
Montclair State University Montclair State University

Montclair State University Digital Montclair State University Digital

Commons Commons

Theses, Dissertations and Culminating Projects

5-2022

Identifying Functional and Non-functional Software Requirements Identifying Functional and Non-functional Software Requirements

from User App Reviews and Requirements Artifacts from User App Reviews and Requirements Artifacts

Dev Jayant Dave

Follow this and additional works at: https://digitalcommons.montclair.edu/etd

 Part of the Computer Sciences Commons

https://digitalcommons.montclair.edu/
https://digitalcommons.montclair.edu/
https://digitalcommons.montclair.edu/etd
https://digitalcommons.montclair.edu/etd?utm_source=digitalcommons.montclair.edu%2Fetd%2F1012&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.montclair.edu%2Fetd%2F1012&utm_medium=PDF&utm_campaign=PDFCoverPages

1

Abstract

This thesis proposes and evaluates Machine Learning (ML) based data models to identify and

isolate software requirements from datasets containing user app review statements. The ML

models classify user app review statements into Functional Requirements (FRs), Non-Functional

Requirements (NFRs), and Non-Requirements (NRs). This proposed approach consisted of

creating a novel hybrid dataset that contains software requirements from Software Requirements

Specification (SRS) documents and user app reviews. The Support Vector Machine (SVM),

Stochastic Gradient Descent (SGD), and Random Forest (RF) ML algorithms combined with the

term frequency-inverse document frequency (TF-IDF) natural language processing (NLP)

technique were implemented on the hybrid dataset. The performance of each data model was

evaluated by metrics such as accuracy, precision, recall, and F1 scores, and the models were

validated using 10 k-fold cross-validation. The proposed approach can successfully identify and

isolate software requirements with SGD performing the best with an accuracy of 83%. Overall,

this thesis presents a comprehensive methodology for implementing machine learning algorithms

combined with NLP techniques to identify requirements from user app reviews with a high

degree of accuracy.

 Keywords: requirements, mining, classification, machine learning, natural language
processing

2

MONTCLAIR STATE UNIVERSITY

Identifying Functional and Non-functional Software Requirements from User App Reviews and

Requirements Artifacts

by

Dev Dave

A Master’s Thesis Submitted to the Faculty of

Montclair State University

In Partial Fulfillment of the Requirements

For the Degree of

Master of Science

May 2022

College of Science and Mathematics Thesis Committee:

Department of Computer Science ________________________

Dr. Vaibhav Anu

Thesis Sponsor

__

Dr. Aparna Varde

Committee Member

Dr. Jiacheng Shang

Committee Member

Thesis Sponsor

Committee Member

ommittee Member

3

IDENTIFYING FUNCTIONAL AND NON-FUNCTIONAL SOFTWARE REQUIREMENTS

FROM USER APP REVIEWS AND REQUIREMENTS ARTIFACTS

A THESIS

Submitted in partial fulfillment of the requirements

For the degree of Master of Science

by

Dev Jayant Dave

Montclair State University

Montclair, NJ

2022

4

Copyright@2022 by Dev Jayant Dave. All rights reserved.

5

Acknowledgements

I would like to thank my thesis sponsor, Dr. Vaibhav Anu, and my committee members,

Dr. Aparna Varde and Dr. Jiacheng Shang for their continued support and guidance throughout

my graduate degree.

6

Contents
Chapter 1: Introduction ... 9
Chapter 2: Related Work ... 13

2.1: Existing research on classifying formal software requirements 15
2.1.1 Machine Learning .. 15
2.1.2 InfoVis ... 17
2.1.3 Templates .. 17

2.2: Existing research on identifying requirements from user app reviews 18
2.2.1: Automatic classification of Non-functional and Functional requirements

... 18
2.2.2: Requirements Mining Framework .. 18
2.2.3: Information Retrieval and NLP approach ... 19
2.2.4: Text Classifiers .. 20

Chapter 3: Study 1: Creating ML Models for Classifying Formal Software
Requirements... 22

3.1: Study 1: Research Methodology ... 22
3.2: Study 1: Experiment Results and Discussion .. 26
3.3: Study 1: Inferences .. 27

Chapter 4: Study 2: Identifying FRs and NFRs from user app review data 29
4.1 Study 2: Development of a New Hybrid Dataset ... 29
4.2: Research Methodology .. 30

Chapter 5: Discussion ... 35
5.1 Real-World Impact ... 37

Chapter 6: Conclusion .. 38
6.1: Summary .. 38
6.2: Contributions and Findings .. 38
6.3: Future Work .. 39

References .. 40

7

List of Tables

TABLE 1: RESEARCH QUESTIONS ... 11
TABLE 2: LIST OF ML ALGORITHMS GROUPED BY THE TYPE OF

ALGORITHM IN THIS STUDY .. 16
TABLE 3: FR AND NFR REQUIREMENTS IN THE PROMISE DATASET 23
TABLE 4: SUBCLASSES OF NFR IN THE PROMISE DATASET 23
TABLE 5: DISTRIBUTION OF FRs, NFRs AND NRs IN THE NOVEL HYBRID

DATASET .. 30

8

List of Figures

Figure 1: Classifying FRs and NFRs ... 26
Figure 2: Classifying NFR-subcategories 1 .. 27
Figure 3: Stages in Study 2 ... 31
Figure 4: Performance metrics of SVM, SGD, and RF data models 34

9

Chapter 1: Introduction

The Software Development Life Cycle (SDLC) is a process consisting of multiple stages

used to define the design, development, and testing of software. SDLC consists of five stages

that are requirements analysis, design, development, testing, and maintenance. Requirements

analysis is the elicitation of requirements that define what the software will do. The design stage

involves creating prototypes of the software to illustrate basic functionality. The development

stage involves writing code for the software whereas testing involves testing the code to ensure

the piece of software functions as intended. Lastly, maintenance consists of monitoring the

software to resolve any issues that may arise or implementing enhancements. The requirements

phase in the SDLC is one of the most important stages of software development. Incorrect or

missing requirements can lead to an incomplete product that does not satisfy customer demand.

The quality of the software requirements specification (SRS) document will reflect the quality of

the final software product. The SRS document outlines the functional and non-functional

capabilities of an application. Thus, the development team and the client must share the same

understanding [1]. Software requirements are gathered from clients who outline the

functionalities of the system. Requirements can also be gathered from end-users during the

testing of the software and by domain experts that can include any missed requirements. Lastly,

software requirements can also be gathered from previous software development projects or case

studies.

In recent years, the growth of mobile devices has led to an increase in mobile software.

App distribution platforms such as the google play store and apple app store have had 4 million

apps as of June 2016 with the number of monthly app downloads hovering around 1 billion per

month [2]. Users that download these applications can rate the application and provide textual

10

feedback relating to the application. User reviews contain important information that can assist a

developer in better understanding their user needs and wants. Making use of user reviews for app

upgrades can lead to an increase in new users and retain existing users. Studies indicated that

one-third of users have modified their app ratings after a developer’s response. Mobile

applications can receive more than 20 reviews per day and popular mobile applications such as

Facebook can receive more than 4000 application user reviews a day [2]. Therefore, user reviews

are an important source of feedback for developers to elicit requirements to provide software

fixes or updates. However, it is difficult to sift through vast amounts of user reviews and filter

out reviews that do not indicate a requirement. Automatic extraction of software requirements

through various approaches and frameworks can enable developers to respond quickly to

customer wants and needs and reduce the time and money spent on eliciting requirements. This

thesis seeks to introduce a novel hybrid dataset consisting of Functional Requirements (F), Non-

Functional Requirements (NFR), and Non-Requirements (NR) from Software Requirements

Specifications (SRS) document and user app reviews. The hybrid dataset is used to create data

models that use machine learning (ML) algorithms such as Support Vector Machine (SVM),

Stochastic Gradient Descent (SGD), and Random Forest (RF) combined with natural language

processing (NLP) techniques such as term frequency-inverse document frequency (TF-IDF). The

data models are then thoroughly evaluated by using 10 k-fold cross-validation and calculating

11

accuracy metrics such as recall, precision, and the F1 score. Table 1 provides a list of research

questions that guided the work described in this thesis.

Overall, the main contributions of this thesis are as follows:

1. Identification and classification of Functional Requirements (FRs) and Non-

Functional Requirements (NFRs) from formal requirements artifacts: The

automatic identification and classification of FRs and NFRs from SRS documents

makes the requirements engineering (RE) phase more efficient as software

engineers and project managers can capture requirements that may have been

missed. Capturing requirements at a later stage of the SDLC increases the overall

cost and time to deliver the project.

2. Automatic identification of FRs, NFRs, and NRs from user app reviews:

Automatically identifying requirements from a host of user app reviews can save

developers time by not having to manually sift through thousands of reviews. This

also enables developers to better understand the wants and needs of their users.

TABLE 1: RESEARCH QUESTIONS

RQ No. Research Question

RQ1 What is the type and size of data required to automate the identification of

requirements from user app reviews?

RQ2 To what extent can the machine learning algorithms combined with Natural

Language Processing (NLP) techniques accurately identify and classify

Functional and Non-Functional Requirements?

RQ3 How effective are the data models in identifying Non-Requirements (NRs) from

Functional Requirements (FRs) and Non-Functional Requirements (NFRs)?

12

Therefore, developers can iteratively improve their applications by being able to

automatically extract requirements from user reviews.

3. Development of new hybrid dataset consisting of formal software requirements

statements as well as user app review statements: This dataset will be useful for

machine learning researchers who are interested in developing and evaluating ML

models to extract software requirements from user app reviews.

The remainder of the thesis is divided into five chapters. Chapter 2 provides an

overview of the current state of research for identifying and classifying FRs and NFRs

from formal software requirements and user app reviews. Chapter 3 proposes the first

study where FRs and NFRs are classified by using SGD, SVM, and RF ML algorithms.

Chapter 4 proposes the second study where a novel hybrid dataset is created consisting of

requirements from SRS documents and user app review statements. The requirements and

user app review statements are classified into FRs, NFRs and, NRs by using the SGD,

SVM and, RF ML algorithms. Each data model is evaluated by its performance metrics

and is validated. Chapter 5 consists of the implications of this research in the real world.

Chapter 6 presents the conclusion of both the studies and explores future work that can be

done to further expand the studies presented.

13

Chapter 2: Related Work

 Explicit requirements in SRS documents are well-defined functionalities of the system

whereas Implicit Requirements (IMRs) are functionalities of a system that are assumed and not

elicited during requirements gathering [3]. Unhandled IMRs can be a major contributor towards

software failure [3]. Identifying and classifying functional requirements (FRs) and non-

functional requirements (NFRs) from SRS documents and user app reviews can lead to a better

quality of software. Requirements gathered from the stakeholders may not be well documented

and it is up to the developer to meet the requirements as per their understanding. Vague

requirements are an important factor that often leads to poor quality software and results in the

failure of software projects. Additionally, many requirements are not initially captured but do get

captured at later stages of the software development life cycle by end-users or clients before the

software is moved to production [1]. For reader’s reference, definitions, and examples for FRs

and NFRs are provided the paragraphs below.

A functional requirement outlines the required behavior in terms of required activities,

such as reactions to inputs, and the state of each entity before and after an activity occurs. It

states the following [4]:

1. What will the system do?

2. When will the system do it?

3. Are there several modes of operation?

4. What kinds of computations or data transformations must be performed?

5. What are the appropriate reactions to possible stimuli?

A Non-Functional requirement describes some quality characteristics that the software

solution must possess. It should outline the following [4]:

14

1. Performance

2. Security

3. Reliability and Availability

4. Maintainability

5. Usability and Human Factors

6. Precision and Accuracy

7. Time to Delivery/Cost

Examples of FRs include:

 The website will allow customers to search for movies by title actor or

director.

 The product shall be able to delete room equipment.

Examples of NFRs include:

 The product should be able to be used by 90% of novice users on the Internet.

 System shall let administrator de-activate a customer account in under 1

minute. Customer will no longer be able to access the website.

Therefore, it is important to identify and classify software requirements during the

requirements gathering phase to make certain that the software development projects meet

client requirements, are within the budget, and are completed within the decided timeline.

Tools such as COTIR have been proposed that integrate Commonsense Knowledge,

Ontology,

time and effort spent by software engineers in identifying IMRs from large SRS documents

[5] [6]. Additionally, deep learning approaches utilizing Convolutional Neural Network

(CNNs) have been integrated with COTIR to better detect IMRs from complex SRS

15

documents that contain images and tables [7] [8]. The remainder of the section is divided into

exploring the state of research for classifying formal software requirements from SRS

documents and classifying requirements from user app reviews.

The following sections provide a review of literature on previous work performed on

classifying formal software requirements and work done on identifying requirements from

user app reviews.

2.1: Existing research on classifying formal software requirements

This section will explore the current state of research in classifying formal software

requirements from SRS documents. The section is divided into several subsections with each

subsection providing an overview of the approach or tool used for classifying formal software

requirements.

2.1.1 Machine Learning

Binkhonain and Zhao [9] provide an overview of various machine learning algorithms

and their performance to classify NFRs. 16 distinct machine learning algorithms are evaluated.

Out of the 16 ML algorithms, 4 are unsupervised, 5 are supervised, and 5 are semi-supervised

ML algorithms [9]. Table 2 consists of all the ML algorithms grouped by the type of algorithm.

16

The ML approaches consisted of similar data preprocessing steps. Data preprocessing consisted

of selecting appropriate features and preprocessing the text input. The text was preprocessed by

using methods such as stop word removal, stemming, and tokenization. Appropriate features

were selected by converting the text into a numeric matrix using Bag-of-Words (BoW) and Term

Frequency-Inverse Document Frequency (TF-IDF). Important features were then evaluated by

using information gain and the Chi-squared test. Each ML approach was evaluated by metrics

such as accuracy, precision, recall, and F1 scores [9]. Overall, the ML algorithms achieve an

accuracy score of 70% when classifying NFRs. The supervised ML algorithms performed better

than the unsupervised and semi-supervised ML algorithms with SVM and NB achieving the best

performance [9].

TABLE 2: LIST OF ML ALGORITHMS GROUPED BY THE TYPE OF
ALGORITHM IN THIS STUDY

Supervised Semi-Supervised Unsupervised

Support Vector Machines

(SVMs)

Expectation-Maximization

(EM)

Latent Dirichlet Allocation

(LDA)

Naïve Bayes (NB) Self-training K-means

Decision Tree (DT) Active learning Hierarchical Agglomerative

K-Nearest Neighbors (K-

NN)

Random Subspace Method

for Co-training(RAS-CO)

Biterm Topic Modelling

(BTM)

Multinomial Naïve Bayes

(MNB)

Relevant Random

Subspace Method for Co-

training (Rel-RASCO)

17

2.1.2 InfoVis

InfoVis is a tool that seeks to identify requirements based on how ambiguous or

incomplete a requirement is [10]. Data visualization techniques and NLP methods are combined

to identify requirements. A novel algorithm, Semantic Folding Theory (SFT), is proposed that

takes in user input and calculates a similarity score between pairs of words. The ambiguity score

is also calculated based on the term and context similarity. Based on the similarity and ambiguity

score, Venn diagrams are generated to visualize and explore the requirements [10]. The

performance of the tool is evaluated by using the WebCompany dataset that contains 98 user

story requirements. Tern pairs in the dataset are classified as being low, medium, or high

ambiguity. Students manually classify the ambiguity level of the user store requirements. The

ambiguity classification score by the students and the InfoVis tool is highly correlated suggesting

that InfoVis is effective in identifying requirements that are ambiguous [10].

2.1.3 Templates

 Templates can be used to identify security requirements. Riaz et al. propose using

templates that suggest security requirements to aid the process of eliciting requirements [11]. The

template provides a list of important security requirements to be included to the developers as

they are gathering the requirements. Requirements are given as input to the template and based

on the requirements, a list of security requirements is created [11]. The template can serve as a

helpful tool to be used with other tools that also focus on addressing security requirements and

privacy concerns.

18

2.2: Existing research on identifying requirements from user app reviews

This section brings forth the current state of research for identifying requirements from

user app reviews. The section is divided into several subsections. Each subsection provides an

overview of the approach or tool used for identifying requirements from user app reviews.

2.2.1: Automatic classification of Non-functional and Functional requirements

Lu and Liang proposed four classification techniques for classifying FRs and NFRs [12].

NFRs are further classified into reliability usability, portability, and performance. NLP

techniques such as techniques Bag-of-Words (BoW), Term Frequency-Inverse Document

Frequency (TF-IDF), Chi-Squared (Chi2) and Augmented User Reviews Bag-of-Words (AUR-

BoW) are used in conjunction with Naïve Bayes, J48, and Bagging ML algorithms to classify

user reviews [12]. The ML algorithms were evaluated by calculating the precision, recall, and F-

measure scores. 10 k-fold cross-validation was performed to validate each approach. The AUR-

BoW algorithm performed the best with an F-measure score of 71.7%, a precision score of

71.4%, and a recall score of 72.3%. Augmenting user reviews leads to better results when

classifying user reviews [12].

2.2.2: Requirements Mining Framework

A requirement mining framework for mobile upgrades is proposed by Chen et al [13]. A

ranking model is developed that can classify customer requirements and rank the importance of

each requirement. The performance of the framework is evaluated by product quality

improvements. User reviews are transformed into product upgrade requirements. The framework

consists of the following key components: context-aware segmentation, opinion target

extraction, opinion target grouping, and requirements summarization [13]. An empirical analysis

19

is conducted to evaluate the effect of requirements mined from customer reviews on app

upgrades. The following metrics are used to evaluate the framework [13]:

1. AdScore (Adoption Score): Measures how well actual app updates matched the

recommendation results from the framework

2. DifRating: Average rating difference between version k and version k+1 of the mobile

app

3. DifDownload: Average difference in downloads and duration of version k and version

k+1 of the mobile app

Four experiments were conducted on four case sets (E1 – E4). C1- C5 represent different app

categories which are Shopping, Social, Contact, Camera, News, and Game. R1 represents count-

based ranking and R2 represents count and rating-based ranking. The four case sets are defined

as follows:

1. E1: Contains all cases

2. E2: Cases with DifRating > 0

3. E3: Cases with DifDownload > 0

4. E4: Cases with DifRating > 0 and DifDownload > 0

Case set E4 has the highest AdScore rating throughout the different app categories which

indicates that cases that adopted app upgrade suggestions from the proposed mining framework

led to better quality app upgrades as measured by the increase in rating, download count, and app

usage duration after an app was upgraded [13].

2.2.3: Information Retrieval and NLP approach

Information retrieval with NLP techniques is proposed by Yang and Liang to identify and

classify FRs and NFRs [14]. This approach consists of a User Reviews Extractor that uses an

20

API to collect user reviews of iBooks from the app store and the Requirements Identifier and

Classifier is used to automatically identify and classify software requirements. The data is

preprocessed by techniques such as stop word removal. After preprocessing, the TF-IDF NLP

technique is used to determine the importance of a word. Words classified as important are then

added to a keyword set that is used to identify and classify user reviews [14]. The effectiveness

of this approach is evaluated by comparing the results of the manual classification of

requirements by experts. The precision, recall, and F-measure scores are calculated for the

automated classification of requirements using various sample sizes. The F-measure score

increases when the sample size is increased from 1 to 20 for FRs and from 1 to 7 for NFRs

indicating that a certain sample size is required for better performance [14]. Classifying FRs

require a larger sample size when compared to NFRs as FRs tend to be domain-dependent. With

an adequate sample size, this approach can achieve a good F-measure, recall, and precision score

for classifying FRs and NFRs [14].

2.2.4: Text Classifiers

Williams and Mahmoud proposed an approach to classify text using ML algorithms such

as Support Vector Machines (SVM) and Naïve Bayes (NB) combined with NLP techniques such

as TF and hybrid TF-IDF to mine Twitter feeds to automatically gather software user

requirements [15]. 4,000 tweets regarding 10 software systems are collected and manually

classified into informative and uninformative messages. The tweets are further classified into

Bug reports, User Requirements, and Other. After the data is collected, textual features are

extracted using Textual Content (BOW), Text Processing, and Sentiment Analysis to improve

the results of the SVM and NB classifiers. Sentiment analysis is conducted using Sentistrength

which rates each word as positive or negative. Both classifiers, NB and SVM, achieved the best

21

recall, precision, and F-measure scores. NB achieved a precision score of 0.74, a recall score of

0.77, and an F-measure score of 0.76 whereas SVM achieved a precision score of 0.79, a recall

score of 0.75, and an F-measure score of 0.77 [15]. However, sentiment analysis did not improve

the scores of the classifiers due to software-related tweets being neutral and not polarizing [15].

Sentiment scores are largely neutral for bugs, user requirements, and other miscellaneous tweets.

22

Chapter 3: Study 1: Creating ML Models for Classifying Formal

Software Requirements

The primary goal of this initial study was to develop ML-based models to classify FRs

and NFRs and the subclasses of NFRs from formal requirements artifacts (known as SRS

documents). This study used the publicly available PROMISE Repository of Software

Engineering dataset to train and test the data models [16]. The TF-IDF NLP technique combined

with SVM, SGD, and RF ML algorithms were used to create the data models. The performance

of each data model was evaluated by performance metrics such as the accuracy score, precision,

recall, and F1 scores. Additionally, each data model was validated by using 10 k-fold cross-

validation to reduce model overfitting and any bias that may result from the random splitting of

the train and test dataset.

3.1: Study 1: Research Methodology

Study 1 proposed a solution based on a comparative analysis of ML models combined with

basic natural language processing (NLP). The PROMISE Software Engineering dataset consisted

of 371 FRs and 255 NFRs. The NFRs were further classified into Availability, Legal, Look and

Feel, Maintainability, Operational, Performance, Scalability, Security, and Usability classes. The

distribution of FRs and NFRs and the subclasses of NFRs are shown in Tables 3 and 4

respectively. Study 1 consisted of four primary phases as follows:

23

1. Data Preprocessing: The dataset was first preprocessed before it is used as input for the

ML algorithms. The NFR classes Fault Tolerance and Portability were removed due to

inadequate observations. The stemming, tokenization, and stop word removal NLP

techniques are applied to preprocess the data. Finally, the TF-IDF NLP technique is

applied to convert the textual requirements into a numeric matrix. TF-IDF is a statistical

measure that evaluates the frequency of a term in a document and offsets it by the

frequency of the term across a set of documents. The numeric matrix can then be used to

train the ML models. TF-IDF is defined as follows:

a. tf-idf(t, d) = tf(t, d) * idf(t), where

i. t: term

ii. d: document set

iii. idf is computed as idf(t) = log [n / df(t)] + 1 where n is the total number

of documents

TABLE 3: FR AND NFR REQUIREMENTS IN THE PROMISE DATASET

Category Count
Non-Functional Requirements (NFRs) 371
Functional Requirements (FRs) 255

TABLE 4: SUBCLASSES OF NFR IN THE PROMISE DATASET

Category Count
Availability (A) 21
Legal (L) 13
Look and Feel (LF) 38
Maintainability (MN) 17
Operational (O) 62
Performance (PE) 54
Scalability (SC) 21
Security (SE) 66
Usability (US) 67

24

2. Model Training: The preprocessed dataset is randomly split with stratification into a

training and testing set. The training set consists of 80% of the requirements and the

testing set consists of 20% of the requirements. Random splitting with stratification is

used to ensure that there is no unseen bias while ensuring the distribution of classes in the

training and testing sets are similar to prevent model overfitting and underfitting. The

training set is then used as input to the SVM, SGD, and RF ML algorithms to train the

data models.

3. Model Evaluation: After the three data models are trained, their performance is

evaluated by calculating their precision, recall, and F1 scores. The metrics are defined as

follows:

Recall: Calculates the true positives in a class out of all the observations in the class.

It is defined as True Positive (TP) / TP + False Positive (FP)

Precision: Calculates the number of true positives out of all the input classes. It is

defined as TP / TP + False Negative (FN)

F1: Calculated based on the precision and recall scores. It is defined as 2 * Precision

(P) * Recall (R) / P+R

4. Model Validation: Each model is validated using 10 k-fold cross-validation. 10 k-fold

cross-validation is used to ensure the consistent performance of the data models. The data

is split into 10 equal-sized groups. 10 iterations of model training and performance so

that each iteration will consist of a distinct training and testing set. The average scores of

all 10 groups are then calculated to compare the performance of each model.

25

Input: Formal software requirements from SRS documents with a label indicating the type

of requirement

Output: Predicted label for each software requirement in the testing set

Initialization:

1: Preprocess text data with stemming, tokenization, and stop word removal

2: Convert preprocessed data into a numeric matrix using TF-IDF

3: Split the dataset into training and testing sets with 80% and 20% of data respectively

4: Train SVM, SGD, and RF data modes on the training dataset

5: Evaluate the performance of trained data models on the testing set by calculating

precision, recall, and F1 scores

6: Validate model with 10 k-fold cross-validation

Algorithm 1: Creating data models to identify formal software requirements from SRS
documents

26

3.2: Study 1: Experiment Results and Discussion

The set of experiments is split into two categories. The first set is to classify FRs and

NFRs whereas the second set is to further classify NFRs into different subclasses. The precision,

recall, and F1 scores of each respective data model are then calculated after 10 k-fold cross-

validation. The results of the first set of experiments are shown in Figure 1. As shown in Fig.

1(a), SVM with TF-IDF produces the best results for identifying FRs. Fig. 1(b) shows that SGD

produces the best scores for identifying NFRs. However, all three of the models have similar

performance metrics when classifying FRs and NFRs.

In the second set of experiments, the NFRs were classified into 9 subclasses: Availability, Legal,

Look and Feel, Maintainability, Operational, Performance, Scalability, Security, and Usability

classes. As shown in Fig. 2(a), 2(b), 2(e), 2(f), and 2(h), SVM combined with TF-IDF achieved

the best results for the following NFR subclasses: Scalability, Operational, Maintainability, Look

and Feel and Availability respectively. For the Security, Legal, and Usability NFR subclasses.

SGD combined with TF-IDF achieves the best results as shown in Fig. 2(c), 2(d), and 2(i). For

Figure 1: Classifying FRs and NFRs

27

the performance NFR subclass, RF combined with TF-IDF achieves the best results as shown in

Fig. 2(g).

3.3: Study 1: Inferences

 The issue of identifying and classifying FRs and NFRs has been addressed by previous

research [10] [11]. Study 1 proposes a new approach that goes further than the current state of

literature by presenting a thorough comparison and evaluation of multiple ML models combined

with the TF-IDF NLP technique. Study 1 also presents a concrete methodology being defined by

ML classifiers and NLP techniques to automate the identification of NFRs and NFRs as well as

Figure 2: Classifying NFR-subcategories 1

28

identifying the subclasses of NFRs. The results from Study 1 were published in the IEEE Big

Data conference [6]

Besides the introduction of a formalized method and improvement upon the current state

of research, the results achieved by the two sets of experiments motivated Study 2 which seeks to

identify FRs and NFRs from user app reviews to crowdsource requirements. Manual

classification of thousands of user app reviews can be very time-consuming for app developers.

The automatic identification of requirements would result in developers being able to quickly

elicit requirements from user app reviews to better meet the wants and needs of their userbase.

Chapter 4 provides a detailed discussion on Study 2.

29

Chapter 4: Study 2: Identifying FRs and NFRs from user app

review data

Study 1 showcased that the ML models proposed performed well as per their precision,

recall, and F1 scores. SVM combined with TF-IDF performed the best when identifying FRs

with a recall score of 0.88, a precision score of 0.89, and an F1 score of 0.88, and SGD

performed the best when identifying NFRs with a recall, precision, and F1 score of 0.92. For

classifying the subclasses of NFRs, SVM performed the best when identifying Scalability,

Operational, Maintainability, Look and Feel, and Availability requirements. SGD with TF-IDF

performed the best when identifying Security, Legal, and Usability requirements. RF with TF-

IDF performed the best when identifying Performance requirements. The performance of all

three models prompted Study 2 which seeks to identify and classify requirements from user app

reviews to crowdsource requirements. The automatic identification and classification of

requirements can enable app developers to save time by quickly extracting requirements from

user app reviews and further enhance their app as per user wants and needs.

4.1 Study 2: Development of a New Hybrid Dataset

A novel hybrid dataset was developed for Study 2. This hybrid dataset consisted of

formal software requirements from the PROMISE Repository of Software Engineering [16] and

user app reviews from the dataset prepared by Maleej et al. is proposed [17]. The PROMISE

dataset contains 626 software requirements that are classified into FRs and NFRs. The NFRs are

further classified into Availability, Legal, Look & Feel, Maintainability, Operational,

Performance, Scalability, Security, and Usability. Fault Tolerance and Portability requirements

are removed due to having a very small sample size. The Maleej dataset contains 3691 reviews

from Apple’s app store and Google’s play store. The dataset is classified into Feature Requests,

30

Bug Reports, Rating, User Experience, and Problem Discovery. Requirements in both datasets

were relabeled to form a common set of labels. The subclasses of NFRs were relabeled as NFR

and the FR label was unchanged in the PROMISE dataset. In the Maleej dataset, Feature

Requests were relabeled as FR and the rest of the requirements were relabeled as Non-

Requirements (NRs). To tackle the issue of class imbalance, the majority class, NR, was

downsampled to match the count of the minority class, NFRs, with 371 observations. The final

dataset distribution with relabeling and down sampling is shown in Table 5.

4.2: Research Methodology

Previous studies have focused on identifying and classifying FRs and NFRs from

requirements artifacts such as SRS documents or user app reviews [1] [13] [15]. Study 2

proposes a hybrid approach to identify and classify requirements from SRS documents and user

app reviews by implementing ML algorithms and NLP techniques. Figure 3 provides an

overview of the stages of study 2. Study 2 consists of the following stages:

1. Data Collection: A novel hybrid dataset consisting of formal software requirements and

user app reviews is proposed. The novel hybrid dataset will be used to train and test the

ML models.

2. Data Preprocessing: NLP techniques such as stop word removal, stemming, tokenizing,

and lemmatizing are applied to preprocess the data. The text is then converted into a

numeric matrix using TF-IDF.

TABLE 5: DISTRIBUTION OF FRs, NFRs AND NRs IN THE NOVEL
HYBRID DATASET

Category Count
Functional Requirement (F) 507
Non-Functional Requirement (NFR) 371
Non-Requirement (NR) 371

31

3. Model Training and Evaluation: After the dataset is converted into a numeric matrix, it

is split into training and testing sets. The training set consists of 80% of the data and the

testing set consists of 20% of the data. The dataset is randomly split with data

stratification to reduce any bias that may arise due to the random splitting of data.

Stratification ensures that the training and testing sets have a similar distribution of FRs

and NFRs. The training set is then used to train the SVM, SGD, and RF ML data models.

The performance of each data model is evaluated by calculating their respective

accuracy, precision, recall, and F1 scores.

4. Model Validation: Each model is then validated using 10 k-fold cross-validation. 10

iterations of model training and testing are conducted with each iteration having a distinct

training and testing set. The average accuracy, precision, recall, and F1 scores of the 10

iterations are used to evaluate and compare the performance of each model.

Figure 3: Stages in Study 2

32

Input: Software requirements from SRS documents and user app reviews with a

label indicating the type of requirement (FR, NFR, NR)

Output: Predicted label for each software requirement in the testing set

Initialization:

1: Form the novel hybrid dataset by combining the PROMISE and Maleej datasets

2: Relabel requirements in the combined dataset to FR, NFR, and NR labels

3: Down sample majority class, NR, to the count of the minority class, NFR, to form

the final dataset

4: Preprocess text data with stemming, tokenization, and stop word removal

5: Convert preprocessed data into a numeric matrix using TF-IDF

6: Split the dataset into training and testing sets with 80% and 20% of data

respectively

7: Train SVM, SGD, and RF data modes on the training dataset

8: Evaluate the performance of trained data models on the testing set by calculating

precision, recall, and F1 scores

9: Validate model with 10 k-fold cross-validation

Algorithm 2:Creating data models to identify software requirements from SRS
documents and user app reviews

33

4.3: Experiment Results and Discussion

This section describes the results of each data model. The average accuracy, precision,

recall, and F1 scores were calculated after 10 k-fold cross-validation of each data model. SGD

combined with TF-IDF performed the best in identifying FRs with an accuracy score of 0.833,

an F1 score of 0.788, a recall score of 0.774, and a precision score of 0.81. SGD with TF-IDF

also performed the best when identifying NFRS with an F1 score of 0.913, a recall score of

0.916, and a precision score of 0.91. SVM achieved similar performance metrics as SGD when

identifying NFRs. SGD with TF-IDF achieved the best results when isolating NRs from FRs and

NFRs with an F1 score of 0.802, recall score of 0.83, and a precision score of 0.783. SVM and

RF had similar performance metrics but were not as good as SGD. Figure 4 presents the

performance metrics for each data model. The results cast a new light on the effectiveness of the

data models proposed in classifying user app reviews and formal software requirements. From

the results, it is clear that ML-based models combined with NLP techniques are an effective

method to identify and classify FRs and NFRs and isolate NRs.

34

Figure 4: Performance metrics of SVM, SGD, and RF data models

0.
81

2

0.
86

1

0.
73

7 0.
81

0.
91

0.
78

3

0.
78

3 0.
92

7

0.
78

3

0.
70

7

0.
88

7

0.
83

9

0.
77

4 0.
91

6

0.
83

0.
79

5 0.
89

6

0.
79

4

0.
75

5 0.
87

3

0.
78

3

0.
78

8 0.
91

3

0.
80

2

0.
78

6 0.
91

0.
78

7

0.
80

2

0.
80

2

0.
80

2

0.
83

3

0.
83

3

0.
83

3

0.
82

6

0.
82

6

0.
82

6

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

RF RF RF SGD SGD SGD SVM SVM SVM

FR NFR NR FR NFR NR FR NFR NR

Functional vs Non-Functional vs Non-Requirements
Classification

Avg Precision Avg Recall Avg F1 Accuracy

35

Chapter 5: Discussion

This section discusses the results and implications of the research performed as part of

this thesis (i.e., Study 1 and Study 2). This section also answers the research questions proposed

in this thesis (for research questions, please see Table 1 in Chapter 1). Study 1 proposed three

data models using the SVM, SGD, and RF machine learning algorithms combined with the TF-

IDF NLP technique to classify FRs, NFRs, and the subclasses of NFRs from SRS documents that

contained formal software requirements. The data was preprocessed to ensure that all the

observations in the dataset were properly labeled and NFR subclasses with a very low count

were disregarded. The TF-IDF NLP technique was then used to vectorize the data. The

vectorized data was split into a training and testing set. The SVM, SGD, and RF ML algorithms

were then trained on the training set. Each data model was then evaluated by calculating the

accuracy, precision, recall, and F1 scores. After model evaluation, each model was validated

with 10 k-fold cross-validation to ensure consistent model performance and to avoid model

overfitting and underfitting. Based on the positive results of Study 1, a second study, Study 2,

was proposed to identify and classify FRs, NFRs, and NRs from a novel hybrid dataset

consisting of formal software requirements and user app reviews. The research questions of this

thesis are answered as follows:

RQ1: What is the type and size of data required to automate the classification of requirements

from SRS documents and user app reviews?

We proposed a novel approach to create a hybrid dataset using the PROMISE and Maleej

datasets. The PROMISE dataset consists of formal software requirements from SRS documents

and the Maleej dataset consisted of user app review statements from Apple’s app store and

Google’s play store. All requirements and user app reviews in the datasets were relabeled to FR,

36

NFR, and NR to create a common set of labels. Next, the issue of class imbalance was resolved

by downsampling the count of the majority class, NR, to the count of the minority class.

Relabeling the requirements in both datasets and downsampling ensured the proper labeling of

all observations and reduced any bias that may have been introduced by the majority class. The

final dataset consisted of 507 FRs, 371 NFRs, and 371 NRs. The hybrid dataset consisted of a

relatively equal count of observations in each category.

RQ2: To what extent can the Machine Learning Algorithms combined with NLP techniques

accurately identify and classify Functional and Non-Functional Requirements?

The accuracy, precision, recall, and F1 scores of each data model were evaluated in Study

1 and Study 2. Study 1 identified and classified FRs and NFRs. SVM with TF-IDF performed the

best when identifying FRs with a precision score of 0.89, a recall score of 0.88, and an F1 score

of 0.88. SGD performed the best when identifying NFRs with precision, recall, and F1 score of

0.92. Positive results from Study 1 prompted Study 2 which included the creation of a novel

dataset consisting of formal software requirements and user app reviews. The SVM, SGD, and

RF models were implemented on the novel hybrid dataset to classify requirements and user app

reviews as FRs, NFRs, and NRs. SGD with TF-IDF performed the best when identifying FRs

with an accuracy score of 0.833, an F1 score of 0.788, a recall score of 0.774, and a precision

score of 0.81. SGD with TF-IDF performed the best when identifying NFRs with an F1 score of

0.913, a recall score of 0.916, and a precision score of 0.91.

RQ3: How effective are the data models in identifying Non-Requirements (NRs) from Functional

Requirements (FRs) and Non-Functional Requirements (NFRs)?

Study 2 proposed isolating NRs in addition to identifying FRs and NFRs. NRs are

general feedback for an application and do not specify any requirement. SGD with TF-IDF

37

performed the best when isolating NRs from the novel dataset. It achieved an F1 score of 0.802,

a recall score of 0.83, and a precision score of 0.783. The high scores suggest that the SGD data

model is effective in isolating NRs from FRs and NFRs.

5.1 Real-World Impact

 Manually going through a large number of user app reviews to extract requirements can

be a time-consuming process, especially with many new user app reviews every day. Time

spent on manual identification of requirements can be spent on development-related activities

instead. Therefore, the automatic identification of requirements from user app reviews is vital

to app developers to elicit requirements from user app reviews to better address the wants

and needs of their userbase in a time-efficient manner. Studies 1 and 2 prove that

requirements can be accurately crowdsourced. The data models proposed can be used by app

developers to quickly elicit requirements and enhance the next iterations of their applications.

In conclusion, using the data models proposed in this thesis can save developers time and

effort by not having to manually identify requirements and being able to quickly incorporate

much-wanted functionality into their applications.

38

Chapter 6: Conclusion

This section presents the conclusions drawn from Studies 1 and 2. It summarizes the

findings of both the studies, highlights the primary contributions and presents avenues for future

work.

6.1: Summary

In this thesis, three ML data models were created using the SVM, SGD, and RF machine

learning algorithms. Two studies were conducted to evaluate and validate the performance of

each data model. The first study used the PROMISE dataset consisting of formal software

requirements from SRS documents that were classified as FRs, NFRs, and the subclasses of

NFRs. The dataset was preprocessed using techniques such as stop word removal and stemming.

The dataset was then converted into a numeric matrix using the TF-IDF NLP technique. After

data preprocessing, a training and testing set was created. The data models were trained on the

training set and their performance was evaluated on the testing set. The models were validated

using 10 k-fold cross-validation and the precision, recall, and F1 scores were calculated.

6.2: Contributions and Findings

SVM had the best performance metrics when identifying FRs and SGD had the best

performance metrics when identifying NFRs. The performance metrics of the data models from

Study 1 prompted Study 2 which identified FRs, NFRs, and NRs from a novel dataset containing

formal software requirements and user app reviews. SGD performed the best when identifying

FRs, NFRs, and NRs. However, SVM had similar precision, recall, and F1 scores. Studies 1 and

2 prove that ML-based data models are effective in identifying FRs, NFRs, and NRs. The studies

propose a concrete methodology for the automatic classification and identification of

requirements with ML classifiers and NLP techniques. The automatic identification and

39

classification of FRs and NFRs from SRS documents can enable project managers and software

engineers to catch any requirements early during the RE phase which can result in reduced costs

and a quicker time to delivery for a software project. Automatic Identifications of FRs, NFRs,

and NRs from user app reviews can assist developers in crowdsourcing requirements from their

userbase. Automatically crowdsourcing requirements enable app developers to quickly sift

through a huge number of app reviews to extract requirements. They can use crowdsourced

requirements to enhance the next iteration of their app by meeting the wants and needs of their

users.

6.3: Future Work

Future work for this research includes finding new sources of data to create new datasets

consisting of formal software requirements and user app reviews. NLP techniques such as Bag-

of-Words (BoW) [12] and Word Embedding for preprocessing textual data will be explored and

ML algorithms such as XGBoost [18] and deep learning methods such as Convolutional Neural

Networks (CNN) and Recurrent Neural Networks (RNN) [19] will be implemented and

evaluated.

40

References

[1] O. Daramola, T. Moser, G. Sindre, and S. Bi. Managing implicit
requirements using semantic case-based reasoning. In REFSQ, Springer LNCS,
pages 7915:172-178, 03 2012.

[2] D. M. Fernandez, S. Wagner, M. Kalinowski, M. Felderer, P. Mafra, A.
Vetro, T. Conte, M.-T. Christiansson, D. Greer, C. Lassenius, et al. Naming the
pain in requirements engineering. Empirical software engineering, 22(5):2298-
2338, 2017..

[3] E. Onyeka, A. S. Varde, V. Anu, N. Tandon and O. Daramola, "Using
Commonsense Knowledge and Text Mining for Implicit Requirements
Localization," 2020 IEEE 32nd International Conference on Tools with Artificial
Intelligence (ICTAI), 2020, pp. 935-940, d.

[4] C. Page, Software engineering: Theory and practice. Willford Press, 2019..
[5] Emebo, O., & Varde, A. S. Early identification of implicit requirements

with the COTIR approach using common sense, ontology and text mining, Tech
Report, Montclair State University - Fulbright Scholarship Program, 2016..

[6] D. Dave, V. Anu, and A. S. Varde, “Automating the classification of
requirements data,” 2021 IEEE International Conference on Big Data (Big Data),
2021..

[7] E. Onyeka, V. Anu and A. S. Varde, "Identifying Implicit Requirements in
SRS Big Data," 2019 IEEE International Conference on Big Data (Big Data), 2019,
pp. 6169-6171, doi: 10.1109/BigData47090.2019.9006086..

[8] Dev Dave, Angelica Celestino, Aparna Varde, Vaibhav Anu ---
Management of Implicit Requirements Data in Large SRS Documents: Taxonomy
and Techniques --- ACM SIGMOD Record, Mar 2022..

[9] Binkhonain, Manal, and Liping Zhao. “A Review of Machine Learning
Algorithms for Identification and Classification of Non-Functional Requirements.”
Expert Systems with Applications: X, vol. 1, 12 Mar. 2019, p. 100001.,
doi:10.1016/j.eswax.2019.10000..

[10] L. Dalpiaz. Pinpointing ambiguity and incompleteness in requirements
engineering via information visualization and NLP. In REFSQ, pages 119-135,
2018..

[11] M. Riaz, J. Slankas, J. T. King, and L. A. Williams. Using templates to elicit
implied security requirements from functional requirements - a controlled
experiment. In ACM-IEEE Intl. Symp. on Empirical Software Engineering &
Measurement, ESEM, page..

[12] M. Lu and P. Liang, “Automatic Classification of Non-Functional
Requirements from Augmented App User Reviews,” Proceedings of the 21st
International Conference on Evaluation and Assessment in Software Engineering,
2017..

41

[13] R. Chen, Q. Wang, and W. Xu, “Mining user requirements to facilitate
mobile app quality upgrades with big data,” Electronic Commerce Research and
Applications, vol. 38, p. 100889, 2019..

[14] H. Yang and P. Liang, “Identification and Classification of Requirements
from App User Reviews,” Proceedings of the 27th International Conference on
Software Engineering and Knowledge Engineering, 2015..

[15] G. Williams and A. Mahmoud, “Mining Twitter Feeds for Software User
Requirements,” 2017 IEEE 25th International Requirements Engineering
Conference (RE), 2017..

[16] Sayyad Shirabad, J. and Menzies, T.J. (2005) The PROMISE Repository of
Software Engineering Databases. School of Information Technology and
Engineering, University of Ottawa, Canada.

[17] hawari, assem (2019), “A dataset of Mobile application reviews for
classifying reviews into software Engineering's maintenance tasks using data
mining techniques”, Mendeley Data, V2, doi: 10.17632/5fk732vkwr.2..

[18] K. Srisopha, D. Link, and B. Boehm, “How should developers respond to
App Reviews? features predicting the success of developer responses,” Evaluation
and Assessment in Software Engineering, 2021..

[19] J. Winkler and A. Vogelsang, “Automatic classification of requirements
based on Convolutional Neural Networks,” 2016 IEEE 24th International
Requirements Engineering Conference Workshops (REW), 2016..

	Identifying Functional and Non-functional Software Requirements from User App Reviews and Requirements Artifacts
	Dave, Dev.pdf

