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Abstract

In this paper, I examine magic squares of squares (MSS) of order 5 over Zp where p is

a prime number. The first approach to the problem is to find how many distinct elements

an MSS may have (called the degree of the MSS). In the next step, I study the relationship

between the magic sum and the center entry of any MSS. In order to develop construction

methods and configurations for magic squares of squares of order 5 with desired degrees, I

study Pythagorean triples and sequences of consecutive quadratic residues modulo p. Prop-

erties of these sequences are provided and applied to construct desired magic squares of

squares.

This research focuses on magic squares of squares of order 5 in which the center 3 ◊ 3

square is a magic square of squares of order 3. I claim that the magic sum of such an MSS

M is 5c, where c is the center element of M and the degree of M must be odd when p > 5.

The main results of the thesis include several configurations for the construction of MSS of

a given degree and the existence of MSSs of all possible odd degrees over Zp for infinitely many

primes p. Chapter 1 presents an overview of modular arithmetic as well as some important

definitions. Chapter 2 gives the results about the magic sum and degrees. In Chapter 3,

I investigate special sequences of quadratic residues and describe properties of them. In

Chapter 4, by applying special sequences of quadratic residues, several configurations are

developed and they are used to construct MSSs of a given degree. The main results of this

thesis are provided in Chapter 4 as well.
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Chapter 1

Introduction

1.1 History and Background

A Chinese legend dating back to around 2800 B.C. tells the tale of Emperor Yu and the

Luo River. There was a devastating flood that destroyed crops and killed livestock. The

people o�ered sacrifices to the God of the Luo River to calm his anger and stop the floods.

A tortoise emerged from the water with an unusual pattern, named the Lo Shu, on its shell:

the integers one through nine arranged in a three-by-three grid. Even odder, each row,

column, and diagonal in the square added to the same number: fifteen. Fifteen became the

magical number of sacrifices required to make the river God happy and eventually became

the number of days in most of the 24 cycles in the Chinese solar year.

Figure 1.1: Graphical Representation of Lo Shu.
[12]
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Magic squares have been around for over 4,000 years and they provide mathematical

insights, help explain astrological anomalies, and have been thought to promote longevity

and good health when worn. Other magic squares date back to the eleventh or twelfth

century in India, Turkey, and Egypt, and were often sewn into clothing or worn as protective

charms. Naturally, mathematicians sought larger and larger magic squares, and by the 13th

century, a 10 ◊ 10 magic square had been created.

Oddly enough, the 4◊4 magic square rose to fame before its smaller counterpart. As early

as 550 B.C., Indian mathematician Varahamihira used the 4 ◊ 4 magic square to describe a

recipe to create a perfume made of 16 distinct ingredients. Magic squares and their various

uses were introduced to Europe by Manuel Moschopoulos around 1300 B.C. One of the most

famous European 4 ◊ 4 magic squares was created by German painter and engraver, Albert

Durer. In his Melancholia (1514), Durer provided the first-documented magic square in

European art. In 1770, Leonardo Euler created the first documented magic square of order

4 containing all perfect square entries:

682 292 412 372

172 312 792 322

592 282 232 612

112 772 82 492

.

Figure 1.2: Euler’s Magic Square of Order 4

Here, each row, column, and diagonal sums to 8, 515. Throughout time, from Subirachs’

sculpture at the Sagrada Familia in Spain, to Euler in Switzerland, and founding father

Benjamin Franklin’s “magical square” doodles, magic squares and the people who tinkered

with them are etched in history.

Several mathematicians have developed methods and algorithms to create magic squares.
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Figure 1.3: Magic Squares of Various Sizes.
[11]

Maurice Kraitchick’s Siamese method and John Conway’s Lozenge method provide paths to

creating odd magic squares. In 1984, Martin LaBar raised a question that serves as the

motivation for this project:

Question 1. [4] (Still Open) Can a 3◊3 magic square be constructed using 9 distinct perfect

squares of integers?

Twelve years later, recreational mathematician Martin Gardner o�ered a prize of $100 to

the first person who could find such a magic square, or prove that it did not exist.

“So far no one has come forward with a ‘square of squares.’ If it exists, its numbers

would be huge, perhaps beyond the reach of today’s fastest supercomputers.”–

Martin Gardner, Scientific American, August 1998 [10].

The question remains open even with the supercomputers of today, but in an earlier work,

Hengeveld, Labruna, and Li had a di�erent approach for finding the maximum degree of

such a magic square of squares modulo a prime number p [6]. In this project, I investigate

whether 5 ◊ 5 magic squares of squares can be constructed using 25 distinct integers mod

a prime number, p. I also want to see how to select elements to fill a 5 ◊ 5 magic square
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of squares to reach the maximal degree of 25. More generally, I seek methods to construct

magic squares of squares of any possible degree over selected prime numbers.

1.2 Definitions

The following definitions provide a baseline for understanding magic squares and magic

squares of squares. Modular arithmetic is also used heavily in this project, thus some relevant

information is provided below.

Definition 1. Given a prime number p and the finite field Zp of p elements. The set Qp of

quadratic residues modulo p consists of all the quadratic residues modulo p including 0, that

is,

Qp = {m œ Zp | m © a2 for some a œ Zp}.

A magic square or magic square of squares of order n can be demonstrated as an n ◊ n

matrix. The entries can be integers or other numbers of interest. We only consider n Ø 3.

Definition 2. Let n be a positive integer. A magic square (MS) of order n over a ring R is

an n ◊ n matrix M = [aij] with aij œ R such that all rows, columns, and diagonals add up

to the same number S = S(M), which is called the magic sum. If all the entries of M are

perfect squares in R, we call M a magic square of squares (MSS) over R.

In this research, I focus on magic squares of squares of order 5 over the finite field Zp for

prime numbers p. Specifically, for any given prime p, an magic square of order 5 over Zp has

the following form:

M =

S

WWWWWWWWWWWWWWU

a11 a12 a13 a14 a15

a21 a22 a23 a24 a25

a31 a32 a33 a34 a35

a41 a42 a43 a44 a45

a51 a52 a53 a54 a55

T

XXXXXXXXXXXXXXV

,
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where each aij œ Qp and

S(M) =
5ÿ

i=1
aij =

5ÿ

j=1
aij =

5ÿ

i=1
aii =

5ÿ

i=1
ai,(5≠i), ’ i, j œ {1, 2, 3, 4, 5}.

Regarding a magic square of squares, one question is “how many distinct entries can it

achieve?” It can be measured by its degree.

Definition 3. Consider a prime number p and let M = (aij)5◊5 be a magic square of squares

(MSS) over Zp. The individual degree of M , denoted as deg(M), is the number of distinct

entries of the matrix M . The global degree for p is defined as

–p = max{deg(M) | M is an MSS over Zp}.

If deg(M) = 1, that is, aij = c for some c œ Zp and for all 1 Æ i, j Æ 5, we say M is a

trivial MSS.

The focus of this research is on non-trivial magic squares of squares with entries in Zp.

1.3 Existing Results

In the dissertation by O’Neill [3], the author used an earlier idea to construct larger MSSs

from those of smaller order.

Theorem 1. Let p be any prime and assume u, q, x integers. Then the matrix

B =

S

WWWWWWWWWWWWWWU

2a ≠ u ≠ q x ≠ (b + a) 2q ≠x ≠ (b + a) 2b + u ≠ q

b ≠ a + u a ≠(b + a) b a ≠ b ≠ u

2u b ≠ a 0 a ≠ b ≠2u

b ≠ a ≠ u ≠b b + a ≠a a ≠ b + u

a ≠ 2b ≠ u b + a ≠ x ≠2q b + a + x u ≠ 2a + q

T

XXXXXXXXXXXXXXV

.
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is an magic square of order 5 with the magic sum S(B) = 0.

Remark 1. 1. In the matrix B, if all the entries are distinct, then B is a magic square

of degree 25. If all of the entries are also quadratic residues and are carefully selected,

then B may be a magic square of squares of degree 25. It sets a basis for the development

of construction methods.

2. Note that the inner 3 ◊ 3 matrix itself is a magic square of order 3 with 0 as the magic

sum. The matrix B gives a configuration for all magic squares of squares of order 5

with the magic sum 0 and being extended from an MSS of order 3.

3. If we set a = b = 0, we obtain a trivial MS of order 3 in the center with magic sum 0.

In this case, the maximal degree of B is Æ 17.

B =

S

WWWWWWWWWWWWWWU

≠u ≠ q x 2q ≠x u ≠ q

u 0 0 0 ≠u

2u 0 0 0 ≠2u

≠u 0 0 0 u

q ≠ u ≠x ≠2q x u + q

T

XXXXXXXXXXXXXXV

.

The following theorem is a well-known result about magic squares of order 3. I present a

simple proof here.

Theorem 2. Let p be a prime number and M be a magic square of order 3 over Zp. Then

the magic sum of M is S(M) = 3a22.

Proof. Let

M =

Q

cccccca

a11 a12 a13

a21 a22 a23

a31 a32 a33

R

ddddddb
.
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By the definition of a magic square, the following equations are true

a11 + a22 + a33 = a12 + a22 + a32 = a13 + a22 + a31 = a21 + a22 + a23 = S(M).

By adding these sums and regroup the terms, we obtain

(a11 + a12 + a13) + (a21 + a22 + a23) + 3a22 + (a31 + a32 + a33) = 4S(M)

=∆ 3S(M) + 3a22 = 4S(M), ) 3a22 = S(M).

In the paper by Hengeveld, Labruna, and Li [6], it was shown that for any prime number

p > 3, the degree of a non-trivial magic square of order 3 over Zp must be odd. A natural

question arises: “Is it the same situation for magic squares of order 5?”

Theorem 3. Let p be a prime number greater than 3 and M is a non-trivial magic square

of order 3 over Zp. Then deg(M) œ {3, 5, 7, 9}.

When dealing with perfect squares in the field Zp, Legendre symbols and their properties

play important roles in identifying which number is a quadratic residue mod p. Below I give

some basics about the Legendre symbol.

Definition 4. For any odd prime p, the Legendre symbol of an integer a (mod p) is given

by

A
a

p

B

=

Y
________]

________[

0, if p divides a;

1, if a is a quadratic residue modulo p and p - a;

≠1, if a is a quadratic nonresidue modulo p and p - a.

.

Some basic properties of Legendre symbol are well known and show below.

7



Theorem 4.

Let p be any odd prime. Then

1.
1

≠1
p

2
=

Y
___]

___[

1, if p © 1 (mod 4),

≠1, if p © 3 (mod 4).

2.
1

2
p

2
=

Y
___]

___[

1, if p © 1, 7 (mod 8),

≠1, if p © 3, 5 (mod 8).

3.
1

3
p

2
= (≠1)(p+1)/6 =

Y
___]

___[

1, if p © 1, 11 (mod 12)

≠1, if p © 5, 7 (mod 12)

4.
1

5
p

2
= (≠1)(2p+2)/5 =

Y
___]

___[

1, if p © 1, 4 (mod 5)

≠1, if p © 2, 3 (mod 5)

The following theorem guarantees the existence of infinitely many prime numbers in the

form of am + b, where a, b, m are all integers and a, b are relatively prime. Later, I construct

many magic squares of squares of all possible degrees over these types of prime numbers.

Theorem 5. (Dirichlet’s Theorem on Primes in Arithmetic Progressions) [7] If a and b are

relatively prime positive integers, then there are infinitely many primes of the form am + b

with m œ Z.

A special interest is given to the prime numbers in the form of am + 1, where a, m are

positive integers and a Ø 2. Obviously, gcd(a, 1) = 1.

1.4 Statement of the Problem and Goals

Consider the prime number p and a 5 ◊ 5 magic squares of squares over Zp. I aim to answer

the following questions and achieve related goals:
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Research Questions and Goals

1. Investigate relationship of the magic sum and the center number in any MSS.

2. For a given prime number p, for what integer d with 1 < d Æ 25, is d the degree of an

MSS of order 5?

3. Identify the prime numbers p such that –p = 25 (full degree).

4. More generally, for an odd integer d with 3 Æ d Æ 25, identify the prime numbers p

such that –p = d.

5. For any given prime number p, what is the value of –p?

6. Develop methods to construct MSS of any given degree if it exists.

7. Can we give a lower bound and an upper bound for –p if we cannot find the exact

value of –p?

1.5 Methodology and Preliminary Work

From the above existing results, I attempt to insert a 3 ◊ 3 MSS with a desired degree. A

particular focus is on those with the maximal degree 9. For this purpose, I will insert an

MSS of order 3 with degree 9 in the inner square and try to add the most distinct squares

for the remaining 16 entries (the “shell”). I also want to find a formula for the relationship

between the center entry and the magic sum.

The following example is a magic square of squares over Z241 with a degree of 25. The

idea of this construction is to use Pythagorean triples of quadratic residues to build the inner

3 ◊ 3 magic square.

9



Example 1. Let p = 241

M =

Q

cccccccccccccca

1 6 3 229 2

5 16 200 25 236

4 9 0 232 237

233 216 41 225 8

239 235 238 12 240

R

ddddddddddddddb

=

Q

cccccccccccccca

12 272 562 622 222

1032 42 212 52 852

22 32 02 492 1132

762 792 1022 152 442

382 412 312 1122 642

R

ddddddddddddddb

.

By Theorem 2, the magic sum of the inner 3 ◊ 3 submatrix is 3a33. Naturally, I would

expect (or hope) that the magic sum of a magic square of order 5 is also 5 times the center

element. It is true in the above example because the magic sum is 0 = 5 ◊ 0.

1.6 The Main Results

In this research, I focus on magic squares of squares of order 5 in which the inner 3◊3 matrix

is a magic square of squares of order 3 modulo a prime number p. Throughout the paper,

any magic square of squares of order 5 is referred to one of this type, unless it is especially

stated in other types.

In Chapter 2, I give di�erent configurations of magic squares of squares of order 5. It

is shown that the sum of any non-trivial magic square of squares M of order 5 over Zp is 5

times the center number and deg(M) must be odd, if p > 3.

In Chapter 3, I study special sequences of quadratic residues in order to apply them in the

construction of desired magic squares of squares. Two types of sequences are in consideration:

Pythagorean triples of quadratic residues (PTQRs) and sequences of consecutive quadratic

residues (CQRs) of various lengths. Formulas for the numbers of PTQRs and CQRs for a

given prime number p are given. For a given length l, I identify a set of infinite primes over

which a sequence of consecutive quadratic residues of length l exists.

In Chapter 4, I prioritize the construction of magic squares of squares using the special
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sequences found in Chapter 3. The main results of this thesis are given in this chapter and

they are summarized below.

1. Regarding the open question by LaBar [4], I show that for infinitely many prime

numbers p, there exists a magic square of squares of order 5 with degree 25 over Zp.

2. For infinitely many primes p, there exists a magic square of squares of order 5 with

degree d over Zp for any d œ {3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25}.

3. For certain prime numbers p > 3, several configurations in the form of 5 ◊ 5 ma-

trix function with entries in Zp, are given by applying special sequences of quadratic

residues. These matrices can help to construct desired magic squares of squares of

order 5.

11



Chapter 2

Configurations and Properties of MSS

of Order 5

In this chapter, I develop several configurations for building magic squares of squares of order

5 with a desired degree. These configurations are based on the assumption that the 3 ◊ 3

inner matrix is an MSS of order 3. The main goal is to select appropriate outskirt elements

to build the 5 ◊ 5 magic squares of squares of order 5 with a given degree.

2.1 Configurations of 5 by 5 Magic Squares

Example 1 shows an example of a 5 ◊ 5 magic squares of squares I constructed with degree

25 whose inner 3 ◊ 3 submatrix is a magic square of squares of order 3. By Theorem 6, if

the center 3 ◊ 3 matrix is a magic square, then the magic sum of the 5 ◊ 5 magic square

constructed around it is 5a33.

Configuration 1. Let p be a prime numbers greater than 3. Over Zp, the structure of a

general configuration for a 5 by 5 magic square with the magic sum S(M) = 5c, where c is

12



the center element, is given below:

M =

Q

cccccccccccccca

d j f 5c ≠ x e

h a 3c ≠ a ≠ b b 2c ≠ h

g c ≠ a + b c c ≠ b + a 2c ≠ g

3c ≠ y 2c ≠ b a + b ≠ c 2c ≠ a y ≠ c

2c ≠ e 2c ≠ j 2c ≠ f x ≠ 3c 2c ≠ d

R

ddddddddddddddb

,

where j + f + d + e = x and d + h + g ≠ e = y.

Here we see that the general configuration involves 9 variables. A special interest is on

the magic squares with the magic sum 0, that is, c = 0. When c = 0, a reduced configuration

is as follows.

Configuration 2. Let p be a prime numbers greater than 3. Over Zp. If c = 0, then M in

Configuration 1 becomes

M =

Q

cccccccccccccca

d j f ≠(j + f + d + e) e

h a ≠a ≠ b b ≠h

g b ≠ a 0 a ≠ b ≠g

e ≠ d ≠ h ≠ g ≠b a + b ≠a d + g + h ≠ e

≠e ≠j ≠f j + f + d + e ≠d

R

ddddddddddddddb

with S(M) = 0.

Note that M is a magic square and it needs extra conditions to become a magic square

of squares. First, ≠1 must be a quadratic residue mod p. Then all of the variables

a, b, c, d, e, f, g, h, j and their combinations involved in M must be quadratic residues. Spe-

cial considerations are given for the selection of the variables so that all the entries of M are

quadratic residues mod p.

Lemma 1. If p © 3 (mod 4), then there is no non-trivial magic square of squares having

magic sum equal to 0.

13



Proof. Since M is non-trivial, one of the variables must be non-zero, say, a ”= 0. By Theorem

4, ≠1 is not a quadratic residue of p. So a and ≠a cannot be both quadratic residues mod

p.

2.2 The Magic Sum

It is known that the magic sum of a magic square of order 3 is 3 times the center entry. I

claim that a magic square of squares of order 5, with an inner magic square of squares of

order 3, has a magic sum equal to 5 times the center entry.

Theorem 6. Let p be a prime number greater than 3. Given a 5 ◊ 5 MSS, M , with an inner

3 ◊ 3 submatrix A, also an MSS, the magic sum of M is S(M) = 5a33.

Proof. Assume p > 3 is a prime and M is a 5 ◊ 5 magic square over Zp with inner 3 ◊ 3

magic square A, shown below.

M =

Q

cccccccccccccca

a11 a12 a13 a14 a15

a21 a22 a23 a24 a25

a31 a32 a33 a34 a35

a41 a42 a43 a44 a45

a51 a52 a53 a54 a55

R

ddddddddddddddb

, A =

Q

cccccca

a22 a23 a24

a32 a33 a34

a42 a43 a44

R

ddddddb
.

Since M and A are magic squares and S(A) = 3a33,

a21 + a25 = a31 + a35 = a41 + a45 = a51 + a15 = a11 + a55 = S(M) ≠ 3a33.

Combining the above equations yields the result

2S(M) = (a11 + a21 + a32 + a41 + a51) + (a15 + a25 + a35 + a45 + a55) = 5 (S(M) ≠ 3a33) ,

which implies S(M) = 5a33.
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2.3 The Degree of an MSS of Order 5

Regarding the degree of a magic square of order 3 modulo a prime number, it is known that

the degree must be odd if p Ø 5. I claim the same result for the magic squares of order 5

with a magic square of order 3 insert.

Theorem 7. Let p be a prime greater than or equal to 5. Let M = [aij] be a 5 ◊ 5 magic

square mod p with a center magic square of order 3. Then the degree of M must be odd.

Proof. Suppose M = (aij)5◊5 be a magic square mod p and suppose the inner 3 ◊ 3 matrix

is a magic square of order 3. Let c = a33. Then M has the following form:

M =

Q

cccccccccccccca

a11 a12 a13 a14 a15

a21 a22 a23 a24 2c ≠ a21

a31 a32 a33 a34 2c ≠ a31

a41 a42 a43 a44 2c ≠ a41

2c ≠ a15 2c ≠ a12 2c ≠ a13 2c ≠ a14 2c ≠ a11

R

ddddddddddddddb

.

Considering the outer shell of M and the sets

D = {a11, a12, a13, a15, a21, a31} and E = {a12, a13, a14, a21, a31, a41}.

There are two cases for two elements in the shell to be equal to one another.

Case 1: Two elements in D are identical.

If u, v œ D such that u = v, then clearly 2c ≠ u = 2c ≠ v. Thus, the degree of M is

decreased by 2.

Case 2: An element in E is identical to its “opposite” element in the shell.

Pick any u œ E and the opposite element. Without loss of generality, say, a12 œ E and

a12 = a52. Since a12 + a52 = 2c =∆ 2a12 = 2c =∆ a12 = a52 = c. Thus, the degree

of M is decreased by 2.
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It is already known that the degree of a 3 ◊ 3 magic square over Zp with p > 3 must

be odd [6]. The maximal degree for M is 25. Each time when the degree is reduced by the

above cases (the only possible cases), the degree is decreased by 2. Therefore, deg(M) must

be odd.

Below are some examples of the possible degrees of a 5 ◊ 5 MSS for some prime p.

Lemma 2. For any prime p if there exists a 3 ◊ 3 magic square of squares of degree d over

Zp, then there exists a 5 ◊ 5 magic square of squares of degree d.

Proof. Let A be a 3 ◊ 3 MS with the magic sum S(A) = 3c. We extend it to a 5 ◊ 5 matrix

M by adding c to all the “shell” positions. Then M is an MS of the same degree as that of

A.

In the following example, we see that the outer shell can be filled with elements from the

inner submatrix or combined with di�erent addends to admit the same sum. Thus, the 5◊5

magic square has the same degree as that of the inner 3 ◊ 3.

Example 2. Assume p © 1 (mod 120) is a prime. Consider two matrices below:

M1 =

Q

cccccccccccccca

1 3 0 1 0

0 2 ≠1 2 2

1 1 1 1 1

1 0 3 0 1

2 ≠1 2 1 1

R

ddddddddddddddb

, M2 =

Q

cccccccccccccca

4 ≠2 1 2 0

≠2 2 ≠1 2 4

1 1 1 1 1

0 0 3 0 2

2 4 1 0 ≠2

R

ddddddddddddddb

with deg(M1) = 5 and deg(M2) = 7. Note that deg(M2) is equal to the degree of the inner

MS of order 3. But deg(M2) = 7 > 5, the degree of its inner MS of order 3.

Since we can easily construct an MSS of order 5 with the same degree as that of the inner

3 ◊ 3 inner magic square by adding 16 c s in the “shell” part, where c is the center element,

we turn our focus to those of degree greater that 9. For the construction of these higher

degree matrices, additional methods are needed.
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Configuration 3. Let p © 1 (mod 120), then an MSS can be constructed as

M(h, g) =

Q

cccccccccccccca

8 2 6 ≠25 9

h 1 ≠5 4 ≠h

g 3 0 ≠3 ≠g

1 ≠ h ≠ g ≠4 5 ≠1 h + g ≠ 1

≠9 ≠2 ≠6 25 ≠8

R

ddddddddddddddb

,

if h, g, 1 ≠ h ≠ g œ Qp \ {0, ±1, ±3, ±4, ±5, ±6, ±8, ±9, ±25}.

Proof. From Configuration 2, we first choose numbers for the inner 3 ◊ 3 matrix such that

it is a magic square of squares mod p. Additionally, we know that p © 1 (mod 3, 4, 5, 8).

Then all of the non-variable entries shown above are quadratic residues mod p. If there eixist

h, g, 1 ≠ h ≠ g œ Qp \ {0, ±1, ±3, ±4, ±5, ±6, ±8, ±9, ±25}, then M(h, g) is a magic square of

squares. Furthermore, if all the entries of M are distinct, then M(h, g) is an MAA of degree

25.

This configuration gives a way to construct magic squares of squares with degree 25 for

any prime number p © 1 (mod 120). There are infinitely many such p. When p is significantly

large, there are more quadratic residues to choose from. Regarding the above configuration

M(h, g), the challenge is to find appropriate quadratic residues h and g so that the resulting

5 ◊ 5 matrix is an MSS over Zp of degree 25. In the process, I need to find an 8-tuple of

squares to build a desired MSS of degree 25.

Example 3. Assume p © 1 (mod 120) is a prime. Based on Configuration 3, when h = 49
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and g = 16, the following is an MSS of degree 25 mod p.

M(49, 16) =

Q

cccccccccccccca

8 2 6 ≠25 9

49 1 ≠5 4 ≠49

16 3 0 ≠3 ≠16

≠64 ≠4 5 ≠1 64

≠9 ≠2 ≠6 25 ≠8

R

ddddddddddddddb

.

Note that h = 49, g = 16 œ Qp \ {0, ±1, ±3, ±4, ±5, ±6, ±8, ±9, ±25}.

Proposition 1. For any prime p © 1 (mod 120), the following are magic squares of squares

with degree 13 and 25, respectively:

M3 =

Q

cccccccccccccca

0 1 1 1 2

1 0 5 ≠2 1

≠6 ≠1 1 3 8

10 4 ≠3 2 ≠8

0 1 1 1 2

R

ddddddddddddddb

, M4 =

Q

cccccccccccccca

8 2 6 ≠25 9

16 1 ≠5 4 ≠16

12 3 0 ≠3 ≠12

≠27 ≠4 5 ≠1 27

≠9 ≠2 ≠6 25 ≠8

R

ddddddddddddddb

.

Proof. Because 120 = 3 ◊ 5 ◊ 8, we know that p © 1 (mod 3, 4, 5, 8). Thus ±1, ±2, ±3, ±5,

their powers, and their products are all quadratic residues mod p. For M3, the inner 3 ◊ 3

submatrix is of degree 9 and the outer shell adds 4 more distinct entries. Thus, deg(M3) = 13.

For M4, all the 25 entries are distinct because the di�erence between the greatest and the

least elements, 27 and ≠27, is less than the first applicable prime, 241.

Examples of the remaining odd degrees can be found in the Appendix in Chapter 6.
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Chapter 3

Special Sequences of Quadratic

Residues

In this chapter, I investigate sequences of a given length of quadratic residues as well as how

to build such sequences. These sequences will allow us to build magic squares of squares

from the inner 3 ◊ 3 matrix outward.

3.1 Pythagorean Triples of Quadratic Residues

In Configurations 1 and 2, we see that the inner submatrix involves sums (and di�erences)

of quadratic residues, or squares mod p. In order to obtain a magic square of square from

the configurations, all of these sums and di�erences need to be quadratic residues. They

produce triples satisfying the Pythagorean Theorem (called Pythagorean triples.) Thus, we

need to investigate Pythagorean triples of quadratic residues and how to construct them.

We then use certain Pythagorean triples of quadratic residues to build from the inner 3 ◊ 3

magic square of squares outward.

Definition 5. Let p be a prime number. A Pythagorean triple of quadratic residues, denoted

as PTQR, is a triple (a, b, a + b) where a, b, a + b œ Qp.
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I am interested in putting together an inner submatrix using Pythagorean triples of

quadratic residues then fill in the outer shell. In his 2012 Theory of Numbers lecture, Dr.

Abhinav Kumar explained that the number of pairs of consecutive integers such that both are

quadratic residues mod p is p+2+(≠1
p )

4 , but that finding the number of triples of consecutive

integers such that all are quadratic residues mod p is “much more complicated.”

Theorem 8. [8] For any prime number p, the number of Pythagorean triples of quadratic

residue mod p in the form of (1, x, x + 1) is
Í

p+3
4

Î
.

Corollary 1. For any prime p, the number of PTQRs is given by

Y
___]

___[

(p≠1)(p+7)
8 , if p © 1 (mod 4)

(p≠1)(p+5)
8 , if p © 3 (mod 4)

The following table shows the numbers of Pythagorean triples of quadratic residues for

small prime numbers from 5 to 19. Note that the trivial Pythagorean triple (0, 0, 0) is not

of interest. We only count the non-trivial PTQRs.

Table 3.1: Table of Number of PTQRs for Primes Up to 19

p = 5 7 11 13 17 19
#PTQR 6 9 20 30 48 54

Example 4. Let p = 7. It is known that Q7 = {0, 1, 2, 4}. Below are all the non-trivial

PTQRs of p = 7 :

(0, 1, 1), (0, 2, 2), (0, 4, 4), (1, 0, 1), (1, 1, 2), (2, 0, 2), (2, 2, 4), (4, 0, 4), and (4, 4, 8).

Thus, the number of PTQRs for p = 7 is 9. Two of the triples are (1, 0, 1) and (1, 1, 2) which

are from the pairs (1, 0) and (1, 1) respectively.

Example 5. The set of quadratic residues mod 13 is Q13 = {0, 1, 3, 4, 9, 10, 12}. The first
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five PTQRs mod 13 are built from the pairs (1, 0), (1, 3), (1, 9), and (1, 12).

(0, 1, 1), (1, 0, 1), (1, 3, 4), (1, 9, 10), and (1, 12, 0).

All other PTQRs are permutations of these five, resultant from multiplying these by the

remaining non-zero quadratic residues mod 13. Thus, there are 30 PTQRs of p = 13.

3.2 Special Consecutive Quadratic Sequences

Now, I focus on consecutive quadratic residues. For any prime p where ≠1 is a quadratic

residue, we have automatically a triple of consecutive quadratic residues centered at 0:

(≠1, 0, 1). Furthermore, if both ≠1 and 2 are quadratic residues mod p, then we obtain

consecutive quadratic residues of length 5, centered at 0: (≠2, ≠1, 0, 1, 2). A natural ques-

tion arises: for a given l, what conditions on the prime p are needed for the existence of the

sequence of consecutive quadratic residues of length l centered at 0?

Definition 6. Let l be a positive integer and p be a prime number. A sequence of quadratic

residues mod p of length l, (a, a + 1, . . . , a + l ≠ 1) œ Ql
p, is called an l-CQR.

As mentioned before, we see that if p © 1 (mod 8), then (≠2, ≠1, 0, 1, 2) is an 5-CQR

mod p centered at zero. I am interested in finding longer CQRs in order to construct MSSs

of higher degrees.

Theorem 9.

1. For any prime p © 1 (mod 8), there is a 5-CQR (≠2, ≠1, 0, 1, 2) mod p.

2. For any prime p © 1 (mod 24), there is a 9-CQR (≠4, ≠3, ≠2, ≠1, 0, 1, 2, 3, 4) mod p.

3. For any prime p © 1 (mod 9240), there is a 25-CQR (≠12, ≠11, · · · , 0, · · · , 11, 12)

mod p.
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Proof. For part 1, each of the numbers in (≠2, ≠1, 0, 1, 2) is clearly a quadratic residue

for any prime p © 1 (mod 8). For part 2, since p © 1 (mod 24), each of the numbers

in (≠3, ≠2, ≠1, 0, 1, 2, 3) is a quadratic residue mod p. This can be extended to a 9-CQR

since ±4 are also quadratic residues mod p. Finally, for part 3, if p © 1 (mod 9240), then

≠1, 2, 3, 5, 7, and 11 are quadratic residues. This implies that each of (≠12, ≠11, · · · , 0, · · · ,

11, 12) is a quadratic residue mod p.

Example 6. Let p = 9241. By Theorem 9, there is a 25-CQR (≠12, ≠11, · · · , 0, · · · , 11, 12)

mod p. The following matrix M is an MSS containing the 25 quadratic residues:

M =

Q

cccccccccccccca

5 8 6 ≠12 ≠7

≠11 ≠1 ≠2 3 11

9 4 0 ≠4 ≠9

≠10 ≠3 2 1 10

7 ≠8 ≠6 12 ≠5

R

ddddddddddddddb

=

Q

cccccccccccccca

45132 35152 3042 6662 28242

8102 18292 32202 8492 29302

32 22 02 36582 37542

42332 3332 28632 12 18012

6232 28012 15562 16982 20642

R

ddddddddddddddb

.
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Chapter 4

Construction of MSS Using Special

Sequences of Quadratic Residues

In this chapter, I use the configurations developed in Chapter 3 to construct several magic

squares of squares using special sequences of quadratic residues. I also show that given CQRs

of certain lengths, there exist magic squares of squares of all odd degrees from 3 to 25.

4.1 Existence of Full-Degree MSS

Recall that –p denotes the possible maximum degree of an MSS over Zp and –p Æ 25. In

this section, I find a set of primes p with –p = 25. For such primes p, an MSS of full degree

(degree 25) is constructed by using the Pythagorean triples discussed in Section 3.1.

Theorem 10. Let p be a prime number satisfying p © 1 (mod 120). Then –p = 25. In

particular, there are at least p≠1
2 magic squares of squares of full degree. Consequently, there

are infinitely many prime numbers p such that –p = 25.

Proof. For each prime p © 1 (mod 120), I use a CQR of length 13 centered at 0 to construct

an MSS of full degree. The CQR is (≠6, ≠5, ≠4, ≠3, ≠2, ≠1, 0, 1, 2, 3, 4, 5, 6). The shell part

of the matrix is filled with some numbers from this sequence plus the quadratic residues
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±8 and ±12. I then fill in the inner 3 ◊ 3 squares by using certain Pythagorean triples

of quadratic residues. In general, if one can find a, b, c, d œ Zp such that a2 + b2 = c2,

a2 ≠ b2 = d2, ±a2, ±b2, ±(a2 + b2), ±(a2 ≠ b2) œ Qp \ {0, ±1, ±2, ±3, ±4, ±5, ±6, ±8, ±12},

and they are all distinct, then the following matrix M(a2, b2) is a magic square of squares of

degree 25.

M(a2, b2) =

Q

cccccccccccccca

1 6 3 ≠12 2

5 a2 ≠a2 ≠ b2 b2 ≠5

4 b2 ≠ a2 0 a2 ≠ b2 ≠4

≠8 ≠b2 a2 + b2 ≠a2 8

≠2 ≠6 ≠3 12 ≠1

R

ddddddddddddddb

.

When choosing a2 = 36 and b2 = ≠9, all of the requirements are satisfied. Thus, we obtain

a magic square of squares of full degree:

M(36, ≠9) =

Q

cccccccccccccca

1 6 3 ≠12 2

5 36 ≠27 ≠9 ≠5

4 45 0 ≠45 ≠4

≠8 9 27 ≠36 8

≠2 ≠6 ≠3 12 ≠1

R

ddddddddddddddb

.

There are exactly p≠1
2 many non-zero quadratic residues mod p. Each of them multiplying

the above matrix M(36, ≠9) produces a di�erent MSS. Thus, at least p≠1
2 many MSSs of full

degree exist.

Finally, Dirichlet’s Theorem 5 guarantees the existence of infinitely many primes p © 1

(mod 120).

Example 7. In particular, when p = 241 © 1 (mod 120), the following is a magic square
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of squares mod p of degree 25:

M1 =

Q

cccccccccccccca

1 6 3 ≠12 2

5 196 165 121 ≠5

4 166 0 75 ≠4

≠8 120 76 45 8

≠2 ≠6 ≠3 12 ≠1

R

ddddddddddddddb

=

Q

cccccccccccccca

12 262 552 622 222

1032 892 672 1072 1562

22 402 0 912 1282

1652 1002 502 882 442

382 2002 412 312 1122

R

ddddddddddddddb

.

This proves that when p = 241, a magic squares of squares of degree 25 mod p exists.

When filling in the shell part of the 5 ◊ 5 matrix with all 0s, we obtain an MSS with the

same degree as the inner 3 ◊ 3 MSS. Thus, MSS’s of order 5 with degree 3, 5, 7, and 9 can be

constructed easily. We then focus on finding magic squares of squares of each possible (odd)

degree, fr is an m 11 up to 25. Each of the following is an MSS over Z241. The construction

is based on the similar ideas as shown in Theorem 10.

Example 8. Consider the field Z241. The following matrices M2, M3, · · · , M10 are magic

squares of squares mod 241 with degrees 7, 9, 11, 13, 15, 17, 19, 21, and 23 respectively.

M2 =

Q

cccccccccccccca

4 ≠2 1 2 0

≠2 2 ≠1 2 4

1 1 1 1 1

0 0 3 0 2

2 4 1 0 ≠2

R

ddddddddddddddb

, M3 =

Q

cccccccccccccca

1 1 1 1 1

1 0 5 ≠2 1

1 ≠1 1 3 1

1 4 ≠3 2 1

1 1 1 1 1

R

ddddddddddddddb

deg(M2) = 7 deg(M3) = 9.
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M4 =

Q

cccccccccccccca

0 3 3 3 6

≠6 0 15 ≠6 12

18 ≠3 3 9 ≠12

3 12 ≠9 6 3

0 3 3 3 6

R

ddddddddddddddb

, M5 =

Q

cccccccccccccca

0 4 4 4 8

4 0 20 ≠8 4

≠24 ≠4 4 12 32

40 16 ≠12 8 ≠32

0 4 4 4 2

R

ddddddddddddddb

deg(M4) = 11 deg(M5) = 13.

M6 =

Q

cccccccccccccca

0 2 2 2 4

24 0 10 ≠4 ≠20

≠50 ≠2 2 6 54

36 8 ≠6 4 ≠32

0 2 2 2 4

R

ddddddddddddddb

, M7 =

Q

cccccccccccccca

0 3 24 ≠18 6

36 0 15 ≠6 ≠30

≠75 ≠3 3 9 81

54 12 ≠9 6 ≠48

0 3 ≠18 24 6

R

ddddddddddddddb

deg(M6) = 15 deg(M7) = 17.

M8 =

Q

cccccccccccccca

0 ≠32 20 32 0

48 0 20 ≠8 ≠40

≠100 ≠4 4 12 108

72 16 ≠12 8 ≠64

8 40 ≠12 ≠24 8

R

ddddddddddddddb

, M9 =

Q

cccccccccccccca

12 ≠16 2 8 4

24 0 10 ≠4 ≠20

≠50 ≠2 2 6 54

36 8 ≠6 2 ≠32

≠2 20 2 ≠12 2

R

ddddddddddddddb

deg(M8) = 19 deg(M9) = 21.
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M10 =

Q

cccccccccccccca

1 9 0 ≠12 2

≠3 196 165 121 3

≠4 166 0 75 4

8 120 76 45 ≠8

≠2 ≠9 0 12 ≠1

R

ddddddddddddddb

deg(M10) = 23.

For each of the above matrices Mi, aMi is a magic square of squares of the same degree

mod 241 if a is a non-zero quadratic residue mod 241. The magic sum is S(aMi) = aS(Mi)

then.

We now focus on magic squares of squares with non-zero magic sums.

Theorem 11. Let p = 445560m + 1 be a prime number for some integer m. For any given

c œ Qp with c ”= 0, there exists a magic square of squares of full degree with magic sum 5c.

That is, ÷M, where M is a magic square of squares such that S(M) = 5c .

Proof. Assume p is prime and p © 1 (mod 445560). Consider the matrix M as below:

M =

Q

cccccccccccccca

6 ≠48 ≠10 49 8

81 0 5 ≠2 ≠79

18 ≠1 1 3 ≠16

≠94 4 ≠3 2 96

≠6 50 12 ≠47 ≠4

R

ddddddddddddddb

.

The above matrix M is a magic square with magic sum 5 over Zp. To see if all entries are

quadratic residues, it is su�cient to check if ≠1, 2, 3, 5, 47, 79 œ Qp. Since 4, 8, 5, 47, and 79

all divide 445560, ≠1, 2, 3, 5, 47, 79 œ Qp. For example, the number 47 is a quadratic residue

mod p because

A
47
p

B

=
3

p

47

4
=

3 1
47

4
= 1 because p © 1 (mod 47).
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Thus, all entries of M are quadratic residues mod p. The maximal di�erence of two

entries of M is 96 ≠ (≠94) = 190. Since p > 190, all entries of M are distinct. That is,

deg(M) = 25.

Finally, if c is a non-zero quadratic residue mod p, then the matrix cM is also an MSS

mod p which has the magic sum 5c.

We are able to build di�erent magic squares of squares of maximal degree by simply filling

the entries with quadratic residues, starting with the inner 3 ◊ 3 matrix. Below, we see that

the inner matrix includes relatively simple quadratic residues, while the outer entries involve

larger numbers.

Example 9. When p = 241, the following matrix is an MSS with degree 25:

M2 =

Q

cccccccccccccca

6 ≠48 ≠10 49 8

81 0 5 ≠2 ≠79

18 ≠1 1 3 ≠16

≠94 4 ≠3 2 96

≠6 50 12 ≠47 ≠4

R

ddddddddddddddb

=

Q

cccccccccccccca

272 1172 582 72 442

92 02 1032 382 432

662 642 12 562 152

902 22 312 222 1082

612 1102 1122 262 1132

R

ddddddddddddddb

.

4.2 Constructions of MSS Using Consecutive Quadratic

Residues

For the construction of 3 by 3 MSSs mod p, one method is to use 9 consecutive quadratic

residues x ≠ 4, x ≠ 3, x ≠ 2, x ≠ 1, x, x + 1, x + 2, x + 3, x + 4 in the following way:

M =

S

WWWWWWU

x ≠ 1 x ≠ 2 x + 3

x + 4 x x ≠ 4

x ≠ 3 x + 2 x + 1

T

XXXXXXV
.
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I apply the same ideas to construct MSSs of order 5. Assume we have 25 consecutive

quadratic residues centered at x: x ≠ 12, x ≠ 11, . . . , x ≠ 1, x, x + 1, . . . , x + 11, x + 12. We

define a related matrix function as below:

Definition 7. Let p is a prime number at least 5 and r = (r1, r2, . . . , r8), where ri œ

{±5, ±6, ±7, ±8, ±9, ±10, ±11, ±12} œ Zp. Define

M(x, r) =

Q

cccccccccccccca

x + r1 x + r2 x + r3 x + r4 x + r5

x + r6 x ≠ 1 x ≠ 2 x + 3 x ≠ r6

x + r7 x + 4 x x ≠ 4 x ≠ r7

x + r8 x ≠ 3 x + 2 x + 1 x ≠ r8

x ≠ r5 x ≠ r2 x ≠ r3 x ≠ r4 x ≠ r1

R

ddddddddddddddb

.

It is straightforward to check that the inner 3 ◊ 3 submatrix at the center of M(x, r) is a

magic square of order 3 over Zp with the magic sum 3x. In order for M(x, r) to be a magic

square of squares, we need all of the entries to be quadratic residues mod p. That is, x±i œ Qp

for all i = 0, 1, 2, 3, 4 and x ± ri œ Qp for all i = 1, 2, . . . , 8. For large enough primes p, if we

choose ri appropriately, then all entries in M(x, r) are distinct and are from the consecutive

sequence of quadratic residues x ≠ 12, x ≠ 11, . . . , x ≠ 1, x, x + 1, . . . , x + 11, x + 12. Then

deg(M(x, r)) = 25. In addition, r needs to satisfy the following two conditions:

r1 + r2 + r3 + r4 + r5 = 0 and r1 + r6 + r7 + r8 ≠ r5 = 0.

Lemma 3. Let p be a prime number. Assume a sequence of consecutive quadratic residues

mod p of length 25 exists, say, (x ≠ 12, x ≠ 11, · · · , x ≠ 1, x, x + 1 · · · , x + 11, x + 12). If

a sequence r = (r1, r2, . . . , r8) where ri œ {±5, ±6, ±7, ±8, ±9, ±10, ±11, ±12} exists and

satisfies r1 + r2 + r3 + r4 + r5 = 0 and r1 + r6 + r7 + r8 ≠ r5 = 0, then M(x, r) is a magic

square of squares mod p.

Proof. By definition 7, the conditions r1 + r2 + r3 + r4 + r5 = 0 and r1 + r6 + r7 + r8 ≠ r5 = 0
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guarantee that all the rows, columns, and diagonals of M(x, r) add to the same sum, 5x.

Thus M(x, r) is a magic square. Since each of the entries is a quadratic residue, M(x, r) is

also a magic square of squares.

From the above analysis, to construct an MSS using a sequence of consecutive quadratic

residues of length 25, the main task is to find an appropriate sequence r. We also see that

the degree of the inner 3◊3 MSS a�ects that of the 5◊5 matrix. If an appropriate sequence

r is selected, it may result in a magic squares of squares of a desired degree.

Example 10. Assume p is prime and x ± i œ Qp all distinct where i = 1, 2, 3, 4, 5. When

r = (0, ≠5, 5, 0, 0, 0, 0, 0), we have an MSS of degree 11:

M(x, r) =

Q

cccccccccccccca

x x ≠ 5 x + 5 x x

x x ≠ 1 x ≠ 2 x + 3 x

x x + 4 x x ≠ 4 x

x x ≠ 3 x + 2 x + 1 x

x x + 5 x ≠ 5 x x

R

ddddddddddddddb

.

Theorem 12. Let p be any prime number.

1. If in Zp there is a CQR of length 25, where all entries are distinct in Zp, then there

are MSS’s of all possible degrees (odd integers from 3 to 25) over Zp.

2. If p © 1 (mod 9240), then for each odd integer d from 3 to 25 there exists an MSS of

degree d over Zp having magic sum 0.

3. Let p © 1 (mod 120120) and c œ Qp. Then for each odd integer d from 3 to 25, there

exists an MSS of degree d over Zp having magic sum 5c.

Proof. It is trivial to produce a magic square of squares of order 5 from the inner magic

square of order 3 so that they both have the same degree. If the center element is x, we can

just fill in all the “shell” elements by x. The degree of a non-trivial magic square can be
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3, 5, 7, or 9. Thus, we focus on magic squares of squares with degrees 11, 13, 15, 17, 19, 21, 23,

and 25. We apply the configuration M(x, r) to construct such matrices. Note that when the

25-CQR in consideration consists of distinct numbers in Zp, the inner 3◊3 matrix is a magic

squares of squares of degree 9.

1. Let (x ≠ 12, · · · , x, · · · , x + 12) be a CQR of length 25 mod p, where all of entries

are distinct in Zp. We select appropriate sequences r such that the matrix M(x, r) defined

in Definition 7 produces a magic square of squares of degrees 11, 13, 15, 17, 19, 21, 23, or 25

respectively.

The following sequences r1, r2, . . . , r8 produce the magic squares of squares with the

degrees 11, 13, 15, 17, 19, 21, 23, and 25 respectively. One can check easily that r1 + r2 + r3 +

r4 + r5 = 0 and r1 + r6 + r7 + r8 ≠ r5 = 0.

r1 = (0, ≠5, 5, 0, 0, 0, 0, 0), deg(M(x, r1)) = 11;

r2 = (0, ≠5, 5, 10, 0, 0, 0, 0), deg(M(x, r2)) = 13;

r3 = (0, 5, 6, ≠11, 0, 0, 0, 0), deg(M(x, r3)) = 15;

r4 = (5, ≠7, 2, 0, 0, 6, ≠10, ≠1), deg(M(x, r4)) = 17;

r5 = (5, ≠12, 8, 8, ≠9, 8, ≠12, ≠10), deg(M(x, r5)) = 19;

r6 = (5, 4, 11, ≠11, ≠9, ≠10, ≠12, 8), deg(M(x, r6)) = 21;

r7 = (5, 7, 8, ≠11, ≠9, ≠6, ≠10, 2), deg(M(x, r7)) = 23;

r8 = (5, 8, 6, ≠12, ≠7, ≠11, ≠10), deg(M(x, r8)) = 25.

The resulting matrices M(x, r1) and M(x, r8) are presented below. The others can be

found in the Appendix A.
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M(x, r1) =

Q

cccccccccccccca

x x ≠ 5 x + 5 x x

x x ≠ 1 x ≠ 2 x + 3 x

x x + 4 x x ≠ 4 x

x x ≠ 3 x + 2 x + 1 x

x x + 5 x ≠ 5 x x

R

ddddddddddddddb

, deg(M(x, r1)) = 11.

M(x, r8) =

Q

cccccccccccccca

x + 5 x + 8 x + 6 x ≠ 12 x ≠ 7

x ≠ 11 x ≠ 1 x ≠ 2 x + 3 x + 11

x + 9 x + 4 x x ≠ 4 x ≠ 9

x ≠ 10 x ≠ 3 x + 2 x + 1 x + 10

x + 7 x ≠ 8 x ≠ 6 x + 12 x ≠ 5

R

ddddddddddddddb

, deg(M(x, r8)) = 25.

2. Assume p © 1 (mod 9240). Note that 9420 = 8 · 3 · 5 · 7 · 11. Then p © 1

(mod 3, 4, 5, 7, 8, 11). Thus, ≠1, 2, 3, 5, 7, 11 are all quadratic residues mod p. Then the

sequence (≠12, ≠11, · · · , ≠1, 0, 1, · · · , 11, 12) is a sequence of consecutive quadratic residues

mod p of length 25 and all of the 25 numbers are distinct in Zp. By part 1, there is an MSS

of degree d for every odd d from 3 to 25. As the proof in part 1, M(0, ri), i = 1, 2, . . . , 8,

gives MSSs of degrees 11, 13, 15, 17, 19, 21, 23, and 25 respectively.

For example, the corresponding matrices derived from r1 and r8 (x = 0) are shown below,

with deg(M(0, r1)) = 11 and deg(M(0, r8)) = 25. The other matrices can be produced

similarly and they are shown in Example 11.

M(0, r1) =

Q

cccccccccccccca

0 ≠5 5 0 0

0 ≠1 ≠2 3 0

0 4 0 ≠4 0

0 ≠3 2 1 0

0 5 ≠5 0 0

R

ddddddddddddddb

, M(0, r8) =

Q

cccccccccccccca

5 8 6 ≠12 ≠7

≠11 ≠1 ≠2 3 11

9 4 0 ≠4 ≠9

≠10 ≠3 2 1 10

7 ≠8 ≠6 12 ≠5

R

ddddddddddddddb

.
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3. For p © 1 (mod 120120), similar to part 2, 120120 = 8 · 3 · 5 · 7 · 11 · 13 = 9240 · 13. This

implies that the sequence (≠13, ≠12, ≠10, . . . , ≠1, 0, 1, 2, . . . , 12, 13) is a CQR consisting of

27 distinct elements. Similarly as in the proof in part 1, for each odd interger d from 3 to 25,

we select appropriate r for M(x, r) to construct an MSS M of degree d with 1 in the center

of the matrix. When choosing the same ri, where i = 1, 2, . . . , 8, as in the proof of Part 2,

and placing 1 in the center, the matrix M(1, ri) is a magic square of squares of degrees 11,

13, 15, 17, 19, 21, 23, and 25 respectively. And all of them have magic sum 5. For example,

M(1, r1) =

Q

cccccccccccccca

1 ≠4 6 1 1

1 0 ≠1 4 1

1 5 1 ≠3 1

1 ≠2 3 2 1

1 6 ≠4 1 1

R

ddddddddddddddb

, deg(M(1, r1)) = 11.

M(1, r8) =

Q

cccccccccccccca

6 9 7 ≠11 ≠6

≠10 0 ≠1 4 12

10 5 1 ≠3 ≠8

≠9 ≠2 3 2 11

8 ≠7 ≠5 13 ≠4

R

ddddddddddddddb

, deg(M(1, r8)) = 25.

We skip presenting the produced matrices M(1, ri) for i = 2, 3, 4, 5, 6, 7 here. It is straight-

forward by following the configuration. Note that, for i = 1, . . . , 7, M(1, ri) uses the CQR

(≠12, ≠11, . . . , ≠1, 0, 1, . . . , 11, 12). However, M(1, ri) has to involve the number 13. For

each ri = (r1, r2, · · · , r8), r1, . . . , r8 œ {±5, ±6 ± 7, ±8, ±9, ±10, ±11, ±12, 13} ™ Qp. It

guarantees that M(1, ri) is a magic square of squares over Zp. Obviously, the magic sum

M(1, ri) is 5. Furthermore, for every c œ Qp, if c ”= 0, cM(1, ri) is also a magic square of

squares with deg(cM(1, ri)) = deg(M(1, ri)) and its magic sum is 5c. If c = 0, the matri-

ces provided in part 2 give the MSSs of all odd degrees with magic sum 0, because p © 1

(mod 120120) =∆ p © 1 (mod 9240). Thus MSSs with all possible degrees and all possible
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sums exist.

Example 11. For each of the following matrices, assume p © 1 (mod 9240). Using the

configurations from Theorem 12, we are able to construct an MSS over Qp for each odd

degree 3 to 25:

M1 =

Q

cccccccccccccca

0 0 0 0 0

0 ≠6 6 0 0

0 6 0 ≠6 0

0 0 ≠6 6 0

0 0 0 0 0

R

ddddddddddddddb

, M2 =

Q

cccccccccccccca

0 0 0 0 0

0 ≠2 0 2 0

0 4 0 ≠4 0

0 ≠2 0 2 0

0 0 0 0 0

R

ddddddddddddddb

deg(M1) = 3 deg(M2) = 5.

M3 =

Q

cccccccccccccca

0 0 0 0 0

0 ≠3 ≠3 6 0

0 9 0 ≠9 0

0 ≠6 3 3 0

0 0 0 0 0

R

ddddddddddddddb

, M4 =

Q

cccccccccccccca

0 0 0 0 0

0 ≠1 ≠2 3 0

0 4 0 ≠4 0

0 ≠3 2 1 0

0 0 0 0 0

R

ddddddddddddddb

deg(M3) = 7 deg(M4) = 9.

M5 =

Q

cccccccccccccca

0 ≠5 5 0 0

0 ≠1 ≠2 3 0

0 4 0 ≠4 0

0 ≠3 2 1 0

0 5 ≠5 0 0

R

ddddddddddddddb

, M6 =

Q

cccccccccccccca

0 ≠5 ≠5 10 0

0 ≠1 ≠2 3 0

0 4 0 ≠4 0

0 ≠3 2 1 0

0 5 5 ≠10 0

R

ddddddddddddddb

deg(M5) = 11 deg(M6) = 13.
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M7 =

Q

cccccccccccccca

0 5 6 ≠11 0

0 ≠1 ≠2 3 0

0 4 0 ≠4 0

0 ≠3 2 1 0

0 ≠5 ≠6 11 0

R

ddddddddddddddb

, M8 =

Q

cccccccccccccca

5 ≠7 2 0 0

≠6 ≠1 ≠2 3 6

≠10 4 0 ≠4 10

2 ≠3 2 1 ≠2

9 7 ≠2 0 0

R

ddddddddddddddb

deg(M7) = 15 deg(M8) = 17.

M9 =

Q

cccccccccccccca

5 ≠12 8 8 ≠9

8 ≠1 ≠2 3 ≠8

≠12 4 0 ≠4 12

≠10 ≠3 2 1 10

9 12 ≠8 ≠8 ≠5

R

ddddddddddddddb

, M10 =

Q

cccccccccccccca

5 4 11 ≠11 ≠9

≠10 ≠1 ≠2 3 10

≠12 4 0 ≠4 12

8 ≠3 2 1 ≠8

9 ≠4 ≠11 11 ≠5

R

ddddddddddddddb

deg(M9) = 19 deg(M10) = 21.

M11 =

Q

cccccccccccccca

5 7 8 ≠11 ≠9

≠6 ≠1 ≠2 3 10

≠10 4 0 ≠4 12

2 ≠3 2 1 ≠8

9 ≠4 ≠11 11 ≠5

R

ddddddddddddddb

M12 =

Q

cccccccccccccca

5 8 6 ≠12 ≠7

≠11 ≠1 ≠2 3 11

9 4 0 ≠4 ≠9

≠10 ≠3 2 1 10

7 ≠8 ≠6 12 ≠5

R

ddddddddddddddb

.

deg(M11) = 23 deg(M12) = 25.

Corollary 2. For infinitely many prime numbers p, for each odd integer d from 3 to 25 (all

possible degrees) and for each c œ Qp, there exists an 5 ◊ 5 MSS of degree d with the magic

sum 5c (all possible magic sums). In particular, it is true for every prime number p © 1

(mod 9240).

Proof. By Dirichlet’s Theorem 5, there are infinitely may prime numbers p such that p © 1
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(mod 120120). Then it is immediate to claim the statement by Theorem 12.

Below we show a magic square of squares by another method.

Example 12. Here, let p = 2041 and let x = 6 œ Qp. Then, M is a magic square of squares

of degree 25 over Z2041:

M =

Q

cccccccccccccca

11 13 14 ≠5 ≠3

0 5 4 9 12

≠4 10 6 2 16

8 3 8 7 4

15 ≠1 ≠2 17 1

R

ddddddddddddddb

.

One can check that both 13 and 17 are quadratic residues mod 2401 by calculating the

related Legendre symbols.

4.3 Other Construction Methods

In this section, I construct another method of constructing MSS of a desired degree. More

prime numbers are involved than those in Theorem 12(2).

Theorem 13. Consider any prime p © 1 (mod 120). Let d be an odd integer such that

3 Æ d Æ 25. Then there are at least p≠1
2 many MSSs of degree d. Furthermore, Magic

squares of squares of odd degrees up to 23 with all the possible non-zero magic sums exist.

Proof. The proof is constructive. Di�erent selection methods of the entries are applied. See

Appendix 6 Part B for MSS’s of odd degrees from 3 to 25. The matrices M1 to M10 give

MSS’s with the magic sum 5. M12 is an MSS of degree 25 with magic sum 0. In order to
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construct an MSS of degree 23, we use the configuration: M(a), shown below.

M(a) =

Q

cccccccccccccca

2≠1(3 ≠ a) ≠8 a 8 2≠1(7 ≠ a)

12 0 5 ≠2 ≠10

≠25 ≠1 1 3 27

18 4 ≠3 2 ≠16

2≠1(a ≠ 3) 10 2 ≠ a ≠6 2≠1(a + 1)

R

ddddddddddddddb

.

Specifically, when a = 8, we have the following MSS of degree 23 with the magic sum 5:

M(8) =

Q

cccccccccccccca

≠2≠1(5) ≠8 8 8 ≠2≠1

12 0 5 ≠2 ≠10

≠25 ≠1 1 3 27

18 4 ≠3 2 ≠16

2≠1(5) 10 ≠6 ≠6 2≠1(9)

R

ddddddddddddddb

.

There are p≠1
2 non-zero quadratic residues. For each Mi, i = 1, 2, . . . , 10, aMi is also a magic

square of squares mod p of the same degree if a is a non-zero quadratic residue. Thus, there

are at least p≠1
2 many MSS of degree d for each d œ {3, 5, . . . , 25}.
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Chapter 5

Conclusions and Future Directions

In this research, I investigated magic squares of squares of order 5 modulo a prime number,

in which the center 3 ◊ 3 matrix is a magic square of squares of order 3. The main results

are summarized below.

1. For any prime p > 3 and for any magic square M = [aij]5◊5 of squares over Zp with a

3 ◊ 3 center matrix also a magic square of squares, the magic sum S(M) = 5a33 and

the degree, deg(M), must be odd.

2. Multiple methods are provided for constructing magic squares of squares of all odd de-

grees 3 to 25 using special sequences of quadratic residues. The two types of sequences

applied are Pythagorean triples of quadratic residues and sequences of consecutive

quadratic residues of certain lengths.

3. The existence of magic squares of squares in di�erent categories are shown:

• Existence of MSSs of full degree for infinitely many prime numbers p, where p is

congruent to 1 modulo 120;

• Existence of MSSs of all odd degrees 3 to 25 with magic sum 0 for infinitely many

primes p (p © 1 (mod 9240));
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• Existence of MSSs of all odd degrees 3 to 25 with all possible magic sums for

infinitely many primes p (p © 1 (mod 120120)).

While LaBar’s question on magic squares of squares of order 3 over the integers remains

unanswered, this research shifted the focus to magic squares of squares modulo prime num-

bers. For infinitely many prime numbers p, the answer to the existence of a magic square of

squares over Zp with all distinct elements is “YES”. Magic squares of squares of order 5 in

which all the entries are distinct squares are constructed over Zp for infinitely many prime

numbers p. The work done in this project brings forward other questions and goals to be

addressed in the future. The following questions are of interest for future projects:

1. Modulo a prime number p, can we construct a magic square of squares of order 5 over

Zp such that the center 3 ◊ 3 matrix is not a magic square over Zp?

2. For a magic square M = (aij)5◊5, if the center 3 ◊ 3 matrix is not a magic square, is

it still true that S(M) = 5a33?

3. What are the situations for magic squares of squares of order higher than 5?

4. For those prime numebrs p, where –p < 25, what is the exact value of –p and how to

construct the corresponding MSSs with the corresponding degrees?
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Chapter 6

Appendix

6.1 Part A

In general, given a CQR of length 25, we are able to construct a magic square of squares of

all odd degrees.

Degree 3:

Q

cccccccccccccca

x x x x x

x x ≠ 6 x + 6 x x

x x + 6 x x ≠ 6 x

x x x ≠ 6 x + 6 x

x x x x x

R

ddddddddddddddb

Degree 5:

Q

cccccccccccccca

x x x x x

x x ≠ 2 x x + 2 x

x x + 4 x x ≠ 4 x

x x ≠ 2 x x + 2 x

x x x x x

R

ddddddddddddddb
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Degree 7:

Q

cccccccccccccca

x x x x x

x x ≠ 3 x ≠ 3 x + 6 x

x x + 9 x x ≠ 9 x

x x ≠ 6 x + 3 x + 3 x

x x x x x

R

ddddddddddddddb

Degree 9:

Q

cccccccccccccca

x x x x x

x x ≠ 1 x ≠ 2 x + 3 x

x x + 4 x x ≠ 4 x

x x ≠ 3 x + 2 x + 1 x

x x x x x

R

ddddddddddddddb

Degree 11:

Q

cccccccccccccca

x x ≠ 5 x + 5 x x

x x ≠ 1 x ≠ 2 x + 3 x

x x + 4 x x ≠ 4 x

x x ≠ 3 x + 2 x + 1 x

x x + 5 x ≠ 5 x x

R

ddddddddddddddb

Degree 13:

Q

cccccccccccccca

x x ≠ 5 x ≠ 5 x + 10 x

x x ≠ 1 x ≠ 2 x + 3 x

x x + 4 x x ≠ 4 x

x x ≠ 3 x + 2 x + 1 x

x x + 5 x + 5 x ≠ 10 x

R

ddddddddddddddb
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Degree 15:

Q

cccccccccccccca

x x + 5 x + 6 x ≠ 11 x

x x ≠ 1 x ≠ 2 x + 3 x

x x + 4 x x ≠ 4 x

x x ≠ 3 x + 2 x + 1 x

x x ≠ 5 x ≠ 6 x + 11 x

R

ddddddddddddddb

Degree 17:

Q

cccccccccccccca

x + 5 x ≠ 7 x + 2 x x

x + 6 x ≠ 1 x ≠ 2 x + 3 x ≠ 6

x ≠ 10 x + 4 x x ≠ 4 x + 10

x ≠ 1 x ≠ 3 x + 2 x + 1 x + 1

x x + 7 x ≠ 2 x x ≠ 5

R

ddddddddddddddb

Degree 19:

Q

cccccccccccccca

x + 5 x ≠ 12 x + 8 x + 8 x ≠ 9

x + 8 x ≠ 1 x ≠ 2 x + 3 x ≠ 8

x ≠ 12 x + 4 x x ≠ 4 x + 12

x ≠ 10 x ≠ 3 x + 2 x + 1 x + 10

x + 9 x + 12 x ≠ 8 x ≠ 8 x ≠ 5

R

ddddddddddddddb

Degree 21:

Q

cccccccccccccca

x + 5 x + 4 x + 11 x ≠ 11 x ≠ 9

x ≠ 10 x ≠ 1 x ≠ 2 x + 3 x + 10

x ≠ 12 x + 4 x x ≠ 4 x + 12

x + 8 x ≠ 3 x + 2 x + 1 x ≠ 8

x + 9 x ≠ 4 x ≠ 11 x + 11 x ≠ 5

R

ddddddddddddddb
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Degree 23:

Q

cccccccccccccca

x + 5 x + 7 x + 8 x ≠ 11 x ≠ 9

x ≠ 6 x ≠ 1 x ≠ 2 x + 3 x + 10

x ≠ 10 x + 4 x x ≠ 4 x + 12

x + 2 x ≠ 3 x + 2 x + 1 x ≠ 8

x + 9 x ≠ 4 x ≠ 11 x + 11 x ≠ 5

R

ddddddddddddddb

Degree 25:

Q

cccccccccccccca

x + 5 x + 8 x + 6 x ≠ 12 x ≠ 7

x ≠ 11 x ≠ 1 x ≠ 2 x + 3 x + 10

x + 9 x + 4 x x ≠ 4 x + 12

x ≠ 10 x ≠ 3 x + 2 x + 1 x ≠ 8

x + 7 x ≠ 4 x ≠ 11 x + 11 x ≠ 5

R

ddddddddddddddb

.

6.2 Part B

Each of the matrices below is a magic square of squares over Zp for some p © 1 (mod 120).

M1 =

Q

cccccccccccccca

1 2 0 1 1

2 0 2 1 0

0 2 1 0 1

1 1 0 2 1

1 0 2 1 1

R

ddddddddddddddb

, M2 =

Q

cccccccccccccca

1 3 0 1 0

0 2 ≠1 2 2

1 1 1 1 1

1 0 3 0 1

2 ≠1 2 1 1

R

ddddddddddddddb

,

where deg(M3) = 3, and deg(M4) = 5.

M3 =

Q

cccccccccccccca

4 ≠2 1 2 0

≠2 2 ≠1 2 4

1 1 1 1 1

0 0 3 0 2

2 4 1 0 ≠2

R

ddddddddddddddb

, M4 =

Q

cccccccccccccca

1 1 1 1 1

1 0 5 ≠2 1

1 ≠1 1 3 1

1 4 ≠3 2 1

1 1 1 1 1

R

ddddddddddddddb

,
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where deg(M5) = 7, and deg(M6) = 9.

M5 =

Q

cccccccccccccca

0 1 1 1 2

≠2 0 5 ≠2 4

6 ≠1 1 3 ≠4

1 4 ≠3 2 1

0 1 1 1 2

R

ddddddddddddddb

, M6 =

Q

cccccccccccccca

0 1 1 1 2

1 0 5 ≠2 1

≠6 ≠1 1 3 8

10 4 ≠3 2 ≠8

0 1 1 1 2

R

ddddddddddddddb

,

where deg(M7) = 11, and deg(M8) = 13.

M7 =

Q

cccccccccccccca

0 1 1 1 2

12 0 5 ≠2 ≠10

≠25 ≠1 1 3 27

18 4 ≠3 2 ≠16

0 1 1 1 2

R

ddddddddddddddb

, M8 =

Q

cccccccccccccca

0 1 8 ≠6 2

12 0 5 ≠2 ≠10

≠25 ≠1 1 3 27

18 4 ≠3 2 ≠16

0 1 ≠6 8 2

R

ddddddddddddddb

,

where deg(M9) = 15, and deg(M10) = 17.

M9 =

Q

cccccccccccccca

0 ≠8 5 8 0

12 0 5 ≠2 ≠10

≠25 ≠1 1 3 27

18 4 ≠3 2 ≠16

2 10 ≠3 ≠6 2

R

ddddddddddddddb

, M10 =

Q

cccccccccccccca

1 ≠8 1 8 2

12 0 5 ≠2 ≠10

≠25 ≠1 1 3 27

18 4 ≠3 2 ≠16

≠1 10 1 ≠6 1

R

ddddddddddddddb

,

where deg(M11) = 19, and deg(M12) = 21.

46



M11 =

Q

cccccccccccccca

≠2≠1(5) ≠8 8 8 ≠2≠1

12 0 5 ≠2 ≠10

≠25 ≠1 1 3 27

18 4 ≠3 2 ≠16

2≠1(5) 10 ≠6 ≠6 2≠1(9)

R

ddddddddddddddb

M12 =

Q

cccccccccccccca

1 6 3 ≠12 2

5 36 ≠27 9 ≠5

4 45 0 ≠45 ≠4

≠8 ≠9 27 ≠36 8

≠2 6 ≠3 12 ≠1

R

ddddddddddddddb

,

where deg(M1) = 23, and deg(M2) = 25.

6.3 Part C

Each of the matrices below is a magic square of squares over Zp for some p © 1 (mod 445560).

The matrices Mi shown below achieve all odd degrees from 3 to 25 and all with magic sum

5, except for M10 which has magic sum 0.

The following are of degree 3 and 5:

M1 =

Q

cccccccccccccca

1 2 0 1 1

2 0 2 1 0

0 2 1 0 1

1 1 0 2 1

1 0 2 1 1

R

ddddddddddddddb

, M2 =

Q

cccccccccccccca

1 3 0 1 0

0 2 ≠1 2 2

1 1 1 1 1

1 0 3 0 1

2 ≠1 2 1 1

R

ddddddddddddddb
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The following are of degree 7 and 9:

M3 =

Q

cccccccccccccca

4 ≠2 1 2 0

≠2 2 ≠1 2 4

1 1 1 1 1

0 0 3 0 2

2 4 1 0 ≠2

R

ddddddddddddddb

, M4 =

Q

cccccccccccccca

1 1 1 1 1

1 0 5 ≠2 1

1 ≠1 1 3 1

1 4 ≠3 2 1

1 1 1 1 1

R

ddddddddddddddb

The following are of degree 11 and 13.

M5 =

Q

cccccccccccccca

0 1 1 1 2

≠2 0 5 ≠2 4

6 ≠1 1 3 ≠4

1 4 ≠3 2 1

0 1 1 1 2

R

ddddddddddddddb

, M6 =

Q

cccccccccccccca

0 1 1 1 2

1 0 5 ≠2 1

≠6 ≠1 1 3 8

10 4 ≠3 2 ≠8

0 1 1 1 2

R

ddddddddddddddb

The following are of degree 15 and 17.

M7 =

Q

cccccccccccccca

0 1 1 1 2

12 0 5 ≠2 ≠10

≠25 ≠1 1 3 27

18 4 ≠3 2 ≠16

0 1 1 1 2

R

ddddddddddddddb

, M8 =

Q

cccccccccccccca

0 1 8 ≠6 2

12 0 5 ≠2 ≠10

≠25 ≠1 1 3 27

18 4 ≠3 2 ≠16

0 1 ≠6 8 2

R

ddddddddddddddb
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The following are of degree 19 and 21.

M9 =

Q

cccccccccccccca

0 ≠8 5 8 0

12 0 5 ≠2 ≠10

≠25 ≠1 1 3 27

18 4 ≠3 2 ≠16

2 10 ≠3 ≠6 2

R

ddddddddddddddb

, M10 =

Q

cccccccccccccca

1 ≠8 1 8 3

12 0 5 ≠2 ≠10

≠25 ≠1 1 3 27

18 4 ≠3 2 ≠16

≠1 10 1 ≠6 1

R

ddddddddddddddb

The following are of degree 23 and 25.

M11 =

Q

cccccccccccccca

≠2≠1(5) ≠8 8 8 ≠2≠1

12 0 5 ≠2 ≠10

≠25 ≠1 1 3 27

18 4 ≠3 2 ≠16

2≠1(5) 10 ≠6 ≠6 2≠1(9)

R

ddddddddddddddb

M12 =

Q

cccccccccccccca

1 6 3 ≠12 2

5 36 ≠27 9 ≠5

4 45 0 ≠45 ≠4

≠8 ≠9 27 ≠36 8

≠2 6 ≠3 12 ≠1

R

ddddddddddddddb

.
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