the previously derived results for the escape time of one particle (Section 
2.1). The only difference between the one particle and the two particle case is that the 
two particle case has a potential of the form V(x) + V(x  +  l). Therefore, we expect

16



that the depth of the potential well in the strongly coupled two particle case will be 
different from the depth of the potential well in the one particle case. As a consequence 
of this difference, the mean escape times for both cases will differ as well.

If we consider the double-well potential example, Eq. (41) becomes

(x -f l)~ X2 „4
-  +

and therefore

V'(x) — (x + l)3 +  x 3 — 2x — l. 

There are 4 roots of Eq. (71) given by

x2
T ’

(71)

(72)

- V i  - 3 l 2 - lx = a = ------------------
2

, l
x = b = ~ 2 ’

V i  -  si2 - 1
X  = ‘

with corresponding extrema

V(a)

V(b)

V(c)

where x — b is a double root.
Thus for the specific value of parameter l =  0.05, we have local minima at x — 

a — —1.0241 and x — c — 0.9741 with value V(a) =  V(c) = | ( —0.054 -f 2 • 0.052 — 
2) =  —0.4987. Additionally, there is a local maximum at x  =  b — 0.025 with value 
V(b) = ^^-(0.052 — 8) — —0.0006. The depth of the potential well is AV(x) = 
|V(b) — V(a) | =  0.4981. Since V"(x) = 3(x -1-1)2 +  3a;2 — 2, we have V"{a) =  3.9925 
and V ”{b) =  —1.9812, and therefore, using Eq. (18), the escape time for the case of 
two strongly coupled particles is given by

=  - ( - Z 4 +  2 /2

4 -

2),

1
(—l4 +  2l2 — 2),

27t l' A V ( x)^
V V ”(a)\V"{b)\6XP V D J 0.7943 exp

^ 0.4981^
(73)

3.4 C om parison  of analy tical resu lts  w ith  num erical sim ula­
tion: S trong  coupling

We numerically integrate the system of two stochastic differential equations given by 
Eqs. (50) and (51) with k — 20 using a fourth-order stochastic Runge-Kutta method 
with constant step size h = 0.001. Two particles were placed in the left basin of

17



attraction. Whenever noise caused one of the particles to escape to the other basin (or 
if both escaped at the same time), the escape time was recorded. For our purposes, 
the escape time is the time it takes the particle to completely cross the barrier located 
at x  — 0 (by completely, we mean the particle reaches the point x =  0.2, to be sure 
that it will not come back to the same basin of attraction it came from) or when the 
maximum time of 108 is exceeded.

The computation was done for 20,000 particles using the same noise intensity and 
the mean escape times for each of the particles was calculated. The process was re­
peated for a range of the noise intensity D = cr2/2, by changing the standard deviation 
o of the noise [a runs from 0.3 to 0.6 with an increment size of 0.02). Figure 5 shows 
both analytical and numerical results of the natural log of the mean escape time vs 
1/D. Lines of best fit were found for the numerically computed data for x\ and x2, 
and the slopes of these lines were calculated to be m sci =  0.49931 and m sc2 =  0.49884, 
respectively.

Figure 5: Natural log of mean escape time vs 1/D. The coupling force between the particles is 
k =  20. The analytical line (blue) has slope m  =  0.4981, while the slopes of the best fit lines 
through the numerically computed data for particle x\ (red) and x2 (green) are msc\ — 0.49931 and 
m sc2 =  0.49884, respectively.

Figure 5 shows strong agreement between the numerically computed slopes m sc\ 
and m sc2 as well as the slope calculated in Section 3.3 using the analytical method 
(m =  0.4981). The agreement is so strong that the best fit line for particle X\ (red) 
is almost totally obscured by the best fit line for particle x2 (green). The vertical 
shift between the two lines of best fit through the numerically computed data and 
the analytical line is explained by different conditions for escape. In the analytical 
derivation, the particle was required to reach unstable saddle point at x = 0 to escape. 
However, for the numerical computation the particle had to travel over the saddle point 
and descend to x = 0.2 in order to escape.
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3.5 T heoretical escape tim e /e scap e  ra te : W eak /  In te rm ed i­
a te  coupling

In this section we investigate coupling values that range from k = 0.1 to k — 14. To 
do this, we apply an asymptotic expansion to Eq. (41). First we differentiate Eq. (41) 
with respect to x\ and X2 , obtaining

dV{x i ,x2) _  k (^i _  x2 _  i) +  V'{xi), (74)
U X  i

dV(x1,x 2) =  _ k _  a?2 _  /) +  V f(x2). (75)
o x  2

In order to find critical points we have to set each of the above equations equal to 
zero. Then if we divide Eqs. 74 and 75 by k and set e — we obtain

x\ — x2 — l +  eV'(x\) — 0, (76)

x\~-\- x2 +  / +  eV'(x2) =  0, (77)

where e is treated as a perturbation parameter. We should note that the accuracy 
of our asymptotic expansion depends on the perturbation parameter in such a way 
that the smaller e, the more accurate the results. Therefore, we can expect the best 
agreement for larger values of k.

We replace x\ and x 2 in Eqs. (76) and (77) by the following power series

X\  —  a  T  cb - f-  6 Ĉ +  . . . , (78)

x2 — A  4- eB 4- e2C +  ..., (79)

and by grouping the terms of the obtained equations with respect to the perturbation 
parameter e, we get several systems of equations. Then we solve the systems for 
variables a, 6, c ,..., A, B , (7,... and substitute the solutions into Eq. (41) which in turn 
gives us values of local extrema of the potential V (sq, aq). The difference between such 
a maximum and minimum gives the depth of the potential well AV(xi,  x2).

We consider a particular example where the quartic potential is given by Eq. (20). 
Therefore Eqs.(76) and (77) become

X\ — x2 — l +  e (xj — xi) =  0 (80)

—Xi + x2 +  l +  e (x\ -  x2) = 0  (81)

Then we replace x\ and x2 by the power series given by Eqs.(78) and (78). Thus 
Eq. (80) becomes

a T T — A  — eB  — c^C — Z T e (a + eò + e2c) 3 — (a + eò + e2c) = 0 , (82)

19



and Eq. (81) becomes

—cl —■- çb — e2c A eB  -)- e2C -1- ¿4"

t \ { A  + tB  + <?Cf -  (A + eB + e2C) =  0. (83)

Then we group terms from Eqs.(82) and (83) with respect to powers of perturbation 
parameter e.

For (9(0):

a = A + l. (84)
For O(e):

a3 - a  + b - B  = 0, (85)
A3 - A - b  + B = 0. (86)

For (9(e2):

3a2b - b  + c - C  = 0, (87)
3A 2B - B  - c  + C = 0. (88)

For (9(e3):

3a2c +  3A 2C  +  3ab2 +  3A B 2 -  c -  C =  0, (89)
3a2c +  3A2C +  3 ab2 +  3 A B 2 + c + C = 0. (90)

Solving Eqs.(84)-(90) with l = 0.05, we get three roots. One represents the local 
maximum located at the saddle point, and the other two represent the local minima of 
the same value located at the bottom of the wells. For the maximum we have

_1_ l _  1599 -7670403
4 0 ’ U 128000’ °  654131200000’

_  __1_ d  _  1599 7670403
4 0 ’ D  128000’ °  654131200000'982 ’

and for the minimum

l -v d 5 9 7  u 399(1597+3Vl597) -477603(322391 V1597+2550409)
40 ’ 0 ~  25552000 ’ C ~  6480079187200000 ’

—1—VÜ597 p  399(-1597+3V l597) p ,  -477603(322391 \ /Ï 5 9 7 -2550409)
40 ’ ^  ~  25552000 ’ °  — 6480079187200000-982

Replacing coefficients a, 6, c, A, B , C  by their actual values for the maximum roots 
in Eq. (78) and Eq. (79) and substituting the newly obtained aq and aq into Eq. (41), 
we get an asymptotic expansion, VmaXi of Eq. (41) for the local maximum. If we repeat 
the procedure for the minimum roots , we get an asymptotic expansion, Vmin, of Eq. 
(41) for the local minimum. Finally our potential well depth can be computed from 
AlV  Fmax Kim-
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3.6 C om parison of analy tical resu lts  w ith  num erical sim ula­
tion: W eak /  In te rm ed ia te  coupling

We numerically integrate the system of two stochastic differential equations given by 
Eqs. (50) and (51) with k = 0.1 to k = 14 using a fourth-order stochastic Runge-Kutta 
method with constant step size h=0.001. Two particles were placed in the left basin 
of attraction. Whenever noise caused one of the particles to escape to the other basin 
(or if both escaped at the same time), the escape time was recorded. For our purposes, 
the escape time is the time it takes the particle to completely cross the barrier located 
at x — 0 (by completely, we mean the particle reaches the point x =  0.2, to be sure 
that it will not come back to the same basin of attraction it came from) or when the 
maximum time of 108 is exceeded.

The computation was done for 20,000 particles using the same noise intensity and 
the mean escape times for each of the particles was calculated. The process was re­
peated for a range of the noise intensity D = <r2/2, by changing the standard deviation 
a of the noise (a runs from 0.3 to 0.6 with an increment size of 0.02). Figure 6 
shows both analytical and numerical results of the natural log of the mean escape time 
vs l / D  for k = 1,2,8, and 20, where lines of best fit were found for the numerically 
computed data for x\ and x2. Slope values for other values of k can 6e found in Table 1.

k Slope (asymptotic) X\ slope Error % x2 slope Error %
0.1 0.2522 0.2986 18.4 0.2978 18.1
0.2 0.4574 0.3388 25.9 0.3396 25.7
0.4 0.4906 0.4065 17.1 0.4063 17.2
0.6 0.4955 0.4529 8.6 0.4528 8.6
0.8 0.4969 0.4790 3.6 0.4796 3.5
1 0.4976 0.4938 0.8 0.4939 0.7
2 0.4982 0.5034 1 0.5024 0.8
4 0.4983 0.5079 1.9 0.5068 1.7
6 0.4982 0.5053 1.4 0.5043 1.2
8 0.4982 0.5037 1.1 0.5024 0.8
10 0.4982 0.5026 0.9 0.5016 0.7
12 0.4982 0.5012 0.6 0.5002 0.4
14 0.4982 0.5010 0.6 0.5002 0.4

Table 1: Weak to intermediate couplings.

The second column of Table 1 shows analytical values of the slope computed using 
the asymptotic expansion of the potential well for different coupling values (column 
1). The third and fifth columns indicate the numerically obtained slopes of the lines 
of best fit of xi and x 2, respectively. The fourth and sixth columns give the relative 
error between the analytical and numerical results. Based on the relative errors, we 
can observe excellent agreement between the numerically and analytically obtained 
slopes for the intermediate coupling values (k = 1 to k =  14). However, the relative 
error for the weak coupling values (k = 0.1 to k = 0.8) shows that there is not good
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agreement between the analytical and numerical results. The poor agreement is due to 
the perturbation parameter e being too large. Therefore, to analytically find the escape 
times for the case of weak coupling we need to develop another analytical method.

Figure 6: Natural log of mean escape time vs 1/D. The coupling force between the particles ranges 
from k =  1 to k — 20. The analytical line (blue) has slope m  =  0.4981. The slope of the best fit line 
through the numerically computed data for k =  1 for particle x\ (red-triangles) is mi =  0.4938 and 
for X2 (green-triangles) is m2 =  0.4939, for k =  2 for particle X\ (red-squares) is mi =  0.5034 and 
for X2 (green-squares) is m2 =  0.5024, for A; =  8 for particle x\ (red-stars) is mi =  0.5037 and for 
X2 (green-stars) is m2 — 0.5024, and for A: =  20 for particle aq (red-dots) is mi =  0.4993 and for X2 

(green-dots) is m2 — 0.0.4988.

In Fig. 6 we can observe such strong agreement between the best fit line of X\ 
and X2 that the lines overlap. Also the parallel orientation of the lines shows close 
agreement between the slopes of the lines. Notice that with increasing the coupling, 
the lines shift upwards. The vertical shifts between analytical line and numerical ones 
can be explained by different escape conditions, just like it was in previous sections. 
However, the shifts between numerical lines is due to the fact that with increasing the 
coupling, it is harder to escape and therefore the mean escape times increase. The 
vertical shift decreases as the value of coupling increases. Beyond the strong coupling 
value of k = 20, the results are nearly identical.

Figure 7 shows that once we cross the intermediate-strong threshold of k = 14, 
the mean escape times obtained from numerical computations converge to the value of 
0.4981 which is the analytical slope for strong coupling. Also Fig. 7 confirms the obser­
vation made in discussing the data from Table 1 that the weak-intermediate threshold 
is located near k =  1.

3.7 F u tu re  work
To properly capture the escape rates/times for weak coupling, we recently derived in an 
alternate fashion the governing equations that maximize the escape probability. The 
method involves a variational approach that uses Lagrange multipliers. The method is 
general and allows one to find the optimal escape path as well as the escape rate.

We begin by demonstrating the procedure for the single particle problem given by

x(t) = F(x(t)) +  £(t). . (91)
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Figure 7: Mean escape time vs coupling for two particles. The asymptotic expansion (blue) is 
compared with the curves going through the numerically computed data points for x\ (red) and x% 
(green).

The probability of a large fluctuation [20] is given by

Px[x\ = exp j  , (92)

where R  =  mm7Z[x, £, A], and

Tl[x,€,X\ = 7^[£00] +  f  \(t)[x(t) -  F(x) -£ ( t ) ]d t

= \ J  e m  +  J  X(t)[x(t) -  F(x)  -  £(t)]dt. (93)

To determine the exponent 1Z, we seek the equations that describe the maximum 
probability of reaching the saddle if we start at the attractor. We derive the variation 
51Z by varying deviations from the path that minimizes 7Z.

First, we consider the variation with respect to noise Therefore we get

n[x,  £ +  77, A] -  K[x, f , A]

^ J  (f +  V)2dt +  J  A [ x - F - ( £  + rj)]dt

- 77 J  i 2dt +  J  A [ x - F -  £}dt

\ J  [«  + v)2 -  e ]  dt -  J €]dt

=  ^ J  2^77 +  rfdt -  J  Xqdt = / (£  -  A)r)dt +  0(rj2).

Since 77 is an arbitrary smooth function, we get

(94)

(95)
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Now we consider the variation with respect to the Lagrange multiplier A. The 
equation is

6U
6X

K{x, f , A +  77] -  K[x, f , A]

i  J £2dt + j  (X + rj) [x — F — £]dt

-  I f i 2d t + f \ { x - F - i \ d t

J (A — A +  j i ) [ x  — F  — Qdt = jj [i -

Thus
x — F — £ = 0=>x = F  + £.

Finally we consider the variation with respect to x. We have

¿77
5x

-= K[x + ri , t ,X\-1l[x ,t ,X]

= i 2dt +  J X [x +  fj -  F(x +  rj) -  £]dt

-  i  J £2dt + J X[x -  F(x) -  (\dt

— j  ^ [v +  F(x) -  F(x  +  rj)]dt 

f  • 5F
= -  Xrt+Xn ndt

=  -  T) A +  A
5F_
5x

Thus

A + A

dt.

5F_
5x

=  0.

(96)

(97)

(98)

(99)

Equations (95), (97), and (99) form the following system of ordinary differential 
equations

x = X + F(x), 

A =  -A  f .
OX

(100)

By solving the system of equations given by Eq. (100), we get the following set of 
equations which can be solved to find the optimal escape path and escape rates.

A =  -2F(x),  
x — —F{x).

(101)
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We can extend the above derivation to the two particles problem given by

Now

X = F(x) +  £(t).

r -  u  r , f  -  r- - ,  x -1

(102)

If

7Z x, £,A =  7^[£] +  / A x — F(x) — £ dt

= \ f &  + &dt +  J A • x -  F(x) -  £ dt

(103)

Xi = F\{X\,X2) +  £1 

i 2 — F2 (xi, X 2 ) + £2

(104)

then

71 [< xi,X2 >, < £1 , £2 >, < Ai, A2 >]

= — J + £2dt + J < Ai, A2 > • < X\ — F\ — £1 , ¿2 -  F2 — £2 >dt (105)

=  2 J £1 +  £2^  +  J Ai (¿1  — Fi — £1) +  A2 (a;2 — F2 — £2)dt

Now if we consider the variations with respect to £1 , £2, £1 , £2, Ai, A2, we obtain the 
following

Ai 
A2

¿2 

0

0

Unlike the single particle case, this system doesn’t have an analytical solution. 
Therefore, we must solve the system numerically. For example, we may use a shooting 
method. This is non-trivial in high-dimensions and we are currently working on this 
numerical problem. The solution, as in the single particle case, will enable us to find 
the optimal escape and escape times for every parameter and coupling value of interest.

— £1 ,
=  £2,
— Fi +  £i,
— F2 + £2,

SF1 
Sx 1

—Ai — Xi~------A2y— ,
OX 1

5F2 
1

0 F25F\
= — A2 — Ax- ------A2 ~z—

OX 2 OX 2

4 Sum m ary
We have studied the dynamics of a single particle placed in an overdamped double­
well potential. Due to a stochastic force, the particle fluctuates for most of the time
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around an attractor located at the bottom of the well. However, as a rare event, the 
noise generates a large fluctuation that causes the escape of the particle to the other 
well. We analytically derived the expression for escape rates and escape times for the 
particle and showed there is a linear relationship between the mean escape time and 
the inverse of the noise intensity. Furthermore, our analytical results were confirmed 
by numerical computations.

We then extended the theory and derived analytical expressions for the escape time 
and escape rate for two coupled particles placed in an overdamped potential well in 
the presence of stochastic noise. As a starting point in our derivation, we used a spring 
potential for the local interaction and a global double-well potential. The analysis was 
performed for different values of the coupling parameter.

First, we considered the case of no coupling between two particles. In this case, 
the particles will behave as two independent systems, and therefore the single particle 
theory can be used. We saw excellent agreement between the slopes of the best fit lines 
from the numerical simulation and the analytical slope of the line, given by the depth 
of the potential well.

Next, we investigated the case of strong coupling, assuming this time that the 
coupling force between the particles is so strong that repulsive and contracting forces 
are approximately in equilibrium. Therefore, the distance between the particles did 
not change and we could treat the particles as a special case of the one particle theory. 
The analytically obtained depth of the potential well was in good agreement with the 
the slopes of the best fit lines from the numerical simulation.

For the third case of weak to intermediate coupling, we had to develop different 
analytical tools to find the escape time. We employed an asymptotic expansion with 
respect to 1/k. This approach gave the mean escape time for intermediate coupling 
values (k=l to k=14) that compared very favorably with numerical simulation. The 
relative error between the asymptotic expansion results and numerical results for the 
above range of coupling values was less than 1.9 % and became even lower for higher 
coupling values in the range. However, for the weak coupling values (k=0.1 to k—0.8), 
the agreement between the analytical and numerical results is not as good. Therefore, 
to solve this problem, we proposed a new analytical method in Section 3.7. that will 
enable us to find the optimal escape path and the escape time for all parameter and 
coupling values.

There is much more work to be done. Of interest is the inclusion of more particles 
as well as the extension to simple, but realistic ocean flows, and continuing on to more 
complicated ocean flows. The results presented here and future results will provide 
the first steps in understanding how to optimally use autonomous underwater gliders 
for monitoring ocean regions as well as in understanding switching behavior in other 
physical and biological systems.
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