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Abstract 

This thesis proposes and evaluates Machine Learning (ML) based data models to identify and 

isolate software requirements from datasets containing user app review statements. The ML 

models classify user app review statements into Functional Requirements (FRs), Non-Functional 

Requirements (NFRs), and Non-Requirements (NRs). This proposed approach consisted of 

creating a novel hybrid dataset that contains software requirements from Software Requirements 

Specification (SRS) documents and user app reviews. The Support Vector Machine (SVM), 

Stochastic Gradient Descent (SGD), and Random Forest (RF) ML algorithms combined with the 

term frequency-inverse document frequency (TF-IDF) natural language processing (NLP) 

technique were implemented on the hybrid dataset. The performance of each data model was 

evaluated by metrics such as accuracy, precision, recall, and F1 scores, and the models were 

validated using 10 k-fold cross-validation. The proposed approach can successfully identify and 

isolate software requirements with SGD performing the best with an accuracy of 83%. Overall, 

this thesis presents a comprehensive methodology for implementing machine learning algorithms 

combined with NLP techniques to identify requirements from user app reviews with a high 

degree of accuracy. 

 Keywords: requirements, mining, classification, machine learning, natural language 
processing 
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Chapter 1: Introduction 

The Software Development Life Cycle (SDLC) is a process consisting of multiple stages 

used to define the design, development, and testing of software. SDLC consists of five stages 

that are requirements analysis, design, development, testing, and maintenance. Requirements 

analysis is the elicitation of requirements that define what the software will do. The design stage 

involves creating prototypes of the software to illustrate basic functionality. The development 

stage involves writing code for the software whereas testing involves testing the code to ensure 

the piece of software functions as intended. Lastly, maintenance consists of monitoring the 

software to resolve any issues that may arise or implementing enhancements. The requirements 

phase in the SDLC is one of the most important stages of software development. Incorrect or 

missing requirements can lead to an incomplete product that does not satisfy customer demand. 

The quality of the software requirements specification (SRS) document will reflect the quality of 

the final software product. The SRS document outlines the functional and non-functional 

capabilities of an application. Thus, the development team and the client must share the same 

understanding [1]. Software requirements are gathered from clients who outline the 

functionalities of the system. Requirements can also be gathered from end-users during the 

testing of the software and by domain experts that can include any missed requirements. Lastly, 

software requirements can also be gathered from previous software development projects or case 

studies.  

In recent years, the growth of mobile devices has led to an increase in mobile software. 

App distribution platforms such as the google play store and apple app store have had 4 million 

apps as of June 2016 with the number of monthly app downloads hovering around 1 billion per 

month [2]. Users that download these applications can rate the application and provide textual 
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feedback relating to the application. User reviews contain important information that can assist a 

developer in better understanding their user needs and wants. Making use of user reviews for app 

upgrades can lead to an increase in new users and retain existing users. Studies indicated that 

one-third of users have modified their app ratings after a developer’s response. Mobile 

applications can receive more than 20 reviews per day and popular mobile applications such as 

Facebook can receive more than 4000 application user reviews a day [2]. Therefore, user reviews 

are an important source of feedback for developers to elicit requirements to provide software 

fixes or updates. However, it is difficult to sift through vast amounts of user reviews and filter 

out reviews that do not indicate a requirement. Automatic extraction of software requirements 

through various approaches and frameworks can enable developers to respond quickly to 

customer wants and needs and reduce the time and money spent on eliciting requirements. This 

thesis seeks to introduce a novel hybrid dataset consisting of Functional Requirements (F), Non-

Functional Requirements (NFR), and Non-Requirements (NR) from Software Requirements 

Specifications (SRS) document and user app reviews. The hybrid dataset is used to create data 

models that use machine learning (ML) algorithms such as Support Vector Machine (SVM), 

Stochastic Gradient Descent (SGD), and Random Forest (RF) combined with natural language 

processing (NLP) techniques such as term frequency-inverse document frequency (TF-IDF). The 

data models are then thoroughly evaluated by using 10 k-fold cross-validation and calculating 
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accuracy metrics such as recall, precision, and the F1 score. Table 1 provides a list of research 

questions that guided the work described in this thesis.   

Overall, the main contributions of this thesis are as follows: 

1. Identification and classification of Functional Requirements (FRs) and Non-

Functional Requirements (NFRs) from formal requirements artifacts: The 

automatic identification and classification of FRs and NFRs from SRS documents 

makes the requirements engineering (RE) phase more efficient as software 

engineers and project managers can capture requirements that may have been 

missed. Capturing requirements at a later stage of the SDLC increases the overall 

cost and time to deliver the project. 

2. Automatic identification of FRs, NFRs, and NRs from user app reviews: 

Automatically identifying requirements from a host of user app reviews can save 

developers time by not having to manually sift through thousands of reviews. This 

also enables developers to better understand the wants and needs of their users. 

TABLE 1: RESEARCH QUESTIONS 

RQ No. Research Question 

RQ1 What is the type and size of data required to automate the identification of 

requirements from user app reviews? 

RQ2 To what extent can the machine learning algorithms combined with Natural 

Language Processing (NLP) techniques accurately identify and classify 

Functional and Non-Functional Requirements? 

RQ3 How effective are the data models in identifying Non-Requirements (NRs) from 

Functional Requirements (FRs) and Non-Functional Requirements (NFRs)? 
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Therefore, developers can iteratively improve their applications by being able to 

automatically extract requirements from user reviews. 

3. Development of new hybrid dataset consisting of formal software requirements 

statements as well as user app review statements: This dataset will be useful for 

machine learning researchers who are interested in developing and evaluating ML 

models to extract software requirements from user app reviews.    

The remainder of the thesis is divided into five chapters. Chapter 2 provides an 

overview of the current state of research for identifying and classifying FRs and NFRs 

from formal software requirements and user app reviews. Chapter 3 proposes the first 

study where FRs and NFRs are classified by using SGD, SVM, and RF ML algorithms. 

Chapter 4 proposes the second study where a novel hybrid dataset is created consisting of 

requirements from SRS documents and user app review statements. The requirements and 

user app review statements are classified into FRs, NFRs and, NRs by using the SGD, 

SVM and, RF ML algorithms. Each data model is evaluated by its performance metrics 

and is validated. Chapter 5 consists of the implications of this research in the real world. 

Chapter 6 presents the conclusion of both the studies and explores future work that can be 

done to further expand the studies presented. 
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Chapter 2: Related Work 

 Explicit requirements in SRS documents are well-defined functionalities of the system 

whereas Implicit Requirements (IMRs) are functionalities of a system that are assumed and not 

elicited during requirements gathering [3]. Unhandled IMRs can be a major contributor towards 

software failure [3]. Identifying and classifying functional requirements (FRs) and non-

functional requirements (NFRs) from SRS documents and user app reviews can lead to a better 

quality of software. Requirements gathered from the stakeholders may not be well documented 

and it is up to the developer to meet the requirements as per their understanding. Vague 

requirements are an important factor that often leads to poor quality software and results in the 

failure of software projects. Additionally, many requirements are not initially captured but do get 

captured at later stages of the software development life cycle by end-users or clients before the 

software is moved to production [1]. For reader’s reference, definitions, and examples for FRs 

and NFRs are provided the paragraphs below.  

A functional requirement outlines the required behavior in terms of required activities, 

such as reactions to inputs, and the state of each entity before and after an activity occurs. It 

states the following [4]: 

1. What will the system do? 

2. When will the system do it? 

3. Are there several modes of operation? 

4. What kinds of computations or data transformations must be performed? 

5. What are the appropriate reactions to possible stimuli? 

A Non-Functional requirement describes some quality characteristics that the software 

solution must possess. It should outline the following [4]: 
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1. Performance 

2. Security 

3. Reliability and Availability 

4. Maintainability 

5. Usability and Human Factors 

6. Precision and Accuracy 

7. Time to Delivery/Cost 

Examples of FRs include: 

 The website will allow customers to search for movies by title actor or 

director. 

 The product shall be able to delete room equipment. 

Examples of NFRs include: 

 The product should be able to be used by 90% of novice users on the Internet. 

 System shall let administrator de-activate a customer account in under 1 

minute. Customer will no longer be able to access the website. 

Therefore, it is important to identify and classify software requirements during the 

requirements gathering phase to make certain that the software development projects meet 

client requirements, are within the budget, and are completed within the decided timeline. 

Tools such as COTIR  have been proposed that integrate Commonsense Knowledge, 

Ontology, 

time and effort spent by software engineers in identifying IMRs from large SRS documents 

[5] [6]. Additionally, deep learning approaches utilizing Convolutional Neural Network 

(CNNs) have been integrated with COTIR to better detect IMRs from complex SRS 
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documents that contain images and tables [7] [8]. The remainder of the section is divided into 

exploring the state of research for classifying formal software requirements from SRS 

documents and classifying requirements from user app reviews. 

The following sections provide a review of literature on previous work performed on 

classifying formal software requirements and work done on identifying requirements from 

user app reviews.  

2.1: Existing research on classifying formal software requirements 

This section will explore the current state of research in classifying formal software 

requirements from SRS documents. The section is divided into several subsections with each 

subsection providing an overview of the approach or tool used for classifying formal software 

requirements. 

 
2.1.1 Machine Learning 

Binkhonain and Zhao [9] provide an overview of various machine learning algorithms 

and their performance to classify NFRs. 16 distinct machine learning algorithms are evaluated. 

Out of the 16 ML algorithms, 4 are unsupervised, 5 are supervised, and 5 are semi-supervised 

ML algorithms [9]. Table 2 consists of all the ML algorithms grouped by the type of algorithm.  
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The ML approaches consisted of similar data preprocessing steps. Data preprocessing consisted 

of selecting appropriate features and preprocessing the text input. The text was preprocessed by 

using methods such as stop word removal, stemming, and tokenization. Appropriate features 

were selected by converting the text into a numeric matrix using Bag-of-Words (BoW) and Term 

Frequency-Inverse Document Frequency (TF-IDF). Important features were then evaluated by 

using information gain and the Chi-squared test. Each ML approach was evaluated by metrics 

such as accuracy, precision, recall, and F1 scores [9]. Overall, the ML algorithms achieve an 

accuracy score of 70% when classifying NFRs. The supervised ML algorithms performed better 

than the unsupervised and semi-supervised ML algorithms with SVM and NB achieving the best 

performance [9]. 

TABLE 2: LIST OF ML ALGORITHMS  GROUPED BY THE TYPE OF 
ALGORITHM IN THIS STUDY 

Supervised Semi-Supervised Unsupervised 

Support Vector Machines 

(SVMs) 

Expectation-Maximization 

(EM) 

Latent Dirichlet Allocation 

(LDA) 

Naïve Bayes (NB) Self-training K-means 

Decision Tree (DT) Active learning Hierarchical Agglomerative 

K-Nearest Neighbors (K-

NN) 

Random Subspace Method 

for Co-training(RAS-CO) 

Biterm Topic Modelling 

(BTM) 

Multinomial Naïve Bayes 

(MNB) 

Relevant Random 

Subspace Method for Co-

training (Rel-RASCO) 
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2.1.2 InfoVis 

InfoVis is a tool that seeks to identify requirements based on how ambiguous or 

incomplete a requirement is [10]. Data visualization techniques and NLP methods are combined 

to identify requirements. A novel algorithm, Semantic Folding Theory (SFT), is proposed that 

takes in user input and calculates a similarity score between pairs of words. The ambiguity score 

is also calculated based on the term and context similarity. Based on the similarity and ambiguity 

score, Venn diagrams are generated to visualize and explore the requirements [10]. The 

performance of the tool is evaluated by using the WebCompany dataset that contains 98 user 

story requirements. Tern pairs in the dataset are classified as being low, medium, or high 

ambiguity. Students manually classify the ambiguity level of the user store requirements. The 

ambiguity classification score by the students and the InfoVis tool is highly correlated suggesting 

that InfoVis is effective in identifying requirements that are ambiguous [10]. 

2.1.3 Templates 

 Templates can be used to identify security requirements. Riaz et al. propose using 

templates that suggest security requirements to aid the process of eliciting requirements [11]. The 

template provides a list of important security requirements to be included to the developers as 

they are gathering the requirements. Requirements are given as input to the template and based 

on the requirements, a list of security requirements is created [11]. The template can serve as a 

helpful tool to be used with other tools that also focus on addressing security requirements and 

privacy concerns. 
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2.2: Existing research on identifying requirements from user app reviews 

This section brings forth the current state of research for identifying requirements from 

user app reviews. The section is divided into several subsections. Each subsection provides an 

overview of the approach or tool used for identifying requirements from user app reviews. 

2.2.1: Automatic classification of Non-functional and Functional requirements 

Lu and Liang proposed four classification techniques for classifying FRs and NFRs [12]. 

NFRs are further classified into reliability usability, portability, and performance. NLP 

techniques such as techniques Bag-of-Words (BoW), Term Frequency-Inverse Document 

Frequency (TF-IDF), Chi-Squared (Chi2) and Augmented User Reviews Bag-of-Words (AUR-

BoW) are used in conjunction with Naïve Bayes, J48, and Bagging ML algorithms to classify 

user reviews [12]. The ML algorithms were evaluated by calculating the precision, recall, and F-

measure scores. 10 k-fold cross-validation was performed to validate each approach. The AUR-

BoW algorithm performed the best with an F-measure score of 71.7%, a precision score of 

71.4%, and a recall score of 72.3%. Augmenting user reviews leads to better results when 

classifying user reviews [12]. 

2.2.2: Requirements Mining Framework 

A requirement mining framework for mobile upgrades is proposed by Chen et al [13]. A 

ranking model is developed that can classify customer requirements and rank the importance of 

each requirement. The performance of the framework is evaluated by product quality 

improvements. User reviews are transformed into product upgrade requirements. The framework 

consists of the following key components:  context-aware segmentation, opinion target 

extraction, opinion target grouping, and requirements summarization [13]. An empirical analysis 
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is conducted to evaluate the effect of requirements mined from customer reviews on app 

upgrades. The following metrics are used to evaluate the framework [13]: 

1. AdScore (Adoption Score): Measures how well actual app updates matched the

recommendation results from the framework

2. DifRating: Average rating difference between version k and version k+1 of the mobile

app

3. DifDownload: Average difference in downloads and duration of version k and version

k+1 of the mobile app

Four experiments were conducted on four case sets (E1 – E4). C1- C5 represent different app 

categories which are Shopping, Social, Contact, Camera, News, and Game. R1 represents count-

based ranking and R2 represents count and rating-based ranking. The four case sets are defined 

as follows: 

1. E1: Contains all cases

2. E2: Cases with DifRating > 0

3. E3: Cases with DifDownload > 0

4. E4: Cases with DifRating > 0 and DifDownload > 0

Case set E4 has the highest AdScore rating throughout the different app categories which 

indicates that cases that adopted app upgrade suggestions from the proposed mining framework 

led to better quality app upgrades as measured by the increase in rating, download count, and app 

usage duration after an app was upgraded [13]. 

2.2.3: Information Retrieval and NLP approach 

Information retrieval with NLP techniques is proposed by Yang and Liang to identify and 

classify FRs and NFRs [14]. This approach consists of a User Reviews Extractor that uses an 
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API to collect user reviews of iBooks from the app store and the Requirements Identifier and 

Classifier is used to automatically identify and classify software requirements. The data is 

preprocessed by techniques such as stop word removal. After preprocessing, the TF-IDF NLP 

technique is used to determine the importance of a word. Words classified as important are then 

added to a keyword set that is used to identify and classify user reviews [14]. The effectiveness 

of this approach is evaluated by comparing the results of the manual classification of 

requirements by experts. The precision, recall, and F-measure scores are calculated for the 

automated classification of requirements using various sample sizes. The F-measure score 

increases when the sample size is increased from 1 to 20 for FRs and from 1 to 7 for NFRs 

indicating that a certain sample size is required for better performance [14]. Classifying FRs 

require a larger sample size when compared to NFRs as FRs tend to be domain-dependent. With 

an adequate sample size, this approach can achieve a good F-measure, recall, and precision score 

for classifying FRs and NFRs [14]. 

2.2.4: Text Classifiers 

Williams and Mahmoud proposed an approach to classify text using ML algorithms such 

as Support Vector Machines (SVM) and Naïve Bayes (NB) combined with NLP techniques such 

as TF and hybrid TF-IDF to mine Twitter feeds to automatically gather software user 

requirements [15]. 4,000 tweets regarding 10 software systems are collected and manually 

classified into informative and uninformative messages. The tweets are further classified into 

Bug reports, User Requirements, and Other. After the data is collected, textual features are 

extracted using Textual Content (BOW), Text Processing, and Sentiment Analysis to improve 

the results of the SVM and NB classifiers. Sentiment analysis is conducted using Sentistrength 

which rates each word as positive or negative. Both classifiers, NB and SVM, achieved the best 
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recall, precision, and F-measure scores. NB achieved a precision score of 0.74, a recall score of 

0.77, and an F-measure score of 0.76 whereas SVM achieved a precision score of 0.79, a recall 

score of 0.75, and an F-measure score of 0.77 [15]. However, sentiment analysis did not improve 

the scores of the classifiers due to software-related tweets being neutral and not polarizing [15]. 

Sentiment scores are largely neutral for bugs, user requirements, and other miscellaneous tweets. 
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Chapter 3: Study 1: Creating ML Models for Classifying Formal 

Software Requirements 

The primary goal of this initial study was to develop ML-based models to classify FRs 

and NFRs and the subclasses of NFRs from formal requirements artifacts (known as SRS 

documents). This study used the publicly available PROMISE Repository of Software 

Engineering dataset to train and test the data models [16]. The TF-IDF NLP technique combined 

with SVM, SGD, and RF ML algorithms were used to create the data models. The performance 

of each data model was evaluated by performance metrics such as the accuracy score, precision, 

recall, and F1 scores. Additionally, each data model was validated by using 10 k-fold cross-

validation to reduce model overfitting and any bias that may result from the random splitting of 

the train and test dataset. 

3.1: Study 1: Research Methodology 

Study 1 proposed a solution based on a comparative analysis of ML models combined with 

basic natural language processing (NLP). The PROMISE Software Engineering dataset consisted 

of 371 FRs and 255 NFRs. The NFRs were further classified into Availability, Legal, Look and 

Feel, Maintainability, Operational, Performance, Scalability, Security, and Usability classes. The 

distribution of FRs and NFRs and the subclasses of NFRs are shown in Tables 3 and 4 

respectively. Study 1 consisted of four primary phases as follows: 
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1. Data Preprocessing: The dataset was first preprocessed before it is used as input for the 

ML algorithms. The NFR classes Fault Tolerance and Portability were removed due to 

inadequate observations. The stemming, tokenization, and stop word removal NLP 

techniques are applied to preprocess the data. Finally, the TF-IDF NLP technique is 

applied to convert the textual requirements into a numeric matrix. TF-IDF is a statistical 

measure that evaluates the frequency of a term in a document and offsets it by the 

frequency of the term across a set of documents. The numeric matrix can then be used to 

train the ML models. TF-IDF is defined as follows: 

a.  tf-idf(t, d) = tf(t, d) * idf(t), where 

i. t: term 

ii. d: document set 

iii. idf is computed as idf(t) = log [ n / df(t) ] + 1 where n is the total number 

of documents 

TABLE 3: FR AND NFR REQUIREMENTS IN THE PROMISE DATASET 

Category Count 
Non-Functional Requirements (NFRs) 371 
Functional Requirements (FRs) 255 

 
 
TABLE 4: SUBCLASSES OF NFR IN THE PROMISE DATASET 

Category Count 
Availability (A) 21 
Legal (L) 13 
Look and Feel (LF) 38 
Maintainability (MN) 17 
Operational (O) 62 
Performance (PE) 54 
Scalability (SC) 21 
Security (SE) 66 
Usability (US) 67 
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2. Model Training: The preprocessed dataset is randomly split with stratification into a

training and testing set. The training set consists of 80% of the requirements and the

testing set consists of 20% of the requirements. Random splitting with stratification is

used to ensure that there is no unseen bias while ensuring the distribution of classes in the

training and testing sets are similar to prevent model overfitting and underfitting. The

training set is then used as input to the SVM, SGD, and RF ML algorithms to train the

data models.

3. Model Evaluation: After the three data models are trained, their performance is

evaluated by calculating their precision, recall, and F1 scores. The metrics are  defined as

follows:

Recall: Calculates the true positives in a class out of all the observations in the class.

It is defined as True Positive (TP) / TP  + False Positive (FP)

Precision: Calculates the number of true positives out of all the input classes. It is

defined as TP / TP + False Negative (FN)

F1: Calculated based on the precision and recall scores. It is defined as 2 * Precision

(P) * Recall (R) / P+R

4. Model Validation: Each model is validated using 10 k-fold cross-validation. 10 k-fold

cross-validation is used to ensure the consistent performance of the data models. The data

is split into 10 equal-sized groups. 10 iterations of model training and performance so

that each iteration will consist of a distinct training and testing set. The average scores of

all 10 groups are then calculated to compare the performance of each model.
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Input: Formal software requirements from SRS documents with a label indicating the type 

of requirement  

Output: Predicted label for each software requirement in the testing set 

Initialization: 

1: Preprocess text data with stemming, tokenization, and stop word removal 

2: Convert preprocessed data into a numeric matrix using TF-IDF 

3: Split the dataset into training and testing sets with 80% and 20% of data respectively 

4: Train SVM, SGD, and RF data modes on the training dataset 

5: Evaluate the performance of trained data models on the testing set by calculating 

precision, recall, and F1 scores 

6: Validate model with 10 k-fold cross-validation 

Algorithm 1: Creating data models to identify formal software requirements from SRS 
documents
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3.2: Study 1: Experiment Results and Discussion 

The set of experiments is split into two categories. The first set is to classify FRs and 

NFRs whereas the second set is to further classify NFRs into different subclasses. The precision, 

recall, and F1 scores of each respective data model are then calculated after 10 k-fold cross-

validation. The results of the first set of experiments are shown in Figure 1. As shown in Fig. 

1(a), SVM with TF-IDF produces the best results for identifying FRs. Fig. 1(b) shows that SGD 

produces the best scores for identifying NFRs. However, all three of the models have similar 

performance metrics when classifying FRs and NFRs. 

In the second set of experiments, the NFRs were classified into 9 subclasses: Availability, Legal, 

Look and Feel, Maintainability, Operational, Performance, Scalability, Security, and Usability 

classes. As shown in Fig. 2(a), 2(b), 2(e), 2(f), and 2(h), SVM combined with TF-IDF achieved 

the best results for the following NFR subclasses: Scalability, Operational, Maintainability, Look 

and Feel and Availability respectively. For the Security, Legal, and Usability NFR subclasses. 

SGD combined with TF-IDF achieves the best results as shown in Fig. 2(c), 2(d), and 2(i). For 

 
 

Figure 1: Classifying FRs and NFRs 
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the performance NFR subclass, RF combined with TF-IDF achieves the best results as shown in 

Fig. 2(g). 

 

3.3: Study 1: Inferences  

 The issue of identifying and classifying FRs and NFRs has been addressed by previous 

research [10] [11]. Study 1 proposes a new approach that goes further than the current state of 

literature by presenting a thorough comparison and evaluation of multiple ML models combined 

with the TF-IDF NLP technique. Study 1 also presents a concrete methodology being defined by 

ML classifiers and NLP techniques to automate the identification of NFRs and NFRs as well as 

 

 

 
 
Figure 2: Classifying NFR-subcategories 1 
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identifying the subclasses of NFRs. The results from Study 1 were published in the IEEE Big 

Data conference [6] 

Besides the introduction of a formalized method and improvement upon the current state 

of research, the results achieved by the two sets of experiments motivated Study 2 which seeks to 

identify FRs and NFRs from user app reviews to crowdsource requirements. Manual 

classification of thousands of user app reviews can be very time-consuming for app developers. 

The automatic identification of requirements would result in developers being able to quickly 

elicit requirements from user app reviews to better meet the wants and needs of their userbase. 

Chapter 4 provides a detailed discussion on Study 2.   
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Chapter 4: Study 2: Identifying FRs and NFRs from user app 

review data 

Study 1 showcased that the ML models proposed performed well as per their precision, 

recall, and F1 scores. SVM combined with TF-IDF performed the best when identifying FRs 

with a recall score of 0.88, a precision score of 0.89, and an F1 score of 0.88, and SGD 

performed the best when identifying NFRs with a recall, precision, and F1 score of 0.92. For 

classifying the subclasses of NFRs, SVM performed the best when identifying Scalability, 

Operational, Maintainability, Look and Feel, and Availability requirements. SGD with TF-IDF 

performed the best when identifying Security, Legal, and Usability requirements. RF with TF-

IDF performed the best when identifying Performance requirements. The performance of all 

three models prompted Study 2 which seeks to identify and classify requirements from user app 

reviews to crowdsource requirements. The automatic identification and classification of 

requirements can enable app developers to save time by quickly extracting requirements from 

user app reviews and further enhance their app as per user wants and needs. 

4.1 Study 2: Development of a New Hybrid Dataset 

A novel hybrid dataset was developed for Study 2. This hybrid dataset consisted of 

formal software requirements from the PROMISE Repository of Software Engineering [16] and 

user app reviews from the dataset prepared by Maleej et al. is proposed [17]. The PROMISE 

dataset contains 626 software requirements that are classified into FRs and NFRs. The NFRs are 

further classified into Availability, Legal, Look & Feel, Maintainability, Operational, 

Performance, Scalability, Security, and Usability. Fault Tolerance and Portability requirements 

are removed due to having a very small sample size. The Maleej dataset contains 3691 reviews 

from Apple’s app store and Google’s play store. The dataset is classified into Feature Requests, 



30 

Bug Reports, Rating, User Experience, and Problem Discovery. Requirements in both datasets 

were relabeled to form a common set of labels. The subclasses of NFRs were relabeled as NFR 

and the FR label was unchanged in the PROMISE dataset. In the Maleej dataset, Feature 

Requests were relabeled as FR and the rest of the requirements were relabeled as Non-

Requirements (NRs). To tackle the issue of class imbalance, the majority class, NR, was 

downsampled to match the count of the minority class, NFRs, with 371 observations. The final 

dataset distribution with relabeling and down sampling is shown in Table 5. 

4.2: Research Methodology 

Previous studies have focused on identifying and classifying FRs and NFRs from 

requirements artifacts such as SRS documents or user app reviews [1] [13] [15]. Study 2 

proposes a hybrid approach to identify and classify requirements from SRS documents and user 

app reviews by implementing ML algorithms and NLP techniques. Figure 3 provides an 

overview of the stages of study 2. Study 2 consists of the following stages: 

1. Data Collection: A novel hybrid dataset consisting of formal software requirements and

user app reviews is proposed. The novel hybrid dataset will be used to train and test the

ML models.

2. Data Preprocessing: NLP techniques such as stop word removal, stemming, tokenizing,

and lemmatizing are applied to preprocess the data. The text is then converted into a

numeric matrix using TF-IDF.

TABLE 5: DISTRIBUTION OF FRs, NFRs AND NRs IN THE NOVEL 
HYBRID DATASET

Category Count 
Functional Requirement (F) 507 
Non-Functional Requirement (NFR) 371 
Non-Requirement (NR) 371 
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3. Model Training and Evaluation: After the dataset is converted into a numeric matrix, it

is split into training and testing sets. The training set consists of 80% of the data and the

testing set consists of 20% of the data. The dataset is randomly split with data

stratification to reduce any bias that may arise due to the random splitting of data.

Stratification ensures that the training and testing sets have a similar distribution of FRs

and NFRs. The training set is then used to train the SVM, SGD, and RF ML data models.

The performance of each data model is evaluated by calculating their respective

accuracy, precision, recall, and F1 scores.

4. Model Validation: Each model is then validated using 10 k-fold cross-validation. 10

iterations of model training and testing are conducted with each iteration having a distinct

training and testing set. The average accuracy, precision, recall, and F1 scores of the 10

iterations are used to evaluate and compare the performance of each model.

Figure 3: Stages in Study 2
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Input: Software requirements from SRS documents and user app reviews with a 

label indicating the type of requirement (FR, NFR, NR) 

Output: Predicted label for each software requirement in the testing set 

Initialization: 

1: Form the novel hybrid dataset by combining the PROMISE and Maleej datasets 

2: Relabel requirements in the combined dataset to FR, NFR, and NR labels 

3: Down sample majority class, NR, to the count of the minority class, NFR, to form 

the final dataset 

4: Preprocess text data with stemming, tokenization, and stop word removal 

5: Convert preprocessed data into a numeric matrix using TF-IDF 

6: Split the dataset into training and testing sets with 80% and 20% of data 

respectively 

7: Train SVM, SGD, and RF data modes on the training dataset 

8: Evaluate the performance of trained data models on the testing set by calculating 

precision, recall, and F1 scores 

9: Validate model with 10 k-fold cross-validation 

Algorithm 2:Creating data models to identify software requirements from SRS 
documents and user app reviews
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4.3: Experiment Results and Discussion 

This section describes the results of each data model. The average accuracy, precision, 

recall, and F1 scores were calculated after 10 k-fold cross-validation of each data model. SGD 

combined with TF-IDF performed the best in identifying FRs with an accuracy score of 0.833, 

an F1 score of 0.788, a recall score of 0.774, and a precision score of 0.81. SGD with TF-IDF 

also performed the best when identifying NFRS with an F1 score of 0.913, a recall score of 

0.916, and a precision score of 0.91. SVM achieved similar performance metrics as SGD when 

identifying NFRs. SGD with TF-IDF achieved the best results when isolating NRs from FRs and 

NFRs with an F1 score of 0.802, recall score of 0.83, and a precision score of 0.783. SVM and 

RF had similar performance metrics but were not as good as SGD. Figure 4 presents the 

performance metrics for each data model. The results cast a new light on the effectiveness of the 

data models proposed in classifying user app reviews and formal software requirements. From 

the results, it is clear that ML-based models combined with NLP techniques are an effective 

method to identify and classify FRs and NFRs and isolate NRs. 
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Figure 4: Performance metrics of SVM, SGD, and RF data models

0.
81

2

0.
86

1

0.
73

7 0.
81

0.
91

0.
78

3

0.
78

3 0.
92

7

0.
78

3

0.
70

7

0.
88

7

0.
83

9

0.
77

4 0.
91

6

0.
83

0.
79

5 0.
89

6

0.
79

4

0.
75

5 0.
87

3

0.
78

3

0.
78

8 0.
91

3

0.
80

2

0.
78

6 0.
91

0.
78

7

0.
80

2

0.
80

2

0.
80

2

0.
83

3

0.
83

3

0.
83

3

0.
82

6

0.
82

6

0.
82

6

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

RF RF RF SGD SGD SGD SVM SVM SVM

FR NFR NR FR NFR NR FR NFR NR

Functional vs Non-Functional vs Non-Requirements 
Classification

Avg Precision Avg Recall Avg F1 Accuracy



35 

Chapter 5: Discussion 

This section discusses the results and implications of the research performed as part of 

this thesis (i.e., Study 1 and Study 2). This section also answers the research questions proposed 

in this thesis (for research questions, please see Table 1 in Chapter 1). Study 1 proposed three 

data models using the SVM, SGD, and RF machine learning algorithms combined with the TF-

IDF NLP technique to classify FRs, NFRs, and the subclasses of NFRs from SRS documents that 

contained formal software requirements. The data was preprocessed to ensure that all the 

observations in the dataset were properly labeled and NFR subclasses with a very low count 

were disregarded. The TF-IDF NLP technique was then used to vectorize the data. The 

vectorized data was split into a training and testing set. The SVM, SGD, and RF ML algorithms 

were then trained on the training set. Each data model was then evaluated by calculating the 

accuracy, precision, recall, and F1 scores. After model evaluation, each model was validated 

with 10 k-fold cross-validation to ensure consistent model performance and to avoid model 

overfitting and underfitting. Based on the positive results of Study 1, a second study, Study 2, 

was proposed to identify and classify FRs, NFRs, and NRs from a novel hybrid dataset 

consisting of formal software requirements and user app reviews. The research questions of this 

thesis are answered as follows: 

RQ1: What is the type and size of data required to automate the classification of requirements 

from SRS documents and user app reviews? 

We proposed a novel approach to create a hybrid dataset using the PROMISE and Maleej 

datasets. The PROMISE dataset consists of formal software requirements from SRS documents 

and the Maleej dataset consisted of user app review statements from Apple’s app store and 

Google’s play store. All requirements and user app reviews in the datasets were relabeled to FR, 
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NFR, and NR to create a common set of labels. Next, the issue of class imbalance was resolved 

by downsampling the count of the majority class, NR, to the count of the minority class. 

Relabeling the requirements in both datasets and downsampling ensured the proper labeling of 

all observations and reduced any bias that may have been introduced by the majority class. The 

final dataset consisted of 507 FRs, 371 NFRs, and 371 NRs. The hybrid dataset consisted of a 

relatively equal count of observations in each category. 

RQ2: To what extent can the Machine Learning Algorithms combined with NLP techniques 

accurately identify and classify Functional and Non-Functional Requirements? 

The accuracy, precision, recall, and F1 scores of each data model were evaluated in Study 

1 and Study 2. Study 1 identified and classified FRs and NFRs. SVM with TF-IDF performed the 

best when identifying FRs with a precision score of 0.89, a recall score of 0.88, and an  F1 score 

of 0.88. SGD performed the best when identifying NFRs with precision, recall, and F1 score of 

0.92. Positive results from Study 1 prompted Study 2 which included the creation of a novel 

dataset consisting of formal software requirements and user app reviews. The SVM, SGD, and 

RF models were implemented on the novel hybrid dataset to classify requirements and user app 

reviews as FRs, NFRs, and NRs. SGD with TF-IDF performed the best when identifying FRs 

with an accuracy score of 0.833, an F1 score of 0.788, a recall score of 0.774, and a precision 

score of 0.81. SGD with TF-IDF performed the best when identifying NFRs with an F1 score of 

0.913, a recall score of 0.916, and a precision score of 0.91. 

RQ3: How effective are the data models in identifying Non-Requirements (NRs) from Functional 

Requirements (FRs) and Non-Functional Requirements (NFRs)? 

Study 2 proposed isolating NRs in addition to identifying FRs and NFRs. NRs are 

general feedback for an application and do not specify any requirement. SGD with TF-IDF 
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performed the best when isolating NRs from the novel dataset. It achieved an F1 score of 0.802, 

a recall score of 0.83, and a precision score of 0.783. The high scores suggest that the SGD data 

model is effective in isolating NRs from FRs and NFRs. 

5.1 Real-World Impact 

 Manually going through a large number of user app reviews to extract requirements can 

be a time-consuming process, especially with many new user app reviews every day. Time 

spent on manual identification of requirements can be spent on development-related activities 

instead. Therefore, the automatic identification of requirements from user app reviews is vital 

to app developers to elicit requirements from user app reviews to better address the wants 

and needs of their userbase in a time-efficient manner. Studies 1 and 2 prove that 

requirements can be accurately crowdsourced. The data models proposed can be used by app 

developers to quickly elicit requirements and enhance the next iterations of their applications. 

In conclusion, using the data models proposed in this thesis can save developers time and 

effort by not having to manually identify requirements and being able to quickly incorporate 

much-wanted functionality into their applications. 
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Chapter 6: Conclusion 

This section presents the conclusions drawn from Studies 1 and 2. It summarizes the 

findings of both the studies, highlights the primary contributions and presents avenues for future 

work. 

6.1: Summary  

In this thesis, three ML data models were created using the SVM, SGD, and RF machine 

learning algorithms. Two studies were conducted to evaluate and validate the performance of 

each data model. The first study used the PROMISE dataset consisting of formal software 

requirements from SRS documents that were classified as FRs, NFRs, and the subclasses of 

NFRs. The dataset was preprocessed using techniques such as stop word removal and stemming. 

The dataset was then converted into a numeric matrix using the TF-IDF NLP technique. After 

data preprocessing, a training and testing set was created. The data models were trained on the 

training set and their performance was evaluated on the testing set. The models were validated 

using 10 k-fold cross-validation and the precision, recall, and F1 scores were calculated.  

6.2: Contributions and Findings 

SVM had the best performance metrics when identifying FRs and SGD had the best 

performance metrics when identifying NFRs. The performance metrics of the data models from 

Study 1 prompted Study 2 which identified FRs, NFRs, and NRs from a novel dataset containing 

formal software requirements and user app reviews. SGD performed the best when identifying 

FRs, NFRs, and NRs. However, SVM had similar precision, recall, and F1 scores. Studies 1 and 

2 prove that ML-based data models are effective in identifying FRs, NFRs, and NRs. The studies 

propose a concrete methodology for the automatic classification and identification of 

requirements with ML classifiers and NLP techniques. The automatic identification and 
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classification of FRs and NFRs from SRS documents can enable project managers and software 

engineers to catch any requirements early during the RE phase which can result in reduced costs 

and a quicker time to delivery for a software project. Automatic Identifications of FRs, NFRs, 

and NRs from user app reviews can assist developers in crowdsourcing requirements from their 

userbase. Automatically crowdsourcing requirements enable app developers to quickly sift 

through a huge number of app reviews to extract requirements. They can use crowdsourced 

requirements to enhance the next iteration of their app by meeting the wants and needs of their 

users.  

6.3: Future Work  

Future work for this research includes finding new sources of data to create new datasets 

consisting of formal software requirements and user app reviews. NLP techniques such as Bag-

of-Words (BoW)  [12] and Word Embedding for preprocessing textual data will be explored and 

ML algorithms such as XGBoost [18] and deep learning methods such as Convolutional Neural 

Networks (CNN) and Recurrent Neural Networks (RNN) [19]  will be implemented and 

evaluated. 
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