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Abstract

The core goal of this thesis project is to formalize the complex system that exists

naturally in a formal classroom environment. The three factors that are considered in this study

are the roles of the student, the roles of the teacher, and the respective environments from which

these members arise and how these act as determinants of curriculum development and design.

At the curricular scale, educational practices should be treated as a complex system composed of

various inherently connected concepts and exchanges of ideas and ways of knowing. This

synthesis of previous work and ongoing research efforts employs a network theory mediated

analysis to investigate the affordances of curriculum and, in particular, its alignment with student

learning processes.

Via the utilization of various lenses of network theory, connected curriculum design, and

modern learning curve theory, this body of research generates the postulate that education is

inherently a complex system at various scales and stages of the learning process. Therefore, the

task of a proper educator lies in elucidating these connections and helping students make their

own connections. A network theoretic perspective of the precalculus curriculum proves to be

helpful in identifying and motivating key features of the subject as they appear in course texts.

Of these, hubs and time-series developments of relevant computed metrics have been particularly

useful in mapping the alignment between the preset goals of the precalculus course, as identified

in previous literature and execution of taxonomic principles.

At the same time, this analysis has also been valuable in identifying the trajectory of the

textbook curricula to adequately prepare precalculus students for success in calculus and beyond.

Highly successful texts retain inherent commonalities, including the display of a power law with

respect to frequency distribution of connected topics (  = 0.05). The most well-connected topics



(hubs) are regarded as necessary markers of classroom discourse, and the extent to which they

are considered in taxonomical goals is measured with respect to the empirical distributions of

both the intended curriculum and enacted curriculum.

Moreover, the implications of this work seek to assist in the optimization of the complex

system synthesizing various feedback-based designs within educator roles, student response, and

the interactions between the two as they pertain to various stages of the curriculum development

process. This allows both students and educators alike to personalize learning through

standardized exhaustive procedure and provide an equity-based environment conducive towards

‘meaning making’ or assigning new meaning from the foundation of old ideas. The results of this

study aim to not only provide a deeper understanding of how intended and enacted curriculums

interact with each other, but also considers to what extent the components of an andragogical

system can be refined via the magnitude of their presence in both course materials and feedback

provided directly by active participants in the learning environment.

Keywords: network theory, curriculum, creativity, complexity science, connectivity, equity
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Chapter 1: Introduction

1.1 Background and Motivation

In the United States, mathematical performance is a long-standing issue that plagues the

entire nation, as well as the world at large. The Program for International Student Assessment

(PISA), a study of 15-year-old students’ performance in reading, mathematics, and science

literacy conducted every three years by the National Center for Education Statistics (NCES),

aims to provide the world with a global view of students’ performance compared to their peers in

nearly eighty countries and education systems. Performance can be analyzed via many lenses,

including through student scaffolding and concept mapping via network theory (Govorova,

Benítez, & Muñiz, 2020). In the most recent administration of this assessment tool in 2018, the

results of the United States students were compared to thirty-six other countries that serve as

cooperating members of the Organization of Economic Co-operation and Development (OECD),

a multinational collective that strives for global prosperity and aims to stimulate transnational

progression of all involved nations. Upon comparison, out of a total possible score of 1000 with

a performance range of 325 to 591, the United States' average score (478) proved to be markedly

lower than the OECD average score (489). Compared to the thirty-six other OECD members, the

U.S. average in mathematics literacy was lower than the average in twenty-four education

systems, higher than in six, and not measurably different than in six (U.S. Dept. of Education,

NCES, 2018). The United States ranked 30/77 across all countries involved in the study, with no

statistically significant progress since the year 2000. In fact, only seven out of the seventy-seven

included countries have had any statistically significant improvement since 2000 (OECD, 2007).
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According to a study conducted by the National Science Foundation in 2016 concerning

students of a similar educationally formative age group, among ninth graders who began high

school in 2009 and completed high school in 2013, the majority (eighty-nine percent) completed

algebra 2 or higher (U.S. Dept. of Education, Office for Civil Rights, 2016). Among these

courses which receive a large proportion of students is precalculus, a standard stepping stone for

many students' future studies in a variety of disciplines (Greene & Shorter, 2012). Precalculus in

particular is a subject in which connections between concepts are absolutely paramount to go

beyond rote memorization and instead motivate understanding and assimilation of concepts

(Katz, 1991). Concerning the results of the PISA, it can be observed that the majority of involved

nations have not improved their relative standing despite nearly two decades over which

technology and teaching methods have developed immensely (Rose, 2013). This performance

inequality can reasonably be thought of as a symptom of deeply inconsistent educational

practices, lack of equity and agency in the learning environment, or consistently poor educational

practices. A reasonable question to consider in this research effort is: how can we meaningfully

and concretely change this?

1.2 Orientation Towards the Classroom Dynamic

Without any loss of generality, one of the many overarching desirable outcomes of

education is to generate focus on exploring consensus of human thought throughout time, and

utilize various practical methods to verify whether or not these principles hold true or ought to

continue to be accepted as valid. By bringing forth the question of purpose in the classroom, the

classroom dynamic generates a productive shift towards establishing agency and autonomy

amongst all members of the complex system that is a well-balanced and successful learning

environment. It is via this implementation of such a social system that we, as educators and
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pupils alike, become cohesive autonomous thinkers who are both well-represented by our

educational environment and can make the transition to ultimately serve to represent the standard

for future curricular design and considerations of our teaching surroundings and practices.

The archetypes of the roles of student and teacher play off one another in an incredibly

dynamic system, one in which the ultimate goal is a mutual respect of both the material, each

other, and the pursuit of understanding and enhanced knowledge (Biesta, 2009). As such, the role

of an educator is to provide both a safe, comfortable environment that fosters creativity and

thought, as well as serve as a role model to whom the students look up. Due to vast student

diversity in every aspect, the best policy from the perspective of the teacher is to always aim to

uphold representation, neutrality, and equity amongst their core values. To strive for individual

and collective truth and accuracy through conveying the material at hand sits amongst these

premier virtues of education. Such practices are highly conducive to developing passionate and

deep thinkers that are well-represented and who wish to both solve problems rigorously as well

as explore the significance of math in the real world: a topic that is imperative in the continuation

of mathematics education throughout the country.

Lessons and discussions alike concerning any given topic of mathematics ought to be

presented from two distinct perspectives; the deeper connections behind why the material holds

true amongst itself (the ‘intra-connectivity’), and the applications of the material to the

extenuating academic and personal lives of students and all others that might be influenced in a

tangible manner (the ‘inter-connectivity’). Through this, there are two significant

accomplishments. First of all, students move away from the tendency to present volumes of

seemingly disconnected information that feels more like an exercise in memorization than

anything else: there is now a root of true knowledge and context that will allow the material to
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seemingly branch out and connect itself to each other topic in many different ways, all of which

are highly comparative and contrastive amongst each other. Second, applications to real-world

scenarios answer the question that has echoed through the proverbial school hallway throughout

human history: ‘When will I ever use this in the ‘real world’?’ Despite mathematics having the

ability to retain ample significance in all walks of life, there certainly exist a variety of moments

in the educational journey that lack meaningful emphasis on the ways in which one might need

to use this information in an extensive manner throughout life. For example, to leverage a

concept taught in calculus courses all over the world: an individual may compute the rate of

change of a function describing volume in order to determine how to build a box with maximum

volume given constraints on the amount of materials on hand. Through this, the classroom

culture balances itself; lectures are taken both seriously and synthesized with great intrigue as the

constant stream of variables and numbers now seemingly have a secure place in society and our

local environments. This drives forth the understanding that maintenance of overarching learning

and curriculum standards are not only imperative to bring to the classroom, but to ensure there is

a strong alignment between intention and enaction (Carlson & Diefenderfer, 2015; Fernández &

Jones, 2006).

Both in practice and in theory, modern mathematics education is effectively structured

upon articulate, well-aligned communication between student and teacher (Doll, 1993; Fisher &

Rickards, 1998). Within a modern dynamic educational environment, learning and instruction

ought to influence each other in a feedback-based system (see Figure 1) in which intended

curriculum aligns closely with enacted curriculum despite inevitable minor logistical constraints

and/or obstacles within the classroom, which may be ascribed to random error in the highly

dynamical complex system of educational interaction. In such a system, the dynamics of
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instructional practices may meaningfully be influenced and refined by student understanding.

Such a reformation of teaching practices to better accommodate the student’s needs ought to

strive for a balance between ensuring the success and encapsulation of individual student's

learning goals, as well as the goals of the course and classroom body at large (Morcom, 2016).

How can we better inform periodic check-ins and implement evaluation tactics that ensure

fairness, inclusion, and optimization of future quality of life in the pursuit of educational equity?

Courses that have implemented hybrids of formative and summative ‘check-in’ and pacing

assessments have been demonstrated to provide positive implications for the academic and career

successes of students in such an equity-focused program (Jurdak, 2010; OECD, 2007).

1.3 Establishing an Andragogical Environment

While there exists a vast lexicon that encompasses educational disciplines, this work

focuses on studying learning practices through the lens of andragogy. Andragogy refers to

methods and principles utilized in the education of adult student groups. It should be noted that

while the terms ‘pedagogy’ and ‘andragogy’ both refer to education as a means of

communicating bodies of knowledge, this work considers college students to comprise an

andragogical learning system versus a pedagogical system. This perspective is well-supported

not only in the context of university academics, but specifically in the context of mathematics

education at the college level (Rodrigues, 2012). The maxims and theory of andragogy are

articulated heavily throughout the analysis of literature review and methodology design to

structure a meaningful basis as to how educators ought to orient themselves properly and

professionally to their student body. Moreover, this work emphasizes this basis in early collegiate

education to promote equitable, professional, and engaging discourse in the everlasting pursuit of

higher mathematics.

5



Chapter 2: Literature Review

2.1 Concept Mapping, Culture, and Creativity as Ways of Knowing

While this thesis aims to optimize learning processes in favor of student experiences, the

role of highly intentional classroom design can not be understated, particularly with regard to

connectivity and the human experience’s role in education and educational understanding. This

research project draws largely from current literature on concept mapping, learning curve theory,

network modeling, and relational learning, particularly through the lens of constructivism. In

terms of concept mapping, This novel approach to curriculum design merits particular interest in

the work established by Jon Simon’s “Curriculum Changes Using Concept Maps”, in which the

author details to what extent curricular concept maps can be applied in order to enhance module

cohesion, integration with chosen texts, and the sequencing and/or pacing of topics (Simon,

2010). Implementing concept maps in mathematics education has a storied history of success in

cohesion of student understanding, and also reflects promising study and review practices that

provide meaningful progression towards enhancing performance as a whole (Ozdemir, 2005;

Novak, 1990). This philosophical approach to establishing the trajectory of delivered educational

content is reinforced by Dr. William Doll’s observations of the connection between complexity

and education in (Doll, 2008), in which Doll recounts that, “emergence of creativity from a

complex flow of knowledge … results in emergent structures, i.e. creativity in the context of

education should be thought of as a unique way to arrange information so as to make new

meaning out of old ideas.” (p. 196). Via this lens of synthesizing creativity, semantic-based

learning, and complexity science, it is evident and self-emerging that learning processes amongst

a collective body in the form of a classroom environment ought to retain some natural underlying

architecture that is conducive to optimizing both retention and orientation with respect to
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ethnomodeling. Ethnomodeling is defined as “the study of mathematical phenomena within a

culture because it is a social construct and culturally bound” (Milton & Orey, 2013).  In

conjunction with the study of the path mathematical creativity constructs to lead to robust

learning and dynamic understanding outlined in (Monahan, Munakata, and Vaidya, 2019), these

resources synthesize to verify the notion that education exists as a complex system, comprising

various interwoven topics and relations that ought to be both inherently and intentionally

connected. This revelation lends itself to approaching mathematics education analysis via the

employment of tools commonly applied to complexity science, including but not limited to:

network/graph theory, stochastic processes, probability and statistical theory, and nonlinear

systems (Benham-Hutchins & Clancy, 2010).

2.2 Complexity Science and Other Quantitative Bases of Learning Analysis

The related quantitative research methods include building mathematical models that

effectively outline the learning process from the student’s perspective, all of which work in

synthesis with (Thurstone, 1919), which lays the groundwork for theorizing that a logistic

growth model exemplifies the natural processes by which effective learning progresses

(Thurstone, 1919). Additionally, relational learning and asymptotic learning analysis as

conducted by human learning mechanisms can be meaningfully modeled in neural networks

(Xiang & Neville, 2011), uncovering the revelation that a 'working alliance' between teacher and

student operates best under conditions in which teachers act both as mentors assisting in a

student’s personal growth, and as 'orienteers' maintaining the trajectory of the intended course of

study (Spigler, Geiger, & Wyart, 2020). This requires teachers to monitor the quality of their

relationships with students, and make adjustments that affirm students’ needs, interests, and

position within the classroom. This serves to bridge the gap between qualitative observation and
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examination of classroom practices and student response, but also the quantitative and

computational trending and forecasting ramifications of these interactions between educators and

learners alike. The basis of such an approach to education is further reinforced in the study

outlined in (O’Meara & Vaidya, 2021). The work conducted in this entire thesis project is based

on the groundwork outlined in this paper, and hopes to push far beyond these axiomatic

principles.

Any chosen framework for curriculum performs best not through breadth nor depth of

topics alone, but through a balance of both, enacted through a large proportion of novel topic

connections and a significant yet lesser relative proportion of deeper topic connections (O’Meara

& Vaidya, 2021). Such a balance indicates the presence of a power law distribution, which is

highly reinforced within natural and social systems (Clauset, Shalizi, & Newman, 2009;

Newman, 2005). With the choice of textbook acting as a model for intended curricular content,

one can gain insight into the efficiency and alignment of the enacted curriculum by conducting

an analysis of student-provided data that serves as real-time feedback concerning how effectively

this transfer of knowledge remains in line with standard classroom practices. This enables

lessons to become more malleable in nature, and allows for near-immediate response from the

teacher to analyze what portion of the content students are lacking. The corresponding questions

to answer are: What are the roles that learning feedback models, creativity, and connectivity play

in mathematics education? In the context of network theory, mathematical modeling, and

probability/statistics theory, how can empirical data influence educational practices and improve

curriculum design to ensure taxonomic principles and onboarding with future course material are

met with little impedance to student learning goals?

8



One overarching means of understanding student learning is via the process of action and

engagement in the classroom. With this, it can be hypothesized that finding methods of

integrating tactile experiences that require active ‘hands-on’ processes ought to be highly

engaging for students of all walks of life. Such considerations of serving students in the

classroom brings about discourse surrounding affordances our environments might offer.

Educators therefore posit that students make meaning by the way they interpret stimuli via

classroom experiences and respond to it accordingly (Gibson, 1977). This information can then

be applied as a sort of feedback model that might influence how we react to consequent events

and continue to develop this ascribed meaning.

While there is a compelling case for curriculum as a complex system in the relevant

literature (Doll, 2008; Doll, 1993; Barnett, 2000; Davis, 2018; Mason, 2008; Ovens & Butler,

2016; Wood & Butt, 2014), it is imperative to consider that the term ‘complexity’ itself is

vaguely defined and depends on the field to which it is being applied. The primary defining

feature of any complex system is such that it contains multiple ever-interacting parts, often in a

non-linear or unpredictable pattern. Any novel venture into the area of complexity theory

therefore requires clear articulation of its structure and evidence that this fundamental feature is

met. Davis describes three areas of education where complexity theory has made its greatest

mark thus far (Davis, 2018): (i.) “…contents of curriculum, complexity as a disciplinary

discourse…”, (ii.) “…beliefs on learning, complexity as a theoretical discourse…” and (iii.)

“…pedagogical strategies, complexity as a pragmatic discourse…” (p. 75-88).
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Chapter 3: Methodology and Results

Through the use of modern quantitative and qualitative methods alike, this research effort

aims to improve and standardize the means by which we evaluate the success of student

performance in a precalculus course through the role of a connectivity-based curriculum. This

investigation ultimately aims to move throughout the content of precalculus and both motivate

and develop the necessary information overlay that will serve students in future academic

coursework, while considering how student ‘check-ins’ can deepen the reach of assessment tools

as they center around the needs of both the collective and individual learner. Such future work

includes traversing the calculus sequence for such collective observations, as well as any other

relevant courses and/or areas of study specific to the student’s (singular or otherwise) intended

academic trajectories. Through the scope of this project, the overarching hope is to employ

educational data in order to uncover empirical patterns in successful models of intended

curriculum to influence how educators highlight connections in the classroom. This goal will be

accomplished in three phases:

The first phase will center on previously conducted research that acts as the basis for

identifying strong curricular content. This prior work serves to deepen the analysis of a

precalculus course with respect to established taxonomies and pedagogical/andragogical goals.

Such previous work includes establishing the efficacy of a power law relationship among

effectively executed learning systems (Newman, 2005; O’Meara & Vaidya, 2021), and the role

of network theory in the pursuit of outlining meaningful curricular connections. This will be

further supported by student-generated data that includes both qualitative responses to prompts

regarding personal and academic orientation to central topics taught in class, as well as a

quantitative concept map that displays how they view the connections between different topics
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throughout the entire course. The ability to meaningfully implement concept maps in the

classroom demonstrates student ability to orient themselves in the context of the curriculum at

large (Novak, 1990), shifting focus towards the penultimate steps in their educational paths

established by this stepping-stone course. This first phase is the central focus of this thesis, with

considerations from phase two and the outlining of the preliminary steps of phase three to be

completed in an ongoing study that will culminate ideally in both a publication specifying the

ramifications of such an analysis, as well as acting as the genesis for upcoming doctoral research

by the author.

The second phase will consider the construction and efficacy of a section-wise

time-series development of the relevant computed metrics in (O’Meara & Vaidya, 2021) such as

average path length (APL), average local clustering coefficient (CC), and number of hubs (Hubs)

based on the network mapping of the textbook used in Montclair State University's MATH111

precalculus course (See Figure 4), whose various sections over several semesters act as the focus

of this study. The literature review conducted for this work, as well as preliminary statistical

analysis on empirical data, has revealed an inherent logistic pattern which is well-aligned with

student learning processes (Leibowitz, Baum, Enden, & Karniel, 2010). This will yield natural

next steps in future work, for which similar curves will be constructed for the university's

MATH122 calculus course to be qualitatively analyzed for repetition of topics introduced from

precalculus in order to build meaningful concept maps and establish critical periods of overlap

between courses. These moments of intersection will ultimately aid in the identification of

student onboarding, and serve to allow the instructor the opportunity to ensure enacted student

learning aligns properly with future coursework.
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The construction of these logistic curves will serve as the springboard towards the third

and final phase of this study, which will utilize data derived from the encoding of student

responses in order to build composite concept maps. This process will then be encoded as

networks as outlined in (O’Meara & Vaidya, 2021) to analyze how closely aligned both the

aggregate mean of the relevant metrics and the individual students' obtained values are to the

baseline intended curriculum of the corresponding course's text. Analyzing the evolution of this

data will serve to demonstrate where students lie in the development of the course throughout the

semester, whereas end-of-semester evaluations of this nature will ultimately provide a

meaningful tool for administration at all levels to uncover how successfully students have

achieved the goals of the precalculus course itself. This information will allow for meaningful

individualization of learning processes and ensure that academic trajectories are well-aligned

both in intention and in execution.

3.1 Understanding Curriculum Design and Choice through Network Analysis

The primary lens of understanding the exchange and discourse of knowledge in the

classroom is understanding the set of tools the teacher brings forth in order to generate cohesive

lesson planning and execution. Therefore, a reasonable place to start is in the choice of textbook,

and to what extent this might serve as a strong template for productive and effective mathematics

education. Factors such as repetition, connectivity, and support for identification of personal

representation are explored through consideration of precalculus curricula, and how choices for

textbook content can influence and improve standard of learning and improved instruction1. It is

with the theories, assumptions, methodologies, and findings outlined in this publication that the

1 This chapter uses excerpts from (O’Meara & Vaidya, 2021), which  is an open access article distributed under the terms and conditions of the
Creative Commons (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
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following two phases are built upon in order to further develop both the bridge between teacher

and student roles in curriculum, and the efficacy of research-based assessment and intervention

opportunities.

Educators recognize the fact that teaching and learning cannot be spoken of

independently; they proceed through feedback between each other (see Figure 1). We can think

of the curricular aspect of teaching as an interaction between an intended curriculum (IC) and

enacted curriculum (EC) (In the Figure 1, IC and EC compartments are mediated by their

corresponding network models.). The intended curriculum can be reflected through a textbook

which an instructor typically would utilize to design her own lesson plans which is enacted in the

classroom, and referred to as the enacted curriculum. The differences between the IC and EC can

vary drastically with instructor, students, topic, level of course etc. In this paper, each text chosen

is mapped to a unique graph (described in detail below). In mathematical terms, teaching as

defined in our study, is the mapping Ղ =  ՂԱ ∪ ՂԳ ∪ ՂՁ  .  .  .
where represents the curricular or content aspect of teaching, refers to the teachingՂԱ ՂԳ
environment and to the skill level of the teacher, among others. We specifically focus onՂՁ ՂԱ
which can be represented as the transformation:ՂԱ :  ԷԱ − Ի՗ՌՍՔ → ԳԱ − Ի՗ՌՍՔ
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Figure 1: Schematic showing the complex nature of education and curricular design. While teaching and learning
are recognized to proceed along an a-causal feedback loop, teaching at its intrinsic scale is feedback between the

intended and enacted curriculum, each of which gets refined over time.

Based on Figure 1, the map can itself be decomposed into several individualՂԱ
components that outline the feedback model generated between IC and EC, and how these steps

in the development of curricular content might influence one another. While is represented asՂ
a one-way mapping, in the hands of an experienced instructor, the EC can result in a

transformation of the IC as well. It is also not unreasonable to assume, especially in the case of

inexperienced instructors, that (identity map), i.e., the IC is the same as the EC.ՂԱ = Է
It is important to recognize that teaching and learning are embedded within a specific

environment, which they are shaped by and influence. Environmental factors directly impact IC

(and directly or indirectly, EC), which takes the form of various editions/updates of a book, new

books and revisions to course content etc. This interaction between education and its various

components with the environment maintains education in an out-of-equilibrium state, much like

a dissipative system (Doll, 1993; Kondepudi, 2008). If we persist with the thermodynamic

language, we can expect this mutual interaction to result in emergent self-organized states, under

fixed conditions, which translates to an optimal (meta)stable curriculum (or network pattern)

which would change with time and environmental factors. While this argument relies primarily

on analogies, it is evident that the educational system is a complex combination of interacting
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self-similar components, each of which represents a complex system at its own level (Mason,

2008; Ovens, 2016; Wood & Butt, 2014).

A complexity-based approach to education was perhaps best articulated by William Doll

in his numerous works on the subject (see, for instance, (Doll, 1993)). In his article (Doll, 2008)

states: “Order emerges from interactions having just the ‘right amount’ of tension or difference

or imbalance among the elements interacting”. In the context of education, one could argue that

this emergence of order is nothing but creativity. (Hiebert and Carpenter, 2006) associate the

notion of ‘understanding’ to that of a complex network. They state: “Understanding increases as

networks grow and as relationships become strengthened with reinforcing experiences and

tighter network structuring” (p. 69). It has also been argued that learning through identification

of similarities and differences between alternate representations of the same information can

stimulate the construction of useful connections (Monahan, Munakata, & Vaidya, 2019).

Therefore it is quite reasonable to think of education at all levels as an “adaptive and

self-organizing complex system”.

This thesis is based on the premise that a textbook, which represents a particular

pedagogy of the subject being treated, is a collection of multiple interacting parts. As students

progress in a course, they navigate from one topic to another, united in the endeavor of

comprehending, connecting, and unifying concepts. It is the potential to form their own bridge

across different topics that is of significance here, since it relates to creativity: an oft spoken

about but understudied phenomenon in higher education. Previous studies on creativity, in

mathematics education in particular, have pointed to the importance of making connections as a

necessary condition for creativity in the classroom (Monahan, Munakata, & Vaidya, 2019;

Monahan, 2020; Munakata & Vaidya, 2013). The ‘lego model’ of creativity discussed in
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(Monahan, Munakata, & Vaidya, 2019) argues for personalization of knowledge and connection

between different ideas which can result in stability and longevity of understanding. The

‘connected curriculum’ program based in (UCL, 2021) espouses the importance of connections

in higher education, highlighting the ‘real value’ of education, which lies in preparing students

for the ‘real world’ where students must solve complex problems which do not appear under a

disciplinary guise. The rationale for such a curriculum is well articulated in (Fung, 2017; Wraga,

2009) and other related works, pointing to the fact that “social problems and issues transcend

disciplinary boundaries” (Wraga, 2009; Davies & Fung, 2018). Our approach in this paper is

based on a similar philosophy of learning and clarified using a simpler example, which lends

itself to very novel, rigorous and interesting mathematical analysis. We contend that such a

hybrid modeling approach which combines qualitative and quantitative aspects of mathematics is

extremely appropriate in the context of education, especially mathematics education.

The approach to introducing and evaluating this particular philosophy took the following form:

● Step 1: Mapping precalculus curricular content for quantitative and qualitative

analysis

● Step 2: Applying relevant metrics to study the encoded curriculum and extract

trends and patterns

● Step 3: Aggregate results and identify partitions in the data between well-revered

and poorly received textbooks

● Step 4: Consider the basis of these results with respect to a ‘union network’ in

which all possible connections between sampled texts might be made, followed

by a stochastic analysis of the sensitivity of computed metrics
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● Step 5: Discuss the interpretations of the network-based analysis in the context of

curricular design and education, and reflect on the prospects and importance of

such an analysis in other problems related to education.

Naturally, elements of this procedure are somewhat subjective; some instructors may

highlight connections others might find unimportant or overlook. However, in the pursuit of

developing a more significant understanding of the properties that make a text suitable for a

given course, instructor, or student body, it is imperative that causal connections be strictly

observed, both in proximity and conceptual basis, revealing an inherently complex nature

amongst the association between any given curricular themes.

In our efforts to generate uniform procedure, we conducted an initial trial in which the

same text was encoded by two separate researchers, and then results were compared in order to

verify that results were not only as identical to one another as possible, but also to ensure that all

included nodes and edges were strictly obtained from the textbook at hand, and were not the

result of any personal bias or opinion as to which topics might warrant connectivity from the

perspective of the researcher; the goal of this encoding process was to establish routine

procedure and strict adherence to intentional language dictated by the text, while also taking

advantage of the ability for human-based encoding to pick up on nuanced connections similar to

the examples outlined in the sample text above.

By regarding each topic as a node and each link as an edge, we are able to meaningfully

translate each text into a graph or network of ideas and their corresponding connections. A

uniform set of principles were developed to help maintain consistency in mapping the various

books. These include:
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1. To start with, we make a list of all the topics in the chosen text under each
chapter, section, and subsection. These topics are listed in a Table A1 in Appendix
A. Each topic is given a numeric code. In the language of sets,

pertains to the set of topics covered in theՆ = ՓՑ | 1 < Ց < Լ{ } Լ ∈ ℕ
textbook, where refers to the i-th assigned code for each topicsՓՑ

2. Based on the topics listed in first two columns of the Table A1, we then create a
third column as shown in Appendix A, where the elements constitute the set

: That is, topicՇ = ՈՑՒ | ՈՑՒ ∈ Ն ,  1 < Ց < Լ ,  1 < Ւ < Ի ,  Ի ≤ Լ − 1{ } ՓՑ
may contain up to M direct connections outlined in the corresponding text being
mapped, . The elements of set Y therefore represent distinct topics in XԻ ∈ ℕ
which are related to .ՓՑ

Once the entire table is created, it can be represented as a network of nodes (topics) and edges

(connections). Figure 2 gives examples of such generated network representations of sampled

textbooks in this study.
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Figure 2: Network structure of the Pathways Combined curriculum. The various panels represent different books,
namely: (a) Abramson (b) Blitzer, (c) CME, (d) COMAP, (e) Faires, (f) Larson, (g) Pathways (combined), (h)

Rockswold and (i) Stewart. In cases (d,h), we provide a zoomed image to showcase the details of the connectivity.

Once represented as a graph, we can estimate several properties of such a graph which

give us a glimpse of the underlying structure of the course and its potential to allow free and easy

flow of ideas and foster new emergent understanding and creativity. By examining the network

structure of various textbooks and pedagogical practices, we can help identify the kind of

curricular plan that is likely to be most effective and creative. Specifically, the following metrics

(Albert & Barabási, 2002; Newman, 2003) are examined:

1. The Degree Distribution (DD) helps us ascertain that the ‘textbook network’
does indeed display a power law profile and hence the metrics typically associated

19



with the analyses of such networks are meaningful in this context. The power law
nature of such a network reveals that there is a specific structure to curriculum
which is not random. The degree distribution of the network is given by the
probability function

Ծ(ՠ) = Ջՠ−α
where c is a constant, x denotes the degree of the node and α is a scaling
parameter that provides insight into the mass of the distribution’s tail.

2. Clustering Coefficient (CC) tells us about the average number of connections for
each node, giving us a glimpse into the variety of ways a particular topic in
precalculus can be understood. A fundamental assumption of the constructivist
model of mathematics is the potential to make meaning. Therefore the greater the
clustering coefficient, the more diverse the ways in which a concept can be
comprehended depending on the particular background and proclivity of the
student. The local clustering coefficient, denoted , is commonly given by theԱՑ
expression:

ԱՑ = 3(Ֆ՝ՕՊՍ՚ ՗Վ ՜՚ՑՉՖՏՔՍ՛)Ֆ՝ՕՊՍ՚ ՗Վ Ջ՗ՖՖՍՋ՜ՍՌ ՜՚Ց՘ՔՍ՛
resulting in the average clustering coefficient for the network, .ԱԱ = 1Լ 1

Լ∑ ԱՑ
3. Average Path Length (APL) tells us the average number of steps that must be

taken to traverse between any two nodes. In the context of this study, the APL
tells us about how efficiently one can move from one idea to another. It is
particularly useful to strategize about how to resolve mathematical problems. A
network possessing a low APL is preferable, since it makes explicit the links
between concepts and provides a road-map to travel efficiently from one point to
another. This, coupled with a high CC, makes for easy navigation between ideas
and also increases the likelihood of exploring many possible ways to navigate
between these ideas. The APL is given by the equation

ԯԾԺ = 1Լ(Լ−1) Ց≠Ւ∑ Ռ(ՄՑ ,  ՄՒ )
where represents the path length from node i to node j.Ռ(ՄՑ ,  ՄՒ )
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4. Hubs (H) are nodes which have a large number of edges. The threshold number
of edges to qualify to be a hub, in general, is determined by the nature of the
problem itself. We use the minimum number of chapters from all the texts
examined to decide a threshold to qualify for a hub. This number turns out to be 6
based on the book by Faires [30].

In addition, other general characteristics of the books are also considered such as the ratio

of nodes to edges, and the specific topics that qualify as hubs across the different books.

When tasked with the penultimate goal of meaningfully analyzing the emergent

quantitative patterns exhibited throughout network graph models of precalculus course

textbooks, it became evident both empirically and statistically via the genesis of analyzing the

degree distribution of each node (course topic) with respect to frequency that there exists a

natural power law throughout these curricular connections. Moreover, one particularly

remarkable result that emerged is that, through stochastic analysis of the generated union graph,

the underlying chosen metrics yielded low sensitivity when edges were randomly removed,

indicating that customization and individual choice of emphasis by the instructor can still yield

desirable learning outcomes with respect to the intention of the authors of the chosen textbook

and/or curricular map. Such an outcome is promising, as this sense of unique influence on

learning practices places all classroom participants on the frontier of autonomy and agency as

they navigate throughout precalculus and beyond.

21



Table 1: The results of the network analysis for all texts are summarized in this table. Quantities computed
include the average path length, clustering coefficient, number of hubs, percentage of nodes that are hubs, number of

edges and nodes for each text.

Figure 3: A visual display of both the variability of all fifty iterations for each value of n and the APL and
CC metrics in (a,b), as well as a regression for the mean APL and CC across all iterations in (c,d).
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Table 2: The results of the stochastic network simulation analysis for the union of all texts are summarized
in this table. Quantities computed include the average path length, clustering coefficient, and error metrics relative to

the original union graph.

3.2 Supporting the Learning Curve through Time-Series Concept Development

The concept of understanding learning curves as a logistical model permeates throughout

various disciplines. This includes educational processes (MacLellan, Liu, & Koedinger, 2015)

machine learning (Perlich, Provost, & Simonoff, 2003) and artificial intelligence (Schein &

Ungar, 2007), modeling system factors of loan approval and financial modeling (Vaidya, 2017)

as well as developing and motivating the dynamic behavior of ecological and social systems

(Hartz, Ben-Shahar, & Tyler, 2001). All of these pillars of dynamic learning and social systems

are of particular interest and relevance in the wake of the COVID-19 pandemic and an

ever-accelerating need to improve technological, social, and andragogical/pedagogical practices

in a vastly broader array of learning environments than ever before (Wang, Zheng, Li, & Zhu,

2020). As this work endeavors to uncover meaningful relationships within the initial framework

of course design, this opens up a much larger question worthy of discussion: now that we have

begun an exploration into the teacher's role, how can we continue to meaningfully understand the

student's role in this complex system?

This current study aims to break down student comprehension and retention by

examining both incremental changes in the metrics computed in the first stage of this research
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project as outlined in 1.1, and how the demonstration of logistic behavior can act as a meaningful

model for ideal student performance along the trajectory of a semester-long course. By

considering each student’s perception of course trajectory as an individual network of observed

topics and connections, not only can this be compared and contrasted with the idealized model of

the course’s textbook/curriculum, but this can also be used to seek correlations with past student

experiences that might better inform what the source of unobserved meaning-making in class

might be, and how one can correct that in a meaningful and andragogically productive way. Such

patterns can be observed in Figure 4 below, along with theoretical growth phases in the

development of a course in Figure 5.

Figure 4: The evolution of the average path length (APL) in the Pathways precalculus text as a function of the

section-wise chapters (or time). The APL  is fit to a logistic curve with the provided correlation coefficient .Հ2
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Figure 5: A depiction of theorized phases of learning development along a logistic curve, in which Phase I
represents slow growth until critical knowledge is reached, Phase II outlines a rapid learning phase in which
information is learned at an efficient pace, and Phase III depicts the approach of a saturation point.
We can define a couple of critical points (a) accumulation of critical mass to jump-start the learning process, and (b)
a critical saturation point beyond which learning slows down considerably.

Via an initial case study conducted with the textbook and student handbook for Montclair

State University’s MATH111 precalculus course, it can be observed that these materials offer a

promising exemplar of a logistic profile with respect to their APL. This parallels the general

student observation that a course that is designed to bridge two distinct bodies of mathematical

knowledge together (algebra and higher-order mathematics, typically through the lens of calculus

or calculus-dependent studies) will offer a ‘ramp-up’ phase towards critical knowledge

acquisition, ultimately culminating in an asymptotic ‘saturation point’ at which all theoretical

knowledge is obtained by the students as stipulated in the course goals. The intent behind

constructing such a model is that, with an outline for how knowledge and connections ought to

be formed throughout the semester, we now have a yardstick by which we can assess the

connections students are making across all topics, and ensure that they are well-aligned with the

desired pacing of the course, as influenced by individual teaching practices and andragogical

choices along the way to cater to the needs of the classroom at large. With respect to how such a

student analysis might be conducted, we now move into the third phase of this body of work that
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uses student data to assess learning trajectories and provide opportunities for intervention and

alignment.

3.3 Student Data & Classroom Support via Ethnomodeling and Educational Equity

In order to collect, process, and analyze student data, IRB-FY21-22-2488 - “An Analysis

of Complexity and Connected Curriculum Practices in Upholding Course Goals in the

Classroom” was submitted to and approved by the Institutional Review Board at Montclair State

University. This collection of data is comprised of two parts:

● An assignment titled “Semester in Review” (See Appendix D) was administered to

students for a portion of their homework grade, in which students were asked to write

qualitative personal statements that relate the most well-connected topics in the course to

each other, to other topics in the course of their own personal interest, as well as their

academic and personal lives in any capacity observed.

● An assignment titled “Connectivity Survey” (See Appendix E) was also administered to

students for a portion of their homework grade, in which students were provided with the

list of every topic discussed throughout the entire semester (n=127), and asked to draw

connections between topics as they saw fit.

All responses were anonymized by assigning random numbers in place of names, and removing

all identifying characteristics from submissions. However, both assignments were given the same

identification number, along with their final grade in the course (on a decimal scale from zero to

one hundred) so that, while students cannot be identified by the author or any external observer,

the respective collection of submissions and scholastic performance can be aggregated to draw

connections and trends between the body of data.
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In order to implement aspects of agency, authority, and equity as commanders of their

educational paths, both prompts were provided with minimal requirements with respect to

content and formatting. “Semester in Review” allowed students to submit in any format they

desired, as long as the written contents accumulated to approximately two pages in length. While

many students opted to write traditional essays, there were many instances of outwardly

displayed creativity in the assignment. For example, some students opted to write poems, others

short stories, and a handful of students even designed and coded the front and back end of their

own websites with the assistance of HTML5 and CSS3 (see Figure 6 below). This component

was important, as it allowed students to experience first-hand how their identities are intimately

intertwined with their academic achievements and personal lives. For many, this was an

opportunity for the educator to orient themselves deeply to the interests of the student which then

motivated future lessons - an outcome that is invaluable to the adaptive and malleable nature of

curriculum design and developing mathematical thinkers.

Figure 6: A submission for the assignment stipulated in Appendix D wherein a given student designed a
website from scratch to draw connections between precalculus topics and implement elements of their personal and

academic interests in the context of their studies. (ID#026)

Additionally, for the “Connectivity Survey”, students were provided without any

minimum number of connections to draw, as well as the instruction to form connections without
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the necessity of going back to their notes. The purpose of these parameters was to allow students

to express their true observations and intuitive relations amongst their studies without fear of

repercussion or false inflation of their true observations. A preliminary analysis shows that many

submissions have high degrees of variation and interpretation, as is reflected by both the quantity

and quality of connections.

Figure 7: A network representation of a randomly selected student’s submission for the assignment
stipulated in Appendix D. (ID#044)

Although this third phase is still in progress, initial findings demonstrate a high

correlation between observed connections, depth of connectivity between personal traits and

academics, and performance in the course. Across an initial sample of ten randomly selected

students, submissions were reviewed and encoded with respect to word count (W), number of

distinct topics/concepts introduced (T), and performance in the course (on a numerical decimal

scale from zero to one hundred). The values of W and T were compiled to form a root-mean

standard error (RMSE) to provide an aggregate metric against which performance can be

weighed in order to assess whether or not a correlation exists between initial measures of effort,

insight, understanding of topics and their relevance to personal academic interests, and final

grades in precalculus. This data is provided in Table 3 and Figure 8 below.

28



Student ID
Word Count

(W)

# of
Topics/Conc

epts
Introduced

(T)

RMSE
(Relative
Weight)

RMSE
(Uniform
Weight) Performance

Sum of Max
- RMSE

(Uniform)

44 1118 37
0.014895801

33 5.656854249 95 1157.343146
27 530 22 576.1634746 416.0967436 88 746.9032564
30 610 23 498.6855404 359.5469371 87 803.4530629
31 550 24 555.9986478 401.9110598 83 761.0889402
25 947 45 167.0764596 120.9152596 100 1042.08474
37 614 27 493.2711417 356.6090296 88 806.3909704
36 537 22 569.4523275 411.1508239 72 751.8491761
47 576 21 532.3820004 383.6274234 99 779.3725766
45 589 31 515.6054219 374.1904595 83 788.8095405
40 662 23 448.2791634 322.8157369 77 840.1842631

Table 3: Quantitative data extracted from a random sample of ten students in which the breadth and depth
of ‘Semester in Review’ submissions are correlated with course performance. A standard error analysis is conducted

with respect to the maximums of variables ‘Word Count’ (W) and ‘# of Topics/Concepts Introduced’ (T).

Figure 8: A graphical representation of the data in Table 3, coupled with an OLS linear regression to
capture initial trending between course performance (x-axis) and adjusted RMSE (y-axis).. Sample size (n) and

correlation coefficient (R) are displayed on the graph.

A much deeper analysis will follow these preliminary results, including the utilization of

relevant metrics established in the first phase in order to evaluate where any given student’s

perception of connectivity between topics lies on the time-series progression of course metrics
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stipulated in Phase Two in order to allow for equitable attention and individualized assessment of

knowledge formation, concept mapping, and understanding of ideal course connections and

concepts as the weeks of the semester progress. While this study is performed retroactively, this

work hopes to serve as the basis for informing alternative assessment opportunities and

meaningful check-ins for precalculus educators in order to better serve students, both as the

collective body of classroom thinkers and as autonomous agents of equitable access to optimal

learning opportunities and trajectories.

30



Chapter 4: Discussion

The aim of this study is to standardize the way we as educators synthesize taxonomic

goals in our lesson plans with enacted feedback from the student body, and how standardization

of intended curricular design can act as a basis for the empirical analysis of student alignment at

various stages of the learning process. The author seeks to answer this question by synthesizing

network theory and learning curve theory as a real-time analytic device in the precalculus

classroom to chart ideal learning outcomes, as well as actual student progress, and how this

informs educator response in a meaningful and objective manner which can ultimately inform

methods the teacher may use to supplement the provided curriculum.

4.1 Andragogical Outcomes of Connectivity in Curriculum

What is the significance of providing rigorous mathematical models to present a standard

model of educational practice? Through highly focused exploration of examining intentional

connection of meaning between various topics explored across all sampled texts, the emergence

of fairly predictable models indicates that neither random distributions of navigating the depths

of curricula, nor a uniform presentation in which all topics maintain the same relative

connectivity indices, are proper formats of effective and successful learning platforms. Instead,

the data generated thus far is highly indicative of finding a meaningful balance between high

frequency of low connectivity, providing temporary satellites which yield fruitful conclusions on

a particular pedagogical path with respect to the curriculum as a whole, as well as low frequency

of high connectivity, by which the instructor and student alike are able to extend

meaning-making into many novel branches of thought that yield a unique individual

interpretation within the context of the global pursuit of holistic and cohesive course
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understanding. It is therefore highly relevant that these well-regarded outlines of classroom

instruction follow similar mathematical models, as this can allow future educators and textbook

writers to establish a deeper analysis of the efficacy of intelligent design in conjunction with the

student experience at the forefront of pedagogical innovation.

Aside from the analysis of the generated degree distributions, the networks themselves

yield incredibly valuable insights into not only the extent to which global connectivity is

achieved, but also how local behavior provides a direct lens into higher-order navigation of

scaffolding ideas and collective classroom procedure. Two of the most valuable metrics in this

discussion that emerged, despite the consideration of many others, are average path length (APL)

and average local clustering coefficient (CC). Nearly every text sampled retained an APL

between 3.0 and 4.0, indicating that efficient navigation of precalculus discourse should keep

local topics well-connected, requiring no more than a few select topics to serve as the roadmap

between any given ideas. Surely, with our minds focused on the educational ramifications, this

feels to be an appropriate conclusion, as the goal in such a foundational mathematics course is to

consistently relay the notion that the depth of the curriculum is circumvented by the relevance of

all chosen topics with respect to one another. A successful classroom experience is not one of

isolation; it is one of intention, retention, and ever furthering the endeavor to highlight the

reasons behind studying and analyzing functions, relations, and all that which makes up a proper

course. Similarly, most CC values tend to lie between 0.3 and 0.4, indicating that any given topic

should be connected to between 30% and 40% of its direct neighbors, again easing the path each

student takes in their endurance to tether their interpretation with all previously learned and

future material.
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The minimum requirement of six directly connected nodes to qualify as a hub was chosen

through the observation that the minimum number of chapters provided across all texts was itself

six, providing the initial conception that we are indicating a topic that has the potential to reach

across the minimum span of any given network. After implementing this criterion and generating

each respective network, it was discovered that there are only two common hubs across every

single textbook sampled: ‘Functions and Relations’ (F/R) and ‘Polynomial Functions’ (PF). (see

Appendix B and Appendix C for a comprehensive list of all hubs across all the texts analyzed

and a book by book breakdown) This deepens our pursuit of answering a fundamental question

that permeates the mathematical community as a whole: What is the purpose of precalculus as its

own course? Does it simply serve as a precursor to calculus, or is there deeper intention behind

the syllabus? This pattern properly provides a reasonable response in that precalculus is the study

of functions and their individual and collective properties. In everyday life, relations bring about

our human desire to establish meaning behind call-and-response, input and output relationships.

We study mathematics because we desire the understanding of the world around us: Similarly,

students and instructors study precalculus because it refines our rigor and analytical ability to

effectively communicate the similarities and differences in classes of relationships and

experiences through the natural world, and perhaps the unnatural that we simply have yet to

understand. There serves no better bridge between the world of entry-level and high-level

mathematics than elucidating the meaning of functions and polynomials, as these serve as the

backbone of analysis, the construction of meaning-making, and the ever-driving wandering

through the question, ‘How does this connect to our understanding, and therefore connect

understanding itself’?
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4.2 Future Work

I also wish to investigate the development and relevance of a multi-sigmoidal model that

meaningfully explains how course content from a prerequisite can be optimized to give a proper

introduction to the content that follows, and how these might build a narrative for a student's

entire mathematics curriculum throughout the course of their studies. While this initial project

focuses largely on precalculus, this work opens up the possibility to introduce algebra as a

necessary previous component of mathematical knowledge bases, and how this may further

inform the development of the calculus sequence, as well as establishing critical intersections of

corresponding courses to ensure alignment of mathematical learning paradigms to structure both

future mathematics courses, and the courses that follow for all students, regardless of their

intended academic path. Additionally, to further strengthen the development of our

comprehensive dynamic learning model, both quantitative and qualitative student responses

ought to be incorporated to channel their perceived connectivity not only within the confines of

the classroom, but how their mathematics education influences both their own life and informs

their intended career path and/or area of study. This leads to the natural discussion of how the

format and layout of the classroom might impact both teaching and learning practices, of which

there is ample evidence of success within various modalities of classroom design that are

conducive towards student problem solving (Fernandez, Kazimir, Vandemeulebroeke, & Burgos,

2002). Preliminary data showcased in this thesis shows that the introduction and development of

such 'check-in' tools also allows for natural, meaningful discourse between student and teacher

throughout the semester. Such communication is strengthened both through frequent

administration of these tools, as well as ensuring outlines of materials provided to students

remain focused and aligned with what the educator hopes the student body obtains from the
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course content. It is the intention of this ongoing study to forge forth in the pursuit of learning

and developing grounding for the ultimate purpose of accessible research-based learning goals.
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Chapter 5: Conclusion

This project aims to utilize the lenses of network theory, curriculum design, and modern

learning curve theory amongst various mathematical methods to understand the inherent

underlying connectivity of the learning process, and optimize the complex system comprised of

various roles rooted in feedback loops within educator roles, student response, and the

interactions between the two as they pertain to various stages of the curriculum development

process. The results of this study hope to contribute to the role learning analytics may hold in

mathematics education, and how these quantitative methods can better inform educational

standards that allow for the improved analysis of qualitative outcomes.

A major limitation of the nature of this work is the reliance on human interpretation to

take on the role of objectifying the role of course materials. While significant steps have been

taken to reduce the level of error committed in this stage and establish checks and balances along

the way, the bias of human involvement in such work is unavoidable. However, the perspective a

math educator adds to this work naturally highlights connections between various topics whose

vitality gathers large consensus amongst other teachers and educational specialists. This further

reinforces the position that frameworks of curriculum design are just that; they are intended to be

interpreted, tested, and adapted to serve the needs of the environment in which they are provided.

The overarching principle one can derive from such a balance of subjectivity in the

pursuit of uniform andragogical standards and practices is that the execution of such a learning

framework inherently adapts and continues to remain fluid over time. This will allow optimal

results to naturally emerge, and continue to allow for the dynamic feedback between learners and

educators as the roles between the two are ever-exchanging. It is with this in mind that the author
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hopes that we all continue to forge this path with the pursuit of continually expanding our

individual and collective knowledge bases.

This line of research will contribute to our understanding of how students learn

mathematics, how this learning can be individualized and understood in a deeper manner, and

how these observations may be aggregated such that curriculum design ensures academic equity

and ensures student successes in all future academic endeavors. The beauty of mathematics we

ought to convey to those who are in the primary stages of advancing their education is that

problem-solving is an abstract process where we consider a variety of tools best suited for the

task at hand. The decision to choose one tool versus another lies uniquely in both the discretion

of the student, and that which speaks loudest as a guide towards progress and understanding.
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Appendix

Appendix A: Network Construction

The table below shows the coding for the topics identified in each text and also the connections
between topics (column 3). We demonstrate the text to network mapping for the Stewart text as
an example. A similar procedure is used to encode and map the other texts.

Table A1. This table provides the codes and connected topics in the text by Stewart [33].

Topic Name Code Directly Connected Topics

Polynomial Functions PF

RATZEROTHM, RF,
REMAINALG,
DIVALG, FACTTHM,
GRAPHTECH,
UPLOWBOUND, QUAD,
LINEARFUNC,
NONLIN, INEQ, F/R,
DESCARTES,

Rational Zero Theorem RATZEROTHM PF

Rational Functions RF

PF, GRAPH, MOD,
PARTFRAC,
LINEARFUNC, NONLIN,
INEQ, F/R

Transformations TRANS GRAPH

Graphs GRAPH

RF, TRANS, ASYM, MOD,
EXP,
LOG, EQN,
PERIODICFUNC,
LINEARFUNC,
SYSLIN, LINPROG

Asymptotes ASYM GRAPH

Modeling MOD

RF, GRAPH, EXP, LOG,
EQN,
PERIODICFUNC, LAWS,
TRIGRAT, MATRIX,
SYSLIN, HYPERBOLA,
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ELLIPSE, PARABOLA,
SEQUENCES, BIN, RECURS

Partial Fractions PARTFRAC RF

Remainder Algorithm REMAINALG PF, SYNTH

Synthetic Division SYNTH REMAINALG, DIVALG

Division Algorithm DIVALG PF, SYNTH, LONGDIV

Long Division LONGDIV DIVALG

Factor Theorem FACTTHM PF

Intermediate Value Theorem IVT GRAPHTECH

Graphing with Technology GRAPHTECH PF, IVT

Descartes’ Rule DESCARTES PF

Upper and Lower Bounds UPLOWBOUND PF

Quadratic Functions QUAD
PF, QUADGRAPHING,
OPTIM

Graphing Quadratics QUADGRAPHING QUAD

Optimization OPTIM QUAD

Exponential Functions EXP
GRAPH, MOD, LOG, EQN,
NAT, F/R

Logarithms LOG

GRAPH, MOD, EXP, EQN,
NAT, COM,
LIQU, F/R

Equation Representations EQN

GRAPH, MOD, EXP, LOG,
TRIG, IDENT, HYPERBOLA,
ELLIPSE, PARABOLA,
POLAR

Natural Log NAT LOG, EXP

Common Log COM LOG

Application: Liquids LIQU LOG

Trigonometry TRIG EXP, LOG

Right Triangle Trig RTTRI LOG

Unit Circle UNITCIRCLE LOG

Trig Identities IDENT EQN, UNITCIRCLE
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Periodic Functions PERIODICFUNC MOD, RTTRI

Inverses INVERSE RTTRI

Trig Laws LAWS MOD, RTTRI

Trig Ratios TRIGRAT MOD, RTTRI

Matrices MATRIX
MOD, METHODS,
SYSOFEQNS

Methods of Evaluating
Systems METHODS

MATRICES, DET, CRAMER,
GAUSSJORD

Systems of Equations SYSOFEQNS MATRIX, LINEARFUNC

Determinants DET METHODS

Cramer’s Rule CRAMER METHODS

Gauss-Jordan GAUSSJORD METHODS

Linear Functions LINEARFUNC
PF, RF, GRAPH,
SYSOFEQNS, F/R

Non-Linear Functions NONLIN PF, RF, SYSLIN, F/R

Systems of Non-Linear Eqns SYSNLIN
GRAPH, MOD, NONLIN,
INEQ

Inequalities INEQ PF, RF, SYSLIN, F/R

Linear Programming LINPROG GRAPH

Conic CONIC

HYPERBOLA, ELLIPSE,
PARABOLA,
POLAR, F/R

Hyperbolas HYPERBOLA MOD, EQN, CONIC

Ellipses ELLIPSE MOD, EQN, CONIC

Parabolas PARABOLA MOD, EQN, CONIC

Polar POLAR EQN, CONIC

Sequences SEQUENCES

MOD, INDUCTION, BIN,
RECURS, GEO,
ARITH, SERIES, F/R

Proof by Induction INDUCTION PROOF, SEQUENCES

Binomial Theorem BIN MOD, SEQUENCES

Recursion RECURS MOD, SEQUENCES
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Geometric Sequences GEO
SEQUENCES,
PARTIALSUMS

Arithmetic Sequences ARITH
SEQUENCES,
PARTIALSUMS

Series SERIES
SEQUENCES,
PARTIALSUMS

Partial Sums PARTIALSUMS GEO, ARITH, SERIES

Proofs PROOF INDUCTION
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Appendix B: Code for Hubs in All Books

Table A2. This table provides the codes used for the hubs identified in all the books.

Hub Name Code

Functions and Relations F/R

Linear Functions LF

Polynomial Functions PF

Rational Functions RF

Trig TRIG

Conics CONICS

Sequences SEQUENCES

Limits LIMITS

Series SERIES

Graphing GRAPH

Modeling MOD

Inequalities INEQ

Equations EQN

Rate of Change ROC

Average Speed AS

Constant Rate of Change CROC

Quadratic QUAD

Composition COMPOSITION

Function Notation FUNCTNOT

Inverses INV

Domain and Range D/R

Exponential Function EF

Growth and Decay GROW/DEC

Transformations TRANSF

Roots and End Behavior ROOTS/EB
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Circular Motion CIRCMOT

Angle Measure ANGMES

Cosine COS

Sine SIN

Right Triangle RTTRI

Non-Right Triangles NRTTRI

Average Rate of Change AROC

Tangent TAN

Change in Quantity DELQ

Covariation COV

Proportions PROP

Box Activity BOX

Percent Change %DEL

Logarithm LOG

Technology TECH

Real Number Line REALLN

X-Y Plane XYPLANE

Applications APPS

Distance Formula DISTF

Pythagorean Theorem PYTHTHM

Parabola PARABOLA

Symmetry SYMM

Calculus CALC

Complex Numbers COMPLEX

Periodic PERIODIC

Cotangent COT

Secant SEC

Cosecant COSEC

Trigonometric Identities IDENTITIES

Sum and Difference Formulas SUMDIFF
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Hyperbola HYPERBOLA

Ellipse ELLIPSE

Circle CIRC

Reflection REFLECT

Quadratic Formula QUADF

Polar Form POLAR

Radians RAD

Reciprocal RECIP

Roots of Unity ROOTUNITY

DeMoivre’s Theorem DEMOIVRE

Secant Line SECLINE

Slope SLOPE

Euler’s Constant E

Factorial FACTORIAL

Tangent Line TANLN

Combinatorics COMBINATORICS

Mathematical Modeling MATHMODEL

Dependent Variable DV

Independent Variable IV

Applications: Free Falling Objects FALLINGOBJECTS

Oblique Triangles OBLIQUE

Vectors VECTORS

Differential and Difference Equations DIFFEQ

Set Representations SETS

Function Representations REP

Role of Numbers and Quantity NUMBERS

Permutations and Combinations PERMUTCOMB

Counting Principles COUNTPRINC
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Probability PROB

Binomial Expansion BINEXP

Recursion RECURS

Difference Tables DIFFTAB

Tables TAB

Proof PROOF

Geometry GEOM

Analytic Geometry ANALGEOM

Coordinate Plane COORDPL

Exponent Value EXPVAL

Events EVENTS

Area Under Curve AREAUNDCURVE

Division Algorithm DIVALG

Operations OPER
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Appendix C: Hubs

The table below provides the hubs for each precalculus text studies in this paper.

Table A3. The hub topics for each textbook. Note that the threshold to qualify as a hub is based on the book by
Faires which contains a minimum of six chapters.

Book Hub Names

Abramson
RF, LF, PF, RF, TRIG, CONICS,
SEQUENCES, LIMITS, SERIES

Blitzer
GRAPH, MOD, INEQ, RF, PF, EQN,
CONICS, SERIES, F/R

Pathways

ROC, AS, CROC, QUAD, F/R,
COMPOSITION,
FUNCTNOT, INV, D/R, EF, GROW/DEC, PF,
TRANSF, ROOTS/EB,
RF, CIRCMOT, ANGMES, COS, SIN, RTTRI,
NRTTRI

Stewart
PF, RF, GRAPH, MOD, LOG, EF,
SEQUENCES, EQN R/F

Faires

R/F, LF, REALLN, XYPL, RF,
APPLICATION, QUAD, D/R, GRAPH,
TECH, PYTHTHM, TRANSF, PARABOLA,
SYMM, CALC,
INV, ROOTS, PF, COMPLEX, TRIG, SIN,
COS, PERANG, ANG, TAN,
COTAN, SEC, COSEC, IDENTITIES,
SUMDIFF, RTTRI, EF, LOG,
GROW/DEC, CONICS, ELLIPSE,
HYPERBOLA, CIRC, REFLECT,
QUADF, POLAR, DISTF, COMPOSITION

CME

TAN, SIN, COS, PYTHTHM, GRAPH, ANG,
RADIANS, TRIG, CIRC, EQN,
RECIPROCAL, COMPLEX,
DEMOIVRE, PF, IDENTITIES, SUM, RF,
SECLINE, SLOPE, EF, E,
FACTORIAL, TANLN, COMBINATORICS,
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PERMUTCOMB,
R/F, PROB, BINEXP, RECURS, DIFFTAB,
TAB, PROOF, GEOM,
ANALGEOM, COORDPL, EXPVAL,
EVENTS, CALC, AREAUNDCURVE,
COUNTPRINC, ROOTUNITY

Larson DIVALG, PF, GRAPHS, MOD, EQNS, OPER

COMAP

TRANSF, LINEAR, GEOMETRY, PF, F/R,
GRAPHS,
MATHMODEL, TABLES, EQN, DV, IV, EXP,
LOG, INVERSE, MODELING,
FALLINGOBJECTS, TECHNOLOGY,
COMPLEX, PERIODIC, COS, SIN,
RADIAN, TAN, RTTRI, OBLIQUE,
VECTORS, POLAR, MATRIX, ANALGEO,
PARABOLA, COUNTINGPRINC, DIFFEQ

Rockswold

F/R, SETS, REP, GRAPHS, LINEAR, INEQ,
NUMBERS, MODELS,
ZERO, EQN, QUADRATIC, PF, DIVISION,
RF
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Appendix D: Semester in Review

Math 111

Semester In Review Assignment

11/29/21

A common theme throughout this course is not only the idea that we can view functions and
relationships as covariation between two or more quantities, but also how we can dynamically
adapt our understanding of one class of functions in order to meaningfully understand
subsequent categories of functional relations. This approach to learning math hopes to dispel the
rumors that mathematics is a discipline rooted in rote memorization, and instead aims to push
forward the natural emergence and organization of patterns in the subject.

This course aims to emphasize the philosophy that mathematics is to be understood and
interacted with instead of a rigid list of routine procedures. Many times throughout our classes
and other academic obligations, it can be a tempting tendency to reject considering how these
topics relate to our everyday lives. In this survey, we will be considering how some of the highly
relevant concepts we have investigated throughout the semester retain roots in the everyday
occurrences of our individual journeys through life, and how this may strengthen the lens by
which we view mathematics as a relevant component engrained in humanity and society as a
whole.

Consider the following themes we have discussed in class this semester:

1. Covariation

2. Rate of Change

3. Functions and Relations

4. Exponential Functions

5. Polynomial Functions

6. Rational Functions

7. Trigonometry
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8. Limits, Roots and End Behavior

9. Proportions

10. Inverses

Your goal is to synthesize these topics through your own eyes. Write a personal statement that

introduces these relevant concepts by addressing the following:

●  What do these topics mean to you?

●  How do these topics relate to any other topics discussed in the context of our classroom,

including any of the themes listed above?

●  How do these topics relate to your life in a personal way? Be sure to be as descriptive and

specific as possible, outlining at least one highly detailed example for each theme discussed.

Your statement must have a minimum length of two pages, and must be written professionally

and in such a manner that your thoughts are communicated in an effective way. Feel free to add

any visuals you would like, and feel free to play around with the format of your statement! An

excellent submission should reflect that nobody except you could have written it. As always, I

am here for guidance and/or support to help you on your way. I look forward to reading your

thoughts!
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Appendix E: Connectivity Survey

In the context of precalculus, considering the connection between varying topics of discussion is
a highly valuable summative review tool to strengthen the underlying themes of the course as a
whole.

For this assignment, I ask that you simply consider how given topics we have discussed
throughout the entire class are connected to each other. In the attached spreadsheet, please use
the drop-down menus to fill in a selected initial topic under the column titled 'Name of Topic',
and select all topics you consider to be connected in the columns labeled 'Name of Identified
Connected Topic'. I have provided ten columns under this name to allow for up to ten perceived
connected topics, but if you observe more than ten please feel free to add additional columns!
While there are many topics that we have discussed in class, I do not expect you to spend a great
deal of time on this: simply select your connections based on current understanding and memory.

Your submission should entail two items:

● A filled-in copy of the spreadsheet
● A text file that answers the following three questions with brevity:

○ Have you ever taken a college-level algebra course, or equivalent? Taking
Algebra II in high school would count as an equivalent college algebra
course.

○ What is your intended major?
○ How long has it been since your most recent math course, preceding our

course? (please provide answers in units of either months or years.)

Note: Each cell contains a drop-down menu with every topic covered in the scope of the course (n=126). Students
may also add more columns if they feel any given topic has more than twelve directly connected topics. The original
table provided had 127 total rows.
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Appendix F: Proposed Analytical Methods of Aggregating Student Data

In the initial steps of the construction and evaluation of self-reported student connectivity

models, a natural issue that was encountered was the emergence of networks composed of

disconnected components. In the context of network-theoretic language, student networks often

consisted of individual trees, creating a forest structure. Such a structure makes it initially

impossible to compute metrics such as APL and CC, as these metrics are undefined for

disconnected forests. Therefore, the following methodology was employed in order to provide

significant meaning to these networks through the utilization of aggregately computed metrics.

Consider a forest of k trees ( , , … , ) and n total vertices ( , , … , ), with kℑ Ղ1 Ղ2 ՂՓ Չ1 Չ2 ՉՖ
less than or equal to n. Note that an isolated node, by definition, is a tree. The APL will be

defined under the following conditions: We will compute the APL of each individual subgraph.

For isolated nodes, we let the APL of tree , where . The reasoning behindՂՑ = Ֆ Ց = 1, 2,  ...  , Ֆ
this is that if a student finds a given topic to lack any connection to any other topic in theՉՑ
course, it stands to reason that one must traverse the entire course in order to find any relation

between any two and , where . This is meaningfully represented byՉՑ ՉՒ Ւ = 1, 2,  ...  , Ֆ ,  Ց ≠ Ւ
letting each isolated node be weighted by the size of the entire list of course topics itself. For

connected trees (non-isolated nodes), we simply compute its APL. We then assign relative

frequency weights (p=1,2, … ,k) to each tree in forest where . To՟՘ Ղ՘ ℑ ՟՘ =  # ՗Վ Ֆ՗ՌՍ՛ ՑՖ Ղ՘Ֆ
find the aggregate APL of forest , we compute this asℑ

ԯԾԺՎՑՖՉՔ =  ՘=1
Փ∑  ՟՘* ԯԾԺ՘
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to obtain a weighted average of the APL of each subgraph. The CC for forest will be computedℑ
via the same weighted-average method. The difference here is that the CC for isolated nodes will

be assigned to be zero, which can be justified by reasoning that disconnected topics have no

tendency to cluster amongst any other vertices. Additionally, we will compute the CC for each

connected subgraph, and then assign relative weights to each CC in the same manner as

described above to obtain an aggregate CC. While this is just one case of a set of obstacles that

have cropped up in this analysis, the author anticipates many more along the way, and hopes to

address these (as well as their prescribed solutions, along with the results of such an analysis) in

future work.
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