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Abstract

Wilf found the maximum number of independent dominating sets of a tree using
algebraic methods, while Sagan gave an elementary proof. In this thesis, we maximize
the number of independent dominating sets of unicyclic graphs, giving a new proof of
a result of Jou and Chang. In our proof, we are able to reduce the problem to finding
independent dominating sets of single-legged caterpillar graphs. We also study the
number of single-legged caterpillar graphs, both oriented and unoriented, which are
related to the Fibonacci Sequence. Finally, this thesis also examines the domination
ratio in unicyclic graphs. The domination ratio is the quotient of the minimum size
of an independent dominating set and the minimum size of a dominating set. Using
a generalization of a technique of Furuya et al., we find a new bound on this ratio for
unicyclic graphs.





Independent Dominating Sets in Unicyclic
Graphs

A THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science

by

Rachel Lopez

Montclair State University

Montclair, NJ

2022

 



Copyright © 2022 by Rachel Lopez. All rights reserved.



Acknowledgments

I would first like to thank my thesis advisor, Dr. Jonathan Cutler, for his continu-
ous support throughout my undergraduate and graduate career at Montclair State
University. Without his guidance, this project would not have been possible.

I would also like to thank my thesis committee, Dr. Deepak Bal and Dr. Aihua
Li for their feedback throughout this process. Dr. Bal taught Applied Combinatorics
and Graph Theory during the Spring 2020 semester which is where my interest in
graph theory began.

I am very grateful for the Department of Mathematics for all the opportunities
that they provide for their students. Being involved in the department has allowed
me to grow and become an even better mathematician. Thank you Dr. Ashwin
Vaidya for not only being there for me, but for being there for all the students in the
department.

I would lastly like to say thank you to all of my family and friends for their love
and support throughout my studies. I am extremely grateful for everyone in my life
who’s been there for me.

ii



Contents

Acknowledgments ii

List of Figures iv

1 Introduction 1
1.1 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Previous Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Maximizing the Number of Independent Dominating Sets . . . 5
1.2.2 Domination Ratio . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Maximizing Independent Dominating Sets 10
2.1 Theorem for Unicyclic Graphs . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Proof of Theorem 2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Single-Legged Curly Caterpillars 26
3.1 Oriented Version of Single-Legged Caterpillars . . . . . . . . . . . . . 26
3.2 Unoriented Version of Single-Legged Caterpillars . . . . . . . . . . . . 31

4 Domination Ratio 33
4.1 Domination Ratio in Unicyclic Graphs . . . . . . . . . . . . . . . . . 33
4.2 Further Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Bibliography 37

iii



List of Figures

1.1 {a, c} is an independent set since a and c do not share a common edge. 2
1.2 U = {b, c, e} is a dominating set since a, d, and f have at least one

neighbor in U . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 {a, c, e} is an independent dominating set since each vertex in the set

does not share a common edge, and all vertices not in the set have two
neighbors in the set. . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Extremal graph when n is odd. . . . . . . . . . . . . . . . . . . . . . 11
2.2 Extremal graph when n is even. . . . . . . . . . . . . . . . . . . . . . 11
2.3 Corresponding component of penultimate vertex v is not extremal for

n = 5 and n = 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4 Extremal unicyclic graph when n is odd. . . . . . . . . . . . . . . . . 18
2.5 Case 1: Penultimate vertex v attached to the wrong spot when n is odd. 18
2.6 Case 2: Penultimate vertex v attached to the wrong spot when n is odd. 19
2.7 Case 3: Penultimate vertex v attached to the wrong spot when n is odd. 19
2.8 Extremal unicyclic graph when n is even. . . . . . . . . . . . . . . . . 19
2.9 Case 1: Penultimate vertex v attached to the wrong spot when n is even. 20
2.10 Case 2: Penultimate vertex v attached to the wrong spot when n is even. 20
2.11 Case 3: Penultimate vertex v attached to the wrong spot when n is even. 21
2.12 Case 4: Penultimate vertex v attached to the wrong spot when n is even. 21
2.13 ∂i(D) for all single-legged caterpillars for k = 0, 1, 2. . . . . . . . . . . 23

3.1 n = 2: c(2) = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 n = 3: c(3) = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3 n = 4: c(4) = 2 = c(3) + c(2). . . . . . . . . . . . . . . . . . . . . . . 30
3.4 n = 5: c(5) = 3 = c(4) + c(3). . . . . . . . . . . . . . . . . . . . . . . 30

iv



Chapter 1

Introduction

This chapter will introduce the necessary terminology to identify an independent

dominating set, as well as define unicyclic graphs. We will also discuss previous

results on maximizing independent dominating sets and the domination ratio.

1.1 Terminology

First and foremost, we can begin by defining some graph theory basics relevant to

this research.

Definition 1.1.1. A graph G has a vertex set V and an edge set E such that E is a

set of 2-element subsets of V . Elements in V are known as vertices, and elements in

E are known as edges.

Definition 1.1.2. Suppose u and v are two distinct vertices in a vertex set of a graph

G. If {u, v} is in the edge set of G, then u and v are adjacent. One can say that

adjacent vertices are neighbors.

Definition 1.1.3. The number of neighbors of a vertex v has is known as the degree

of v, denoted as d(v). A vertex of degree 1 is referred to as a leaf.
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Definition 1.1.4. The open neighborhood of a vertex v, denoted as N(v) is the set

of vertices which are adjacent to v. Similarly, the closed neighborhood of a vertex v,

denoted as N [v] is the set of vertices in which are adjacent to v, including v in the

set (or N [v] = N(v) ∪ {v}).

Now we can define independent sets and dominating sets for a graph G.

Definition 1.1.5. In a graph G, a subset of the vertices is independent if it contains

no edges. Figure 1.1 shows an independent set in a graph.

a

b

c

d

e

f

Figure 1.1: {a, c} is an independent set since a and c do not share a common edge.

Definition 1.1.6. A subset U of the vertex set V is dominating if every vertex in V

but not in U has at least one neighbor in U . Figure 1.2 shows a dominating set in a

graph.

a

b

c

d

e

f

Figure 1.2: U = {b, c, e} is a dominating set since a, d, and f have at least one neighbor in U .

A set that is both independent and dominating is also a maximal independent set.

This is because if we were to add another vertex to the set, it would be adjacent to
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at least one vertex already in the set, making it no longer independent. Figure 1.3

shows an independent dominating set in a graph.

a

b

c

d

e

f

Figure 1.3: {a, c, e} is an independent dominating set since each vertex in the set does not share a
common edge, and all vertices not in the set have two neighbors in the set.

We let ∂i(G) be the number of independent dominating sets of G.

Since we are focusing on a smaller set of graphs, unicyclic graphs, we must also

define what they are using ideas of other sets of graphs.

Definition 1.1.7. A graph G is a path on n distinct vertices x1, x2, · · · , xn, denoted

as Pn, if edge set E(Pn) = {{xi, xi+1}|i = 1, 2, · · · , n − 1}. A graph G is a cycle,

denoted as Cn if edge set E(Cn) = E(Pn) ∪ {x1, xn} for n ≥ 3.

Definition 1.1.8. A graph G is connected if there exists a path from vertex u to

vertex v, for every u and v in the vertex set of G.

Definition 1.1.9. A graph G is acyclic if there is no cycle in G.

Definition 1.1.10. A graph G is a tree if G is connected and acyclic.

It turns out that one can prove that every tree has n − 1 edges. In order to do

that, we need to state and prove some properties of trees.

Lemma 1.1.1. Every tree T on n vertices such that n ≥ 2 has at least two leaves.

Proof. Suppose P is a maximal path in T . Then because P is maximal, the endpoints

of the path must be adjacent to vertices already in the path. But if we add another
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edge to P , we end up getting a cycle, making T no longer a tree. Therefore, T must

have at least two leaves.

We can also say that removing a leaf from a tree produces a tree containing n− 1

vertices.

Lemma 1.1.2. If a tree T contains n vertices, then removing a leaf produces a tree

on n− 1 vertices.

Proof. Suppose T has n vertices, and vertex v is a leaf in T . Then deleting v only

removes one edge, making its neighbor an endpoint. Since T is acyclic and connected,

removing that edge does not add a cycle or disconnect the graph. Thus, we have a

new tree on n− 1 vertices.

Now we have enough information to show that a tree has n− 1 edges.

Theorem 1.1.3. For any tree G on n vertices, there always exists n− 1 edges.

Proof. Suppose G is a tree. We can prove this using induction for n.

When n = 1, there contains no edges since the vertex is isolated. So suppose

n ≥ 2 such that for any tree G on k vertices, there always exists k − 1 edges. Also

let v be a leaf in G. Then by Lemma 1.1.1 and Lemma 1.1.2, removing v would give

us a tree on n− 1 vertices on (n− 1)− 1 = n− 2 vertices. Therefore, every tree with

n vertices must have n− 1 edges.

Definition 1.1.11. A connected graph G on three or more vertices is unicyclic if it

contains exactly one cycle.

Unicyclic graphs, graphs with exactly one cycle, can be obtained by adding a

single edge in a tree, making the graph unicyclic with n edges.
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Alternatively, we can “build” a unicyclic graph by starting with a cycle, say Ck.

Then perhaps we can add trees to any vertex of Ck. (Ck,T1,T2,...,Tk) where the

vertices of Ck are labeled v1, ..., vk and Ti is a tree off of vi.

1.2 Previous Results

1.2.1 Maximizing the Number of Independent Dominating

Sets

Results on maximizing the number of independent dominating sets have been proven

on different sets of graphs. Wilf [12] first was able to maximize the number of inde-

pendent dominating sets of trees. Theorem 1.2.1 shows this result.

Theorem 1.2.1 (Wilf [12]). If T is a tree on n vertices, then

∂i(T ) ≤

⎧⎪⎪⎨
⎪⎪⎩
2

n
2
−1 + 1 if n is even

2
n−1
2 if n is odd.

Sagan [10] reproved Theorem 1.2.1. In his paper, he mentions extremal graphs,

which are defined in Definition 1.2.1.

Definition 1.2.1. A graph G is extremal on n vertices if it contains the maximum

number of independent dominating sets among all graphs of a given type on n vertices.

Since Sagan [10] reproved Theorem 1.2.1 for T , he was able to find extremal

trees on n vertices such that no other trees on n vertices have a greater number of

independent dominating sets. The extremal graphs he found consist of a path of

length �, where � = 0 or � = 1, 3 when n is odd or even respectively, such that any
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number of paths of length 2 were attached to the endpoints. He referred to these

extremal graphs as batons.

In fact, Sagan [10] reproved the result of Wilf [12] using elementary methods to

obtain extremal graphs on trees containing n vertices, as Wilf proved the upper bound

of the number of independent dominating sets of trees using algebraic methods.

Griggs et al. [4], on the other hand, used the ideas of Sagan [10] and Wilf [12] to

find the maximal independent set for connected graphs, a larger set of graphs, along

with obtaining the corresponding extremal graphs. Their result is the following.

Theorem 1.2.2 (Griggs et al. [4]). If G is a connected graph on n vertices, then

∂i(G) ≤

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

2 · 3 1
3
n−1 + 2

1
3
n−1 if n ≡ 0 (mod 3)

3�
1
3
n� + 2�

1
3
n�−1 if n ≡ 1 (mod 3)

4 · 3� 1
3
n�−1 + 3 · 2� 1

3
n�−2 if n ≡ 2 (mod 3).

Koh et al. [7] were actually able to maximize the number of independent dom-

inating sets of connected unicyclic graphs and were able to find the corresponding

extremal graphs for this result.

Jou and Chang [5] were able to maximize the number of independent dominating

sets of graphs containing at most one cycle.

Theorem 1.2.3 (Jou and Chang [5]). If G is a graph on n ≥ 3 vertices that contain

at most one cycle, then

∂i(G) ≤

⎧⎪⎪⎨
⎪⎪⎩
3 · 2n−4

2 if n is even

2
n−1
2 + 1 if n is odd.

We will be reproving this result using an alternative method by modifying Sagan’s
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[10] approach.

While proving Theorem 1.2.3 using our alternative method, we will be seeing a

relationship between unicyclic graphs and caterpillar graphs. Ortiz and Villanueva [8]

were able to maximize the number of independent dominating sets of caterpillar

graphs in some sense. Caterpillar graphs consist of a path containing pendant edges

hanging off of the path’s vertices. In fact, if a given vertex is incident to multiple

pendant edges, all but one can be removed as it does not impact the number of

independent dominating sets. This was also proven by Ortiz and Villanueva [8],

which is shown below.

Lemma 1.2.4 (Ortiz and Villanueva [8]). In a graph G, if any given vertex is incident

to multiple pendant edges, then removing all but one pendant edge does not impact

the number of independent dominating sets.

To summarize, this is because the leaves on the pendant edges share the same

neighbor, a vertex in the path. We refer to these leaves as twin vertices. This idea

will be important as we analyze how we will maximize the number of independent

dominating sets of unicyclic graphs.

1.2.2 Domination Ratio

In a graph G, Suppose γi(G) is the independent domination number of G, or the

minimum size of an independent dominating set of G. We can also let γ(G) be the

domination number of G, or the minimum size of a dominating set of G. Let the

domination ratio γi(G)
γ(G)

= ρ(G).

Rad and Volkmann [9] were able to prove ρ(G) for a graph G.
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Theorem 1.2.5 (Rad and Volkmann [9]). If G is a graph, then

ρ(G) ≤

⎧⎪⎪⎨
⎪⎪⎩

Δ(G)
2

if 3 ≤ Δ(G) ≤ 5

Δ(G)− 3 + 2
Δ(G)−1

if Δ(G) ≥ 6.

Furuya et al. [1] were able to prove a stronger upper bound by maximizing ρ(G)

for simple undirected graphs of G using the maximum degree of G, denoted as Δ(G).

Below shows this result.

Theorem 1.2.6 (Furuya et al. [1]). For any graph G,

ρ(G) ≤ Δ(G)− 2
√
Δ(G) + 2.

Goddard et al. [2], on the other hand, were able to maximize ρ(G) for connected

cubic graphs, graphs where for all v ∈ V (G), d(v) = 3.

Theorem 1.2.7 (Goddard et al. [2]). If G is a cubic graph, then

ρ(G) ≤ 3

2
.

Meanwhile Knor et al. [6] maximized ρ(G) for connected k-regular graphs, graphs

where every vertex is of degree k.

Theorem 1.2.8 (Knor et al. [6]). If G is a k-regular graph such that k ≥ 3, then

ρ(G) ≤ k

2
.

Wang and Wei [11] were able to do the same for trees using the structure of Furuya

et al. [1] proof and the fact that every tree has a leaf.
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Theorem 1.2.9 (Wang and Wei [11]). If G is a tree, then

ρ(G) ≤ Δ(G)

2
,

provided Δ(G) ≥ 3.

As researchers have been able to calculate ρ(G) for different graphs of G, we

become interested in the upper bound for the domination ratio in unicyclic graphs.

We get the following result which will be discussed in further detail in Chapter 4.

Theorem 1.2.10. If G is a unicyclic graph, then

ρ(G) ≤ 2

3
Δ(G)− 1.

9



Chapter 2

Maximizing Independent

Dominating Sets

2.1 Theorem for Unicyclic Graphs

We were able to adapt a proof technique introduced by Sagan [10] to prove a similar

result for unicyclic graphs, reproving the result of Jou and Chang [5]. The theorem

we will prove is as follows.

Theorem 2.1.1. If G is a unicyclic graph on n vertices, then

∂i(G) ≤

⎧⎪⎪⎨
⎪⎪⎩
3 · 2n−4

2 if n is even

2
n−1
2 + 1 if n is odd.

This maximizes the number of independent dominating sets of unicyclic graphs.

Those bounds can be obtained from the extremal graphs on n vertices. The extremal

graphs in Figures 2.1-2.2 give us the maximum number of independent dominating

sets of unicyclic graphs.
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Figure 2.1: Extremal graph when n is odd.

Figure 2.2: Extremal graph when n is even.

When n is odd, the extremal graph is a triangle with legs off one vertex such that

all legs have two edges. When n is even, the extremal graph is a triangle with an

edge off one vertex such that legs of length two hang off the edge on the vertex not

corresponding to the triangle.

2.2 Preliminaries

When constructing unicyclic graphs, there may be situations where there are pendant

edges hanging off a vertex in a cycle, which we will call “curly caterpillars”. Suppose

a vertex v in a cycle has multiple pendant edges. Then when observing any given

independent dominating set, either all the pendant vertices are in the set, or they

are all not in the set. As Ortiz and Villanueva [8] previously discovered, the set of

pendant vertices are independent, but not maximal. This is because they all have the

same neighborhood. Thus by Lemma 1.2.4, what we can do to make it maximal is

to remove all but one pendant edge to the curly caterpillar. This will not affect the

number of independent dominating sets because all of the pendant vertices are either

in the independent dominating set, or not in the independent dominating set.
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When examining the number of independent dominating sets of any graph, we can

partition it based off the number of independent dominating sets containing a vertex

v, denoted as ∂i(G, v) and the number of independent dominating sets not containing

v, denoted as ∂i(G, v). Below we have this lemma.

Lemma 2.2.1. If G is a graph with a vertex v,

∂i(G) = ∂i(G, v) + ∂i(G, v).

Proof. SupposeG is a graph having a vertex v with � neighbors, such that x1, x2, · · · , x� ∈
N(v). Let S be an independent dominating set such that v ∈ S. Then x1, x2, · · · , x� /∈
S as otherwise the set would not be independent.

Similarly, let S ′ be an independent dominating set such that v /∈ S ′. Then by

Definition 1.1.6, at least one vertex in N(v) must be in the independent dominating

set so that v is dominated. Thus there is no set that is both S and S ′, making them

disjoint sets.

And since ∂i(G, v) will count all the possible S sets, and ∂i(G, v) will count all the

possible S ′ sets, both of which are disjoint, we can conclude that the lemma holds.

2.3 Proof of Theorem 2.1

When proving this theorem, we will split into cases depending on whether or not the

graph has a penultimate vertex, defined below.

Definition 2.3.1. A vertex v in a graph G is said to be penultimate if d(v) ≥ 2 and

all but at most one of its neighbors is a leaf. If v is a penultimate vertex, then G− v

contains d(v)− 1 isolated vertices and one component, which we call the penultimate

component corresponding to v. (Note that if v is the center of a star, we choose one

12



of its neighbors to be the penultimate component.)

When G contains a penultimate vertex, we will use the following generalization

of a lemma of Sagan [10] that finds a bound on ∂i(G).

Lemma 2.3.1. If G is a graph with penultimate vertex v and corresponding compo-

nent P , then

∂i(G) ≤ 2∂i(P ).

Proof. Suppose G is a graph with a penultimate vertex v and corresponding to

component P . Let q be the vertex in P and adjacent to v, and x1, x2, · · · , x�

such that � ≥ 1 be leaf vertices not in P and adjacent to v. By Lemma 2.2.1,

∂i(G) = ∂i(G, q) + ∂i(G, q).

We first consider independent dominating sets of G containing q. If S is an

independent dominating set of G and q ∈ S, then v �∈ S, as otherwise q and v would

no longer be independent. Since v �∈ S, then x1, · · · , x� ∈ S as their only neighbor v

is not in S. In the penultimate component P , we can obtain all of the independent

dominating sets containing q, the number of said sets being ∂i(P, q), and then add

x1, · · · , x� to every set of order to obtain the independent dominating sets of G. Thus

we can say that ∂i(G, q) = ∂i(P, q).

Now we must consider independent dominating sets of G not containing q. If S ′

is an independent dominating set of G and q �∈ S ′, then either v ∈ S ′ or x1, · · · , x� ∈
S ′. In both cases, we can obtain all of the independent dominating sets of P not

containing q, the number of said sets being ∂i(P, q), and then either include v in

every independent dominating set obtained, or all of x1, · · · , x� in every independent

dominating set obtained to get the independent dominating sets of G. Since we are

ultimately using the independent dominating sets of P not containing q, and then

either adding v or x1, · · · , x� to every set, we can say that ∂i(G, q) = 2∂i(P, q).
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Now that we have defined ∂i(G, q) and ∂i(G, q) in terms P , we can say that

∂i(G) = ∂i(G, q) + ∂i(G, q)

= ∂i(P, q) + 2∂i(P, q)

≤ 2∂i(P, q) + 2∂i(P, q)

= 2[∂i(P, q) + ∂i(P, q)]

= 2∂i(P ).

Therefore, ∂i(G) ≤ 2∂i(P ).

When maximizing the number of independent dominating sets of a graph G, we

must make sure that there exists no graph with a greater number of independent

dominating sets. G would then need to be an extremal graph. And since there exists

a penultimate vertex, we would need to figure out its maximum degree for the graph

to remain extremal, which is shown in the following Lemma.

Lemma 2.3.2. If G is extremal and v is a penultimate vertex, then dG(v) ≤ 2.

Proof. Suppose G has a penultimate vertex v with a corresponding penultimate com-

ponent P . We label the leaves neighboring v by x1, x2, · · · , x� such that � ≥ 2. We

also label the neighbor of v in P by u. By Lemma 2.2.1, ∂i(G) = ∂i(G, v) + ∂i(G, v).

We will show that in the case that � ≥ 2 that G cannot be extremal by finding a

graph with more independent dominating sets than G. Let G′ be the graph formed

from G by removing the edges vx�−1 and vx� and adding the edges ux�−1 and x�−1x�.

Note that if � ≥ 3, then v is still penultimate in G′ with corresponding component P .

However, if � = 2, then while v is no longer penultimate (since it is a leaf), we have

that x�−1 is penultimate with corresponding component P .

We first consider independent dominating sets containing v. If S is an independent
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dominating set ofG with v ∈ S, then none of the xi, for i = 1, 2, · · · , �, are in S. While

S is not an independent dominating set of G′ (since x� and x�−1 are not dominated),

we can get two independent sets by taking S∪{x�} or S∪{x�−1}. Thus, we’ve shown
that ∂i(G

′, v) = 2∂i(G, v).

Now, we consider independent dominating sets not containing v. If S ′ is an in-

dependent dominating set of G with v �∈ S ′, then it must be that xi ∈ S ′ for all

i = 1, 2, · · · , �. We can get an independent dominating set of G′ by taking S ′\{x�−1}.
Thus, there are at least as many independent dominating sets of G′ not containing

v as there are in G. (We may get more since S ′ \ {x�} may also be an independent

dominating set of G′.) Thus, ∂i(G
′, v) ≤ ∂i(G, v).

Therefore, provided l ≥ 2, or d(v) ≥ 3, where d(v) is the degree of v, we have

∂i(G
′) = ∂i(G

′, v) + ∂i(G
′, v)

≥ 2∂i(G, v) + ∂i(G, v)

> ∂i(G, v) + ∂i(G, v)

= ∂i(G).

Thus for G to be extremal, dG(v) ≤ 2.

By the definition of a penultimate vertex, and by the previous lemma, all penul-

timate vertices in an extremal graph must have degree 2.

Now we have to consider situations on how the graph is not extremal and deter-

mine it’s number of independent dominating sets to ensure Theorem 2.1.1 still holds.

The first situation is when the penultimate component is not extremal.

Lemma 2.3.3. Suppose G is a unicyclic graph where all penultimate vertices have

degree 2. If there exists a penultimate vertex whose corresponding component is not
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extremal, then

∂i(G) ≤

⎧⎪⎪⎨
⎪⎪⎩
3 · 2n−4

2 if n is even

2
n−1
2 + 1 if n is odd.

Proof. Suppose G is a unicyclic graph where all penultimate vertices have degree 2,

and let v be a penultimate vertex whose corresponding component is not extremal.

We can prove this result using induction.

We can start by using Lemma 2.2.1 to prove our base cases for n = 5, 6, shown in

Figure 2.3.

n = 5

n = 6

v

v v

v

G

G G

G

∂i(G) = ∂i(G, v) + ∂i(G, v) = 2 + 3 = 5

∂i(G) = ∂i(G, v) + ∂i(G, v) = 3 + 3 = 6 ∂i(G) = ∂i(G, v) + ∂i(G, v) = 2 + 3 = 5

∂i(G) = ∂i(G, v) + ∂i(G, v) = 2 + 2 = 4

∂i(G) ≤ 2
5−1
2 + 1 = 5

∂i(G) ≤ 3 · 2 6−4
2 = 6

Figure 2.3: Corresponding component of penultimate vertex v is not extremal for n = 5 and n = 6.

We can see that the inequality holds for n = 5 and n = 6, where we get equality

from the extremal graphs.

Assume P is not extremal on n − 2 vertices, since the penultimate vertex and

it’s neighboring leaf is not in the penultimate component. In this case we can use

Lemma 2.3.1.
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If n is odd, using induction, we can say that

∂i(G) ≤ 2∂i(P ) < 2(2
(n−2)−1

2 + 1) = 2
n−1
2 + 2.

Therefore, we can say that ∂i(G) ≤ 2
n−1
2 + 1.

Similarly if n is even,

∂i(G) ≤ 2∂i(P ) < 2(3 · 2 (n−2)−4
2 ) = 3 · 2n−4

2 .

Therefore, we can say that ∂i(G) ≤ 3 · 2n−4
2 .

Now we have that in an extremal graph, every penultimate vertex has degree 2

and its corresponding component is extremal on n− 2 vertices. We have to consider

situations where the penultimate component is extremal, but not the graph itself.

That way, we can show that there exists a different penultimate component that

is not extremal. Then we can say that by Lemma 2.3.3, the maximum number of

independent dominating sets still holds from Theorem 2.1.1.

Lemma 2.3.4. Suppose G is a unicyclic graph where all penultimate vertices have

degree 2. If there is a penultimate vertex whose corresponding component is extremal,

but the graph is not extremal, then there exists a penultimate vertex whose component

is not extremal.

Proof. If there exists a penultimate vertex attached to a wrong spot, say vertex v,

then we must check if G is still extremal. Suppose we start with the extremal graph

on n−2 vertices such that x is a penultimate vertex. Let a be a different penultimate

vertex adjacent to a leaf vertex b, and let d be a vertex such that d is not adjacent to

any penultimate vertex.

To start, suppose n is odd. Figure 2.4 shows the extremal graph on n−2 vertices,
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given the defined vertices.

a b

xd
G

Figure 2.4: Extremal unicyclic graph when n is odd.

For when n is odd, Suppose we look at x and its corresponding penultimate

component. We can conclude that the penultimate component of x is not extremal on

n− 2 vertices in three different cases, following Lemma 2.3.3. Thus ∂i(G) ≤ 2
n−1
2 +1.

Below shows the three different cases in which the the penultimate vertex v is attached

to the wrong spot.

1. Suppose penultimate vertex v is adjacent b. Figure 2.5 shows the new graph G

on n vertices.

a b

xd
G

v

Figure 2.5: Case 1: Penultimate vertex v attached to the wrong spot when n is odd.

2. Suppose penultimate vertex v be adjacent is a. Figure 2.6 shows the new graph

G on n vertices.

3. Suppose Penultimate vertex v be adjacent is d. Figure 2.7 shows the new graph

G on n vertices.
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a b

xd
G

v

Figure 2.6: Case 2: Penultimate vertex v attached to the wrong spot when n is odd.

a b

xd
G

v

Figure 2.7: Case 3: Penultimate vertex v attached to the wrong spot when n is odd.

For every case, if we looked at the corresponding penultimate component of v, we can

conclude that the penultimate component is extremal on n− 2 vertices, but G itself

is not extremal.

Similarly, suppose n is even. We have an additional vertex f such that f is

adjacent to d. Figure 2.8 shows the extremal graph on n − 2 vertices, given the

defined vertices.

a b

xd

f

G

Figure 2.8: Extremal unicyclic graph when n is even.

For when n is even, there are four cases on how a penultimate vertex v is attached
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a b

xd

f

G

v

Figure 2.9: Case 1: Penultimate vertex v attached to the wrong spot when n is even.

a b

xd

f

G

v

Figure 2.10: Case 2: Penultimate vertex v attached to the wrong spot when n is even.

to the wrong spot. Again, we can conclude that the penultimate component of x is

not extremal on n − 2 vertices in the four different cases below, following Lemma

2.3.3. Thus ∂i(G) ≤ 3 · 2n−4
2 .

1. Suppose penultimate vertex v be adjacent is b. Figure 2.9 shows the new graph

G on n vertices.

2. Suppose penultimate vertex v be adjacent is a. Figure 2.10 shows the new graph

G on n vertices.

3. Suppose penultimate vertex v be adjacent is f . Figure 2.11 shows the new

graph G on n vertices.

4. Suppose penultimate vertex v be adjacent is d. Figure 2.12 shows the new graph

G on n vertices.
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a b

xd

f

G

v

Figure 2.11: Case 3: Penultimate vertex v attached to the wrong spot when n is even.

a b

xd

f

v
G

Figure 2.12: Case 4: Penultimate vertex v attached to the wrong spot when n is even.

Similar to when n is odd, looking at the penultimate component of v in every case

concludes that the penultimate component is extremal on n− 2 vertices, but G itself

is not extremal.

Thus this lemma holds true, where there exists a penultimate vertex who’s com-

ponent is not extremal.

Because of Lemma 2.3.3, all the new graphs constructed in Lemma 2.3.4 shows

that Theorem 2.1.1 holds true when there exists a penultimate vertex.

We have outlined how we would maximize the number of independent dominating

sets of unicyclic graphs that have a penultimate vertex. But what if such a vertex

doesn’t exist? Then we can assume that it is a “curly caterpillar”, or a unicyclic

graphs that have pendant edges on the vertices in the cycle.

Throughout the proof, we see that curly caterpillars can be split into 2 “(uncurly)

caterpillars” using a recursion, or paths with pendant edges on any given vertex. And
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from there, we can maximize the number of independent dominating sets from the

single-legged caterpillars. Recall that we are only considering single-legged caterpillars

because of Lemma 1.2.4.

Theorem 2.3.5. If D is an (uncurly) caterpillar on n vertices, then ∂i(D) ≤ ∂i(Pn).

Proof. Let D be a caterpillar with a spine length, or path, of k + 2. We can define

this caterpillar as a binary code with length k, where 0 represents no leg, or pendant

edge, and 1 represents a leg on the the ith vertex on the spine, such that 1 ≤ i ≤ k. If

k = 0, then we have a path of length 2 as our single-legged caterpillar as there exists

no vertex for a pendant edge to be incident to. We would denote this single-legged

caterpillar as an empty binary code, ∅, in the case when k = 0.

Keep in mind that the first and last vertex on the spine is omitted in the binary

code. This is because if either the first or last vertex on the spine has a leg, then the

leg(s) can be used to extend the spine, making the new end vertices of the spine not

have legs.

By Lemma 2.2.1, ∂i(D) = ∂i(a1a2 · · · ak) = ∂i(D, a1) + ∂i(D, a1) = ∂i(a
′
2 · · · a′k) +

∂i(a
′′
3 · · · a′′k) where the number of vertices

n =
k∑

i=1

ai + 2 + k.

We can say that

a′2 =

⎧⎪⎪⎨
⎪⎪⎩
0 if a2 = 1

∅ if a2 = 0
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and a′i = ai for 3 ≤ i ≤ k. Similarly,

a′′3 =

⎧⎪⎪⎨
⎪⎪⎩
0 if a3 = 1

∅ if a3 = 0

and a′′i = ai for 4 ≤ i ≤ k.

For the recursion, we would need to know the number of independent dominating

sets for all single-legged caterpillars on n vertices with k = 0, 1, 2, shown in Figure

2.13.

k = 0

k = 1

k = 2

∂i(∅) = 2

∂i(0) = 2 ∂i(1) = 2

∂i(00) = 3 ∂i(10) = 3 ∂i(01) = 3 ∂i(11) = 3

n = 2

n = 3 n = 4

n = 4 n = 5 n = 5 n = 6

Figure 2.13: ∂i(D) for all single-legged caterpillars for k = 0, 1, 2.

We can already see that the number of independent dominating sets of single-

legged caterpillars for n = 2, 3, 4 does not exceed the results of the no-legged cater-

pillars. We can prove the same for n = 5 using the recursion for the remaining

single-legged caterpillars. We already have D = 10 and D = 01 for our single-legged

caterpillars containing 5 vertices. But what about the path?

Using the recursion,

∂i(000) = ∂i(0) + ∂i(∅) = 2 + 2 = 4.

For when n = 5, we can also see that the number of independent dominating sets
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on single-legged caterpillars is maximized by P5. Now we can prove this lemma using

induction.

Thus ∂i(a
′
2 · · · a′k) + ∂i(a

′′
3 · · · a′′k) ≤ ∂i(0 · · · · · · 0) + ∂i(0 · · · 0). The caterpillar

0 · · · · · · 0 is a path on n − 2 or n − 3 vertices, depending on whether a1 does not

or does contain a leg, respectively. Similarly, 0 · · · 0 is a caterpillar on n− 3 or n− 5

vertices, depending if neither a1 and a2 have legs, or if both a1 and a2 have legs,

respectively.

A caterpillar with no legs are paths. And since the more vertices a path has,

the greater number of independent dominating sets, we can use induction to say

the following: ∂i(D) = ∂i(a1a2 · · · ak) ≤ ∂i(Pn−2) + ∂i(Pn−3) = ∂i(Pn). Therefore,

the number of independent dominating sets on (uncurly) caterpillars on n vertices is

maximized by the number of independent dominating sets of path on n vertices.

Now that we know how to maximize the number of independent dominating sets

of curly caterpillars, we can maximize the number of independent dominating sets of

curly caterpillars, which we can recall as cycles with pendant edges off of any vertex in

the cycle. We will see the split of a curly caterpillar into two single-legged caterpillars

in the following lemma.

Lemma 2.3.6. If C is a curly caterpillar on n vertices, then ∂i(C) ≤ ∂i(Cn).

Proof. We can assume that each vertex of C has at most 1 leaf neighboring it due to

Lemma 1.2.4.

We can let v be a vertex on the cycle, then by Lemma 2.2.1, ∂i(C) = ∂i(C − v) +

∂i(C − N [v]) where N [v] represents the closed neighborhood of v. Both C − v and

C −N [v] are (uncurly) caterpillars, or paths with a pendant edge hanging off of any

vertex. We can say that ∂i(C) = ∂i(C − v) + ∂i(C −N [v]) ≤ ∂i(Pn−1) + ∂i(Pn−3) =

∂i(Cn).
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Now we have enough information to maximize the number of independent domi-

nating sets in unicyclic graphs.

Proof of Theorem 2.1.1. Assume G is an extremal (with respect to ∂i) unicyclic graph

on n vertices. If G contains a penultimate vertex, we can apply Lemmas 2.3.2, 2.3.3,

and 2.3.4 to show that G is of the desired form.

If, on the other hand, G does not contain a penultimate vertex, then we apply

Lemma 2.3.6 to see that ∂i(G) ≤ ∂i(Cn). However, it is well known that ∂i(Cn) = Pn,

where Pn is the nth Perrin number. (The Perrin numbers satisfy the recurrence

P (n) = P (n − 2) + P (n − 3) where P (1) = 0, P (2) = 2, and P (3) = 3.). One,

however, can check that Pn is less than our bounds for all n ≥ 5, and so Cn is not

extremal. (Asymptotically, Pn ∼ ρn where ρ is the so-called plastic constant, the root

of x3 − x− 1. It is known that ρ ≈ 1.32472.)
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Chapter 3

Single-Legged Curly Caterpillars

We were able to find a recursion that gives the number of independent dominating

sets of a single-legged curly caterpillar which can be partitioned into two (uncurly)

single-legged caterpillars. We did this by giving a binary code to each caterpillar and

showing a recursion, then proving this result using induction.

3.1 Oriented Version of Single-Legged Caterpillars

Writing the code that gave us the number of independent dominating sets for a single

legged caterpillar C allowed us to ask ourselves, how many oriented single-legged

caterpillars are there on n vertices, c(n)? Keep in mind, c(n) is an oriented count,

meaning that every possible single-legged caterpillar is distinct.

Before we talk about how to get c(n), it’s important that we discuss binomial

coefficients.

A binomial coefficient is denoted as
(
n
k

)
such that we are counting the number of

subsets of size k from a set of size n, such that 0 ≤ k ≤ n. There is an array of such

binomial coefficients known as Pascal’s Triangle, shown below for n = 0, 1, 2, · · · , 6.
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Numerically, Pascal’s Triangle is represented as the following for n = 1, 2, · · · , 6.

1 6 15 20 15 6 1

1 5 10 10 5 1

1 4 6 4 1

1 3 3 1

1 2 1

1 1

1

Notice how for any value on the nth row, we can add the 2 numbers right above it

in row n− 1 to get that exact value. For example, to get 15 in the 6th row, we would

have to add 5 and 10 from the 5th row. Using binomial coefficients, we can say that(
6
2

)
=

(
5
1

)
+
(
5
2

)
.

We can generalize this, known as Pascal’s Identity such that
(
n
k

)
=

(
n−1
k−1

)
+
(
n−1
k

)
.

Now that we’ve learned about binomial coefficients, lets state the theorem for

c(n).

Theorem 3.1.1. For any single-legged caterpillar on n vertices, where c(n) is the
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number of oriented single-legged caterpillars,

c(n) = 1 +

(
n− 3

1

)
+

(
n− 4

2

)
+

(
n− 5

3

)
+ · · ·

=
∞∑
k=0

(
n− 2− k

k

)
.

Proof. To figure out the number of single-legged caterpillars on n vertices, we have to

count the number of caterpillars on n vertices with 1 leg, 2 legs (each leg on separate

vertices), etc. We must keep in mind that there will be no leg on the first and last

vertex on the spine, or path, otherwise those legs could be extended onto the spine.

If the caterpillar has no legs, then there will be no legs among n − 2 vertices,

again, omitting the first and last vertex on the spine. The number of ways this can

occur is
(
n−2
0

)
= 1.

If the caterpillar has 1 leg in total, that means we have n−3 vertices on the spine,

omitting the first and last vertex on the spine as well as the vertex needed for that 1

leg. Thus, the number of ways we can have 1 leg among n− 3 vertices is
(
n−3
1

)
.

Throughout this process, we can note that for each leg we add onto the caterpillar,

a vertex on the spine is lost to maintain n vertices. We continue this process until we

have no vertices left on the spine to consider. To generalize the number of 1-legged

caterpillars on n vertices, we can say the following.

c(n) =

(
n− 2

0

)
+

(
n− 3

1

)
+

(
n− 4

2

)
+

(
n− 5

3

)
+ · · ·+

(⌈n−2
2

⌉
⌊
n−2
2

⌋
)

=

�n−2
2 �∑

k=0

(
n− 2− k

k

)
.

We can say that
(
n
k

)
= 0 if k > n. So those binomial for the sake of our calculation,
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suppose

c(n) = 1 +

(
n− 3

1

)
+

(
n− 4

2

)
+

(
n− 5

3

)
+ · · ·

=
∞∑
k=0

(
n− 2− k

k

)
.

As it turns out, there is a relationship between c(n) and the Fibonacci numbers,

where F0 = 0, F1 = 1, and Fn = Fn−1 + Fn−2 for n ≥ 2.

The Fibonacci Sequence is a sequence of numbers such that a value, say Fn is the

sum of the 2 preceding values. The sequence is the following

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, · · ·

Lemma 3.1.2 states the relationship between c(n) and the Fibonacci Sequence.

Lemma 3.1.2. For any single-legged caterpillar on n vertices, where c(n) is the

number of single-legged caterpillars,

c(n) = Fn−1

for n ≥ 2.

Proof. First we can start with a few base cases. Figures 3.1-3.4 show the cases when

n = 2, 3, 4, 5.

Figure 3.1: n = 2: c(2) = 1.

With these base cases thus far, we can see that c(n) = c(n− 1) + c(n− 2).
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Figure 3.2: n = 3: c(3) = 1.

Figure 3.3: n = 4: c(4) = 2 = c(3) + c(2).

Figure 3.4: n = 5: c(5) = 3 = c(4) + c(3).

Using Theorem 3.1.1, we can continue the calculation using summation properties,

c(n) = 1 +

(
n− 3

1

)
+

(
n− 4

2

)
+

(
n− 5

3

)
+ · · ·

=
∞∑
k=0

(
n− 2− k

k

)

=
n−2∑
k=0

(
n− 2− k

k

)

= 1 +
n−2∑
k=1

(
n− 2− k

k

)

= 1 +
n−2∑
k=1

[(
n− 3− k

k

)
+

(
n− 3− k

k − 1

)]

= 1 +
n−2∑
k=1

(
n− 3− k

k

)
+

n−2∑
k=1

(
n− 3− k

k − 1

)

=
n−2∑
k=0

(
n− 3− k

k

)
+

n−2∑
k=1

(
n− 3− k

k − 1

)

= c(n− 1) +
n−2∑
k=1

(
n− 3− k

k − 1

)

= c(n− 1) +
n−2∑
k=1

(
n− 4− (k − 1)

k − 1

)
.
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We can use substitution and let � = k − 1, so

n−2∑
k=1

(
n− 4− (k − 1)

k − 1

)
=

n−2∑
�=0

(
n− 4− �

�

)
= c(n− 2).

Therefore,

c(n) = 1 +

(
n− 3

1

)
+

(
n− 4

2

)
+

(
n− 5

3

)
+ · · ·

= c(n− 1) +
n−2∑
k=1

(
n− 4− (k − 1)

k − 1

)

= c(n− 1) + c(n− 2).

So, c(n) = Fn−1 where c(n) counts the number of oriented one-legged caterpillars.

With this calculation, caterpillars that are isomorphic to each other are counted as

distinct caterpillars.

3.2 Unoriented Version of Single-Legged Caterpil-

lars

We found a way to count the number of unoriented caterpillars, c∗(n). After some

investigation, we realized that c∗(n) had been discovered in different context and

corresponds to the number of domino tilings of a 2 × (n − 2) rectangular grid. We

found the following.
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Theorem 3.2.1. For any n ≥ 3, we have

c∗(n) =

⎧⎪⎪⎨
⎪⎪⎩

1
2

(
Fn−1 + Fn

2
+1

)
if n is even

1
2

(
Fn−1 + Fn−1

2

)
if n is odd.

When comparing any given c∗(n) to the domino tilings, the two endpoints of the

path that help construct the caterpillars are not observed in the rectangular grid.

For the remaining vertices considered in the path, we have to check if each vertex

contains a leg. If there is not a leg, a single domino is placed vertically on the grid.

If there is a leg, two dominoes are placed horizontally in each row on the grid, where

the two dominoes are lined up with each other.

This problem was actually an American Mathematical Monthly Problem in 1961

which was solved by S.W. Golomb [3]. They first observed the number of ways one

can arrange dominoes on a 2× n grid, which turns out directly being the Fibonacci

sequence, exactly how we figured out the number of oriented single-legged caterpillar.

Then they took into account the left-to-right mirrored layout of the dominoes as well

as the left-to-right symmetries of the dominoes such that matching layouts are only

accounted for once. In this case they use a 2×m grid, where m is split into the even

and odd case.
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Chapter 4

Domination Ratio

4.1 Domination Ratio in Unicyclic Graphs

Recall that the domination ratio ρ(G) in a graph G is the minimum size of an inde-

pendent dominating set, denoted as γi(G), to the minimum size of a dominating size,

denoted as γ(G). We also let Δ(G) be the maximum degree of G, and dG(x) be a

degree of a vertex x ∈ G.

Recall that Wang and Wei [11] proved the following.

Theorem 4.1.1 (Wang and Wei [11]). If T is a tree, then

ρ(T ) ≤ Δ(T )

2
,

provided Δ(G) ≥ 3.

We were able to find an upper bound the domination ratio ρ(G) for unicyclic

graphs G, Theorem 4.1.2. For Δ(G) ≥ 6, we use a variation on a technique introduced

by Furuya et al. [1]. Essentially, we begin with a minimum size dominating set and

then use a sort of greedy algorithm to transform it into an independent dominating
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set. We then generalize an argument of Wang and Wei [11] to get the result to come

through.

Theorem 4.1.2. If G is a unicyclic graph, then

ρ(G) ≤ 2

3
Δ(G)− 1.

The result follows from Rad and Volkmann [9] for Δ(G) ≤ 5.

Proof. Note that we are done if Δ ≤ 5 by Rad and Volkmann [9] by Theorem 1.2.5.

To start, let G be a graph and D be a minimum dominating set of G. We’ll define

a sequence using graph Gi and vertex xi. For i = 1, let G1 = G[D] and x1 be a

vertex of minimum degree in G1. For i > 1, Gi = V (Gi−1)−NGi−1
[xi−1] provided it is

nonempty and xi be a vertex of minimum degree in Gi. Suppose this recursion stops

after k steps, which is when we run out of vertices in D. Then X = {x1, x2, · · · , xk} is

an independent dominating set of G1 = G[D]. Also, {NGi
[xi] : 1 ≤ i ≤ k} partitions

D, so

k∑
i=1

(dGi
(xi) + 1) = |D| = γ(G).

Let I be an independent dominating set of G−∪k
i=1NG[xi].We note that X ∪ I is

an independent dominating set of G. So

γi(G) ≤ |X ∪ I| = k + |I|.
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Since D is a minimum dominating set of G and I ⊆ V (G)−D, we can say that

I =
⋃

v∈D−x

(NG(v) ∩ I) =
k⋃

i=1

⋃
v∈NGi(xi)

(NG(v) ∩ I).

Also, since dGi
(xi) ≤ dGi

(v) for every v ∈ NGi
(xi), we know

|NG(v) ∩ I| ≤ dG(v)− dGi
(v) ≤ Δ(G)− dGi

(xi).

Then by using summation properties,

|I| ≤
k∑

i=1

∑
v∈NGi

(xi)

|NG(v) ∩ I|

≤
k∑

i=1

∑
v∈NGi

(xi)

Δ(G)−
k∑

i=1

∑
v∈NGi

(xi)

dGi
(xi)

= (|D| − k)Δ(G)−
k∑

i=1

dGi
(xi)

2

= γ(G)Δ(G)− kΔ(G)−
k∑

i=1

dGi
(xi)

2.

Furthermore, from what we have so far, we can say

γi ≤ k + |I|

≤ k + γ(G)Δ(G)− kΔ(G)−
k∑

i=1

dGi
(xi)

2

Thus, we have

γi(G) ≤ Δ(G)γ(G)−
k∑

i=1

(Δ(G)− 1 + dGi
(xi)

2).
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Dividing through by γ(G), we have

ρ(G) ≤ Δ(G)− 1

γ(G)

k∑
i=1

(Δ(G)− 1 + dGi
(xi)

2),

and so it suffices to show that

1

γ(G)

k∑
i=1

(Δ(G)− 1 + dGi
(xi)

2) ≥
(
Δ(G)

3
+ 1

)
γ(G)

=

(
Δ(G)

3
+ 1

) k∑
i=1

(dGi
(xi) + 1).

But this is equivalent to showing that

2Δ(G)

3
k − 2k +

k∑
i=1

dGi
(xi)

2 −
(
Δ(G)

3
+ 1

) k∑
i=1

dGi
(xi) ≥ 0. (4.1)

If it is the case that dGi
(xi) = 0 or 1 for all i, then dGi

(xi)
2 = dGi

(xi) and so the

left hand side of (4.1) is equivalent to

2Δ(G)

3
k − 2k − Δ(G)

3

k∑
i=1

dGi
(xi) ≥ 2Δ(G)

3
k − 2k − Δ(G)

3
k

=
Δ(G)

3
k − 2k ≥ 0,

provided that Δ(G) ≥ 6.

On the other hand, if it is not the case that all dGi
(xi) = 0 or 1, then there is at

most one vertex whose degree is 2. Assume that (renaming the vertices if necessary)

dGk
(xk) = 2 and dGi

(xi) = 0 or 1 for 1 ≤ i ≤ k− 1. (Note that this labeling may not

be consistent with the way we chose the xis, but it makes the argument cleaner to

write.) In this case, we have that the left hand side of (4.1) is equivalent to

36



2

3
Δ(G)k − 2k + 4− 2(

Δ(G)

3
+ 1)− Δ(G)

3

k−1∑
i=1

dGi
(xi)

≥ 2

3
Δ(G)k − 2k + 2− 2

3
Δ(G)− Δ(G)

3
(k − 1)

=
Δ(G)

3
k + 2− 2k − Δ(G)

3
=

(
Δ(G)

3
− 2

)
(k − 1) ≥ 0,

provided that Δ(G) ≤ 6.

4.2 Further Directions

It would be interesting to investigate this transition from an upper bound of Δ(T )
2

for

trees, proved by Wang and Wei [11], to 2
3
Δ(G)− 1 for unicyclic graphs. We suspect

that the correct bound may in fact depend on the clique number of the graph. The

clique number is defined in Definition 4.2.1.

Definition 4.2.1. In a graph G, a clique is a subset of the vertex set V such that

all vertices in the subset are adjacent. The clique number is the maximum size of a

clique in G.

It would even be interesting to try to extend Theorem 4.1.2 to graphs with clique

number at most 3. Or even to extend Theorem 4.1.1 to graphs with clique number

at most 2. It seems that this might require a different proof technique.
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