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Abstract

The independence polynomial of a graph G is given by I(G; x) =
∑α(G)

k=0 ik(G)xk

where α(G) is the independence number of G and ik(G) is the number of independent

sets of size k in G. A 3̃-cycle of a graph is a cycle with length divisible by 3. Cao

and Ren proved for any integer k ≥ 0 that |I(G; x)| ≤ 2k for a graph G such that all

cycles are pairwise disjoint and k is the number of 3̃-cycles in G. In this paper, we

prove a density result related to this result of Cao and Ren. We show that for every

integer k ≥ 0 and integer q with |q| ≤ 2k there is a graph G such that all cycles are

pairwise disjoint, I(G; x) = q and k is the number of 3̃-cycles in G.
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O the depth of the riches both of the wisdom and knowledge of God! how
unsearchable are his judgments, and his ways past finding out! For who hath known
the mind of the Lord? or who hath been his counsellor? Or who hath first given to

him, and it shall be recompensed unto him again? For of him, and through him, and
to him, are all things: to whom be glory for ever. Amen.

(Romans 11:33-36)

That their hearts might be comforted, being knit together in love, and unto all riches
of the full assurance of understanding, to the acknowledgement of the mystery of

God, and of the Father, and of Christ; In whom are hid all the treasures of wisdom
and knowledge.

(Colossians 2:2-3)
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Chapter 1

Introduction

We begin with a few preliminary definitions. We define a graph G to be a pair with

a set of vertices V (G) and a set of edges E(G). If two vertices v, u ∈ V (G) form

an edge in G we write uv ∈ E(G) and say that u and v are adjacent vertices. An

independent set I of G is a subset I ⊆ V (G) such that for every u, v ∈ I it follows

that uv /∈ E(G). Therefore, an independent set only contains non-adjacent vertices.

The independence number, denoted by α(G), is the size of the largest independent

set of a graph G. The independence polynomial of a graph G is defined as

I(G; x) =

α(G)∑
k=0

ik(G)xk,

where ik(G) is the number of independent sets of size k in G and α(G) is the inde-

pendence number of G.

Consider an integer n and distinct elements v1, . . . , vn. A path with n vertices is

a graph with a vertex set V (Pn) = {v1, . . . , vn} and edge set E(Pn) = {vivi+1 : 1 ≤
i ≤ n− 1} such that. Notice, in particular, that vnv1 /∈ E(Pn). The final vertex and

the initial vertex are not adjacent. Figure 1.1 contains an illustration of the path
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P6. A graph G is said to be connected if for any vertices v, u ∈ V (G) there is a path

connecting them.

A cycle is defined very similarly to a path except the first and last vertex meet.

Let n ≥ 3 be an integer and v1, . . . , vn distinct elements. A cycle with n vertices,

denoted by Cn, is a graph with vertex set V (Cn) = {v1, . . . , vn} and edge set E(Cn) =

{vivi+1 : 1 ≤ i ≤ n− 1} ∪ {vnv1}. Figure 1.1 gives an illustration of the cycle C5. A

graph G is acyclic if it contains no cycles. We let the decycling number of G, denoted

φ(G), be the minimum size of a set S ⊆ V (G) such that G− S is acyclic.

P6 C5

Figure 1.1: Illustration of P6 and C5

What follows is a brief overview of result involving the independence polynomial

of a graph at −1. The independence polynomial was first defined by Gutman [6] .

Since then, the independence polynomial has been an object of interest in research.

The independence polynomial is useful in determining enumerative information about

a graph. For example, for a graph G, if x = 1, then

I(G; 1) = i0 + i1 + · · ·+ iα(G).

This gives the number of independent sets in the graph G. Or, when x = −1,

I(G;−1) = i0 − i1 + · · ·+ (−1)α(G) · iα(G).

This gives the difference of the number of independence sets of even and odd sizes.

Because of its usefulness, one major direction of inquiry has been the computation

2



of the independence polynomial of a graph. It has been shown that finding α(G) is an

NP-complete problem [5]. As a result, computation of the independence polynomial

in general is difficult to determine explicitly.

The independence polynomials of some special graphs have been determined ex-

plicitly. Let Pn be the path with n vertices and Cn be the cycle with n vertices.

Hopkins and Staton [7] proved the following which determines explicitly the indepen-

dence polynomials for a path Pn.

Theorem 1.0.1 (Hopkins, Staton, [7]). For a path Pn with n vertices where n ≥ 0

the independence polynomial for any x ∈ C is given by,

I(Pn; x) =

�(n+1)/2�∑
k=0

(
n− k + 1

k

)
· xk.

Hopkins and Staton also proved a result that determines the independence poly-

nomial for a cycle Cn.

Theorem 1.0.2 (Hopkins, Staton, [7]). For a cycle Cn with n vertices where n ≥ 3,

the independence polynomial for x ∈ C is given by

I(Cn; x) = 1 +

�n/2�∑
k=1

n

k

(
n− k − 1

k − 1

)
· xk.

Due to the difficulty of explicit computation of the independence polynomial; at-

tention has been spent on finding bounds for the absolute value of the independence

polynomial. Engström proved a major result in this direction using techniques from

topological combinatorics. Specifically, he used tools from what is called Discrete

Morse Theory first developed by Robin Forman [4]. Forman’s ideas and techniques

originate from ideas in algebraic topology. Engström [3] was able to prove the follow-

ing upper bound on the independence polynomial of G evaluated at −1.
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Theorem 1.0.3 (Engström 2009). If G is any graph, then

|I(G;−1)| ≤ 2φ(G).

This same result was later proved using graph theoretic techniques by Levit and

Mandrescu [8]. Levit and Mandrescu [8] also conjectured the following theorem which

was proved by Cutler and Kahl [2].

Theorem 1.0.4 (Cutler, Kahl 2016). For every positive integer k and each integer

q such that |q| ≤ 2k, there is a graph G with φ(G) = k and I(G;−1) = q.

Levit and Mandrescu [9] were able to find a different upper bound for I(G;−1).

Let the cyclomatic number of G, denoted β(G), be defined by β(G) = |E(G)| −
|V (G)|+ p, where p is the number of connected components of G. We note that p is,

of course, dependent on G. Levit and Mandrescu proved the following:

Theorem 1.0.5 (Levit, Mandrescu 2013). If G is any graph, then

|I(G;−1)| ≤ 2β(G).

If G is a graph a maximum independent set is an independent set of maximum

size. Notice that α(G) is the cardinality of a maximum independent set in G. A

graph G is said to be well covered if all its maximal independent sets are of the same

cardinality [9]. Levit and Mandrescu also proved the following result:

Theorem 1.0.6 (Levit, Mandescu 2013). If G is a unicyclic well-covered graph and

G 	= C3, then I(G;−1) ∈ {−1, 0, 1}.

This result was then expanded on and generalized by Cao and Ren [1]. It turns

out that the condition that Levit and Mandrescu’s condition that G 	= C3 hints at
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a method for determining a sharper bound on |I(G;−1)| later expanded on by Cao

and Ren [1].

Definition 1.0.1. We call a cycle in a graph G a 3̃-cycle if its length is divisible by

3 and a non-3̃-cycle otherwise.

Cao and Ren [1] proved the following result.

Theorem 1.0.7 (Cao, Ren 2020). If G contains a non-3̃-cycle, then

|I(G;−1)| ≤ 2β(G) − β(G).

There are infinitely many graphs G with β(G) = φ(G) which contain non-3̃-cycles.

We will give examples after developing some useful tools for doing so. One idea is

to construct graphs with disjoint cycles which we do in Example 5. Because there

are infinitely many graphs G with β(G) = φ(G), this result gives a closer bound on

I(G;−1) than Engström’s result for these graphs.

If G is a graph, two cyclesin G are vertex disjoint if they do not share any common

vertices. Cao and Ren [1] were also able to prove the following.

Theorem 1.0.8 (Cao, Ren 2020). If all cycles of G are vertex disjoint, then |I(G;−1)| ≤
2k, where k is the number of 3̃-cycles of G.

In this paper we prove the following density result by adapting the results of

Cutler and Kahl [2].

Theorem 1.0.9. For every integer k ≥ 0 and integer q with |q| ≤ 2k, there is a graph

G such that all cycles of G are pairwise disjoint, I(G;−1) = q and the number of

3̃-cycles of G is k.
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Chapter 2

Graph Preliminaries

2.1 Explicit Independence Polynomials for Paths

and Cycles

We begin by proving the results observed by Hopkins and Staton [7]. The proofs of

which give us some interesting ideas and an important foundation for later results.

Recall that Hopkins and Staton determined the independence polynomial for a

path Pn explicitly.

Theorem 1.0.1 (Hopkins, Staton, [7]). For a path Pn with n vertices where n ≥ 0

the independence polynomial for any x ∈ C is given by,

I(Pn; x) =

�(n+1)/2�∑
k=0

(
n− k + 1

k

)
· xk.

Hopkins and Staton also determined the indpendence polynomial for a cycle Cn

explicitly.

Theorem 1.0.2 (Hopkins, Staton, [7]). For a cycle Cn with n vertices where n ≥ 3,
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the independence polynomial for x ∈ C is given by

I(Cn; x) = 1 +

�n/2�∑
k=1

n

k

(
n− k − 1

k − 1

)
· xk.

These can be proved by way of two lemmas which count the number of independent

sets in both paths and cycles. Recall that for a graph G we let ik(G) be the number

of independent sets of size k in the graph G.

Proposition 2.1.1. Let n, k be integers with n ≥ k ≥ 0, then

(
n

k

)
+

(
n

k − 1

)
=

(
n+ 1

k

)
.

Proof. Let n, k be integers with n ≥ k ≥ 0, then

(
n

k

)
+

(
n

k − 1

)
=

n!

(n− k)!k!
+

n!

(n− k + 1)!(k − 1)!

=
(n− k + 1) · n! + k · n!

(n− k + 1)!k!

=
(n− k + 1 + k) · n!

(n− k + 1)!k!

=
(n+ 1) · n!

(n− k + 1)!k!

=
(n+ 1)!

n− k + 1)!k!

=

(
n+ 1

k

)
.

Proposition 2.1.2. Let n ≥ 1 be an integer. The maximum size of an independent

set of a path Pn with n vertices is

⌊
n+ 1

2

⌋
. In particular, α(Pn) = 
(n+ 1)/2�.

Proof. Consider a path Pn. If n is even, the biggest independent set can be found

by adding the first vertex, call it 1, to our independent set and adding every other

7



vertex. There are n/2 such vertices to choose from. Notice that for n even we have

n = 2k for some k ∈ N. In this case

⌊
n+ 1

2

⌋
=

⌊
2k + 1

2

⌋

=

⌊
k +

1

2

⌋
= k

=
n

2
.

If n is odd, by similar reasoning we find that there are (n + 1)/2 vertices we can

choose for our maximal independent set. Notice that for n odd we have,

⌊
n+ 1

2

⌋
=

n+ 1

2
.

Thus the maximum size of an independent set for a path Pn with n vertices is given

by ⌊
n+ 1

2

⌋
.

Lemma 2.1.3 (Hopkins and Staton, [7]). Let n ≥ 1 and Pn be a path with n vertices,

then

(i) i0(Pn) = 1,

(ii) i1(Pn) = n,

(iii) ik(Pn+1) = ik(Pn) + ik−1(Pn−1) for 0 ≤ k ≤
⌊
n+ 2

2

⌋
, and

(iv) ik(Pn) =

(
n− k + 1

k

)
for 0 ≤ k ≤

⌊
n+ 1

2

⌋
.

8



Remark. Notice that (iv) is true for 0 ≤ k ≤ 
(n+ 1)/2�. This is the case because

k represents all the possible sizes of the independent sets for Pn. The smallest inde-

pendent set is of size 0 whereas, for a path Pn, the largest is 0 ≤ k ≤ 
(n+ 1)/2� by

Proposition 2.1.2.

To see why (iii) is true for 0 ≤ k ≤ 
(n+ 2)/2� notice that we can apply Propo-

sition 2.1.2 for Pn+1. This path has n+ 1 vertices instead of just n.

Proof. Let n be an integer with n ≥ 1. To prove (i), the number of independent sets

of size 0 for any graph G is 1. (ii) The number of independent sets of size 1 for any

graph G is the size of its vertex set. This gives i1(Pn) = n since there are n vertices

in Pn.

(iii) Consider a path Pn+1 with n+1 vertices. The idea is to count the number of

independent sets of size k which contain the first vertex of the path, call it v, and the

number of independent sets of size k which do not contain n. These two cases partition

the number of independent sets in the graph. Counting the number of independent

sets of size k which contain v is equivalent to counting the number of independent

sets of size k − 1 in a path Pn−1 with two less vertices since we already have chosen

one element of our independent set and have two less vertices to choose from. This

gives ik−1(Pn) independent sets of size k − 1 which contain v. On the other hand,

counting the number of independent sets of size k which do not contain v is equivalent

to counting the independent sets of size k in a path Pn with one less vertex. This

gives ik(Pn). Putting these two results together gives ik(Pn+1) = ik(Pn)+ ik−1(Pn−1).

To see (iv) we do induction on n. For the base case n = 1 we have

i0(P1) = 1

i1(P1) = 1

9



and for k = 0,

(
n− k + 1

k

)
=

(
1− 0 + 1

0

)
=

(
2

0

)
= 1 = i0(P1).

For k = 1,

(
n− k + 1

k

)
=

(
1− 1 + 1

1

)
=

(
1

1

)
= 1 = i1(P1)

The base case follows as a result. Now suppose the result is true for 1 ≤ j ≤ i for

integers i and j. Then,

ik(Pi+1) = ik(Pi) + ik−1(Pi−1) by (iii)

=

(
i− k + 1

k

)
+

(
(i− 1)− (k − 1) + 1

k − 1

)
by assumption

=

(
i− k + 1

k

)
+

(
i− k + 1

k − 1

)

=

(
i− k + 2

k

)
by Proposition 2.1.1.

The result follows by induction.

The following result will be used to prove the result for cycles.

Proposition 2.1.4. For integers n and k with n ≥ k ≥ 1,

(
n

k

)
+

(
n− 1

k − 1

)
=

n+ k

k

(
n− 1

k − 1

)
.

10



Proof.

(
n

k

)
+

(
n− 1

k − 1

)
=

n!

(n− k)!k!
+

(n− 1)!

(n− k)!(k − 1)!

=
n(n− 1)!

k(n− k)!(k − 1)!
+

(n− 1)!

(n− k)!(k − 1)!

=
(n− 1)!

(k − 1)!(n− k)!

[n
k
+ 1

]
=

n+ k

k
· (n− 1)!

(n− k)!(k − 1)!

=
n+ k

k

(
n− 1

k − 1

)
.

Lemma 2.1.5 (Hopkins and Staton, [7]). Let n ≥ 3 and Cn be a cycle with n vertices,

then

(i) i0(Cn) = 1.

(ii) i1(Cn) = n.

(iii) ik(Cn) = ik(Pn−1) + ik−1(Pn−3) for 1 ≤ k ≤
⌊n
2

⌋
.

(iv) ik(Cn) =
n

k

(
n− k + 1

k − 1

)
for 1 ≤ k ≤

⌊n
2

⌋
.

Remark. Note that in this case the range of values for k in (iii) is 1 ≤ k ≤ 
n/2� .

A cycle Cn with n vertices can be viewed like a path with n − 1 vertices. Applying

Proposition 2.1.2 gives the maximum independent set of size 
n/2�. The smallest

number for k must be 1 since division by 0 causes a problem in (iv).

Proof. The proof of (i) and (ii) follow by the same reasoning as above for paths in

Lemma 2.1.3.

To prove (iii) we can use similar reasoning as in the proof of Lemma 2.1.3(iii).

Consider a cycle Cn+1 with n + 1 vertices. Label a vertex v in the cycle. The

11



independent sets of size k partition into those which contain v and those which do

not. The number of independent sets which contain v are given by ik−1(Pn−3) since

we get a path with n−3 vertices by removing v and its two neighbors. The number of

independent sets of size k which do not contain v is given by ik(Pn−1) since removing

v gives a path of size n − 1. These two results together give ik(Cn) = ik(Pn−1) +

ik−1(Pn−3).

We prove (iv) using Lemma 2.1.3 (iv). We see that

ik(Cn) = ik(Pn−1) + ik−1(Pn−3) by (iii)

=

(
n− k

k

)
+

(
n− k − 1

k − 1

)

=
n

k

(
n− k − 1

k − 1

)
by Proposition 2.1.4.

We are now in a position to prove the results for the independence polynomials

of paths and cycles. First let us consider the result for paths.

Theorem 1.0.1 (Hopkins, Staton, [7]). For a path Pn with n vertices where n ≥ 0

the independence polynomial for any x ∈ C is given by,

I(Pn; x) =

�(n+1)/2�∑
k=0

(
n+ 1− k

k

)
· xk.

Proof. Let x ∈ C and n and integer with n ≥ 0. For a path Pn we saw in Lemma

2.1.3 that the number of independent sets of size k is

ik(Pn) =

(
n− k + 1

k

)

for 0 ≤ k ≤ 
(n + 1)/2�. By definition of the independence polynomial and our use

12



of the notation ik(Pn) we see that

I(Pn; x) =

α(Pn)∑
k=0

ik(Pn) · xk =

�(n+1)/2�∑
k=0

(
n− k + 1

k

)
· xk

For cycles we have the following.

Theorem 1.0.2 (Hopkins, Staton [7]). For a cycle Cn with n vertices where n ≥ 3,

the independence polynomial for x ∈ C is given by

I(Cn; x) = 1 +

�n/2�∑
k=1

n

k

(
n− k − 1

k − 1

)
· xk.

Proof. Let x ∈ C and n be an integer with n ≥ 3. By Lemma 2.1.5 we saw that the

number of independent sets of size k in a cycle Cn is given by

ik(Cn) =
n

k

(
n− k − 1

k − 1

)

for 1 ≤ k ≤ 
n/2�. Then the independence polynomial is given by

I(Cn; x) =

α(Cn)∑
k=0

ik(Cn) · xk

= i0(Cn) +

�(n+1)/2�∑
k=1

ik(Cn) · xk

= 1 +

�(n+1)/2�∑
k=1

(
n− k − 1

k

)
· xk.

These results now give a relatively straightforward way of computing the indepen-

dence polynomials for paths and cycles. Let us consider some examples.

13



Example 1. Let us compute the independence polynomials for paths with 1 through

6 vertices. We will see a glimpse at an interesting pattern when these are evaluated

at −1.

Using our main results along with the identities in Lemma 2.1.3 one can show

I(P1; x) = 1 + x

I(P2; x) = 1 + 2x

I(P3; x) = 1 + 3x+ x2

I(P4; x) = 1 + 4x+ 3x2

I(P5; x) = 1 + 5x+ 6x2 + x3

I(P6; x) = 1 + 6x+ 10x2 + 4x3.

We will consider values I(G;−1) for graphs G quite regularly ahead. Consider the

polynomials above evaluated at −1. It can easily be shown that we get the following

I(P1;−1) = 1− 1 = 0

I(P2;−1) = 1− 2 = −1

I(P3;−1) = 1− 3 + 1 = −1

I(P4;−1) = 1− 4 + 3 = 0

I(P5;−1) = 1− 5 + 6− 1 = 1

I(P6;−1) = 1− 6 + 10− 4 = 1.

One interesting observation here is that if we partition the vertices of the path

into multiples of 3 hints at the more general pattern with I(P3n−2;−1) = 0 and

I(P3n−1;−1) = I(P3n;−1) = (−1)n. This is in fact true for all n ≥ 1 and is due to

Levit and Mandrescu [9]. After developing some simple tools we give a proof of this

14



fact in what follows.

Example 2. Lets find independence polynomials in a similar fashion but for cycles.

Using our results in Lemma 2.1.5 we can find the following independence polynomials.

Notice in this case we must have values of n ≥ 3. So, we begin with C3.

I(C3; x) = 1 + 3x

I(C4; x) = 1 + 4x+ 2x2

I(C5; x) = 1 + 5x+ 5x2

I(C6; x) = 1 + 6x+ 9x2 + 2x3

I(C7; x) = 1 + 7x+ 14x2 + 7x3

I(C8; x) = 1 + 8x+ 20x2 + 16x3 + 2x4.

Substituting −1 gives,

I(C3;−1) = 1− 3 = −2

I(C4;−1) = 1− 4 + 2 = −1

I(C5;−1) = 1− 5 + 5 = 1

I(C6;−1) = 1− 6 + 9− 2 = 2

I(C7;−1) = 1− 7 + 14− 7 = 1

I(C8;−1) = 1− 8 + 20− 16 + 2 = −1.

Likewise there is a more general pattern. One can check that these results are special

cases of the identities

I(C3n;−1) = 2 · (−1)n, I(C3n+1;−1) = (−1)n, I(C3n+2;−1) = (−1)n+1.

These results result were likewise proved by Levit and Mandrescu [9]. We prove these
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results in general in the next section.

2.2 More General Tools

The purpose of this section is to lay down some ground work for our purposes. Doing

so will demonstrate some of the thinking and techniques we will use later.

We first consider a generalization of the thinking involved in the recursive formulas

we found for paths and cycles in Lemma 2.1.3 and Lemma 2.1.5. The idea was

to partition, for example, the path into independent sets which contain the first

vertex and those which do not. It turns out that this idea is very useful and can be

generalized easily to arbitrary graphs. This result, in turn will be used as a major tool

for proving a recursive identity for independence polynomials. We state the result

and give its proof.

For a graph G let V (G) be the vertex set and E(G) be the edge set. For two

adjacent vertices u, v ∈ V (G) we say uv ∈ E(G). Let v ∈ V (G). Let N(v) = {x ∈
V (G) : xv ∈ E(G)} be the set of all neighbors of a vertex v ∈ V (G). N(v) is called

the open neighborhood of v. Let N [v] = {v} ∪ N(v) be the set of neighbors of v and

v itself; N [v] is called the closed neighborhood of v.

Also, for a graph G, a vertex v ∈ V (G), and some subset S ⊆ V (G) of the vertex

set we let G− S be the subgraph with vertex set S and edges defined only for these

vertices. So, for a vertex v ∈ V (G) of a graph G we can consider the subgraph with

v removed. Instead of denoting this graph by G−{v} we will just write simply write

G− v.

Proposition 2.2.1. For an integer k ≥ 0 and a graph G with v ∈ V (G),

ik(G) = ik(G− v) + ik−1(G−N [v]).
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Proof. Consider a graph G, an integer k ≥ 0 and let v ∈ V (G). To count the

number of independent sets in G we can partition them into sets which contain v

and those which do not contain v. The number of independent sets which do not

contain v is given by ik(G − v). The number of independent sets which contain v is

ik−1(G − N [v]). The reason for this is that having already chosen v we must count

the number of independent sets of size k − 1 that can be made and we must exclude

v along with its neighbors. Putting these two results together gives

ik(G) = ik(G− v) + ik−1(G−N [v]).

Remark. Notice that the proof is very similar for both Lemma 2.1.3 (iii) and Lemma

2.1.5 (iii). Both results follow immediately from observing, for instance, that for a

path Pn+1 with n ≥ 1 and the first vertex, call it v,

Pn+1 − v = Pn and Pn+1 −N [v] = Pn−1

and for a cycle Cm with m ≥ 3 and a vertex u,

Cm − u = Pm−1 and Cm −N [u] = Pm−3.

We can use Proposition 2.2.1 to prove the following very useful result. We will

see this identity more than a few times. Recall that for a graph G we defined the

independence polynomial of G to be

I(G; x) =

α(G)∑
k=0

ik(G)xk.

For simplicity we drop the independence number in the upper limit of the sum, namely
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α(G). Note that the independence polynomial is defined for complex values of x. In

what follows we assume that x can be a complex number.

Proposition 2.2.2. For any graph G and vertex v ∈ V (G),

I(G; x) = I(G− v; x) + xI (G−N [v]; x)

Proof. Let G be a graph with v ∈ V (G). Then,

I(G; x) =
∑
k=0

ik(G) · xk

=
∑
k=0

[
ik(G− v) + ik−1(G−N [v])

]
· xk by Proposition 2.2.1

=
∑
k=0

ik(G− v) · xk +
∑
k=0

ik−1(G−N [v]) · xk

=
∑
k=0

ik(G− v) · xk + x
∑
k=0

ik−1(G−N [v]) · xk−1

= I(G− v; x) + xI(G−N [v]; x).

As useful corollary to this fact is the following.

Corollary 2.2.3. Let G be a graph and v ∈ V (G), then

I(G;−1) = I(G− v;−1)− I(G−N [v];−1).

Proof. Let x = −1 in Proposition 2.2.2 and the result follows immediately.

With these results we can formalize and prove the results which we alluded to

in Examples 1 and 2 concerning the independence polynomials of paths and cycles

evaluated at -1. We noticed that certain identities seem to hold when partitioning

the vertices in multiples of 3. The result was first proved by Levit and Mandrescu [9].
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Theorem 2.2.4 (Levit and Mandrescu, [9]). For n ≥ 1,

(i) I(P3n−2;−1) = 0, I(P3n−1;−1) = I(P3n;−1) = (−1)n

(ii) I(C3n;−1) = 2 · (−1)n, I(C3n+1;−1) = (−1)n, I(C3n+2;−1) = (−1)n+1.

Proof. (i) We prove the result by induction on n. Let n = 1. We saw in Example 1

that

I(P1; x) = 1 + x

I(P2; x) = 1 + 2x

I(P3; x) = 1 + 3x+ x2

so that,

I(P1;−1) = 0

I(P2;−1) = 1− 2 = −1 = (−1)1

I(P3;−1) = 1− 3 + 1 = −1 = (−1)1.

So, the result is true for n = 1. Now suppose that the result holds for 1 ≤ i ≤ k

19



where i and k are integers. Then, for a vertex v in each respective graph,

I(P3(k+1)−2;−1) = I(P3k+1;−1)

= I(P3k+1 − v;−1)− I(P3k+1 −N [v];−1) by Corollary 2.2.3

= I(P3k;−1)− I(P3k+1;−1)

= (−1)k − (−1)k by assumption

= 0

I(P3(k+1)−1;−1) = I(P3k+2;−1)

= I(P3k+2 − v;−1)− I(P3k+2 −N [v];−1)

= I(P3k+1;−1)− I(P3k;−1)

= 0− (−1)k by assumption and last case

= (−1)k+1

I(P3(k+1);−1) = I(P3k+3;−1)

= I(P3k+3 − v;−1)− I(P3k+3 −N [v];−1)

= I(P3k+2;−1)− I(P3k+1;−1)

= (−1)k+1 − 0 (by cases above)

= (−1)k+1.

The result follows by induction.

To show (ii) we apply (i). Let n ≥ 1, then for are vertex v in each respective
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graph,

I(C3n;−1) = I(C3n − v;−1)− I(C3n −N [v];−1)

= I(P3n−1;−1)− I(P3(n−1);−1)

= (−1)n − (−1)n−1

= (−1)n + (−1)n

= 2 · (−1)n,

I(C3n+1;−1) = I(C3n+1 − v;−1)− I(C3n+1 −N [v];−1)

= I(P3n;−1)− I(P3n−2;−1)

= (−1)n − 0

= (−1)n,

I(C3n+2;−1) = I(C3n+2 − v;−1)− I(C3n+2 −N [v];−1)

= I(P3n+1;−1)− I(P3n−1;−1)

= I(P3(n+1)−2;−1)− I(P3n−1;−1)

= 0− (−1)n

= (−1)n+1.

We now prove a useful proposition concerning the product of the independence

polynomials of disjoint graphs. First we consider a result counting the number of

independent sets in the union of two disjoint graphs.

Proposition 2.2.5. Let G1 and G2 be disjoint graphs, then for an integer k ≥ 0,

ik(G1 ∪G2) =
k∑

�=0

i�(G1) · ik−�(G2).
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Proof. The idea behind the proof of this statement is to count the number of indepen-

dent sets of size k by partitioning on the number of independent sets we choose first

from, say G1. For 0 ≤ � ≤ k, the number of ways we can choose an independent set

of size � in G1 is given by i�(G1). As there are ik−�(G2) ways to choose the remaining

k−� independent sets we see there that there are i�(G1) · ik−�(G2) independent sets of

size k by choosing � independent sets first from G1. We sum over all possible values

of � and find,

ik(G1 ∪G2) =
k∑

�=0

i�(G1) · ik−�(G2).

We now prove a result that relates the independence polynomial of the union of

two disjoint graphs to the independence polynomials of the individual graphs. We

see that it turns out to be their product. Recall that for two sums,

n∑
i=0

aix
i

and

m∑
j=0

bjx
j,

their Cauchy product is given by

(
n∑

i=0

aix
i

)
·
(

m∑
j=0

bjx
j

)
=

m+n∑
k=0

ckx
k,

where

ck =
k∑

�=0

a�bk−�.
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Proposition 2.2.6. Let G1 and G2 be disjoint graphs and let G = G1 ∪G2, then

I(G; x) = I(G1; x) · I(G2; x)

Proof. For two disjoint graphs G1 and G2 with G = G1 ∪G2,

I(G; x) =
∑
k

ik(G) · xk

=
∑
k

ik(G1 ∪G2) · xk

=
∑
k

(
k∑

�=0

i�(G1)ik−�(G2)

)
· xk by Proposition 2.2.5

=

(∑
k

ik(G1) · xk

)
·
(∑

k

ik(G2) · xk

)

= I(G1; x) · I(G2; x) the Cauchy product.
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Chapter 3

Previous Results of Cutler and

Kahl

We seek to prove the following density result by adapting the results of Cutler and

Kahl [2].

Theorem 1.0.9. For every positive integer k and integer q with |q| ≤ 2k, there is a

graph G such that all cycles of G are pairwise disjoint, I(G;−1) = q and the number

of 3̃-cycles of G is k.

Consequently, we give a detailed look at the techniques used by Cutler and Kahl

in the proof of the following density result first conjectured by Levit and Mandrescu.

Theorem 1.0.4 (Cutler, Kahl 2016). For every positive integer k and each integer

q such that |q| ≤ 2k, there is a graph G with φ(G) and I(G;−1) = q.

We will see that these techniques can be modified to prove our density result

related to the work of Cao and Ren.
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3.1 (k, q)-graphs, Brackets, Extensions, and Past-

ing

We begin with definitions and results that serve as a foundation for Cutler and Kahl’s

proof of the following theorem conjectured by Levit and Mandrescu [8].

Theorem 1.0.4 (Cutler, Kahl 2016). For every positive integer k and each integer

q such that |q| ≤ 2k, there is a graph G with φ(G) and I(G;−1) = q.

We will define a special type of graph called a (k, q)-graph along with some tools

for constructing them. We begin by defining the simple notion of a graph with a

labeled vertex. We will call such a graph a rooted graph. This will enable us to define

a pasting operation that will allow us two join two graphs together at a particular

vertex.

Definition 3.1.1 (Rooted Graph). Let G be a graph and v ∈ V (G). The rooted

graph of G at v, denoted by Gv, is defined to be simply the graph G with the vertex

v labeled.

Suppose G is a graph and consider a vertex v ∈ V (G). By Corollary 2.2.3, we

have

I(G;−1) = I(G− v;−1)− I(G−N [v];−1).

This suggests the following definition.

Definition 3.1.2 (Bracket). Let G be a graph and v ∈ V (G) be a vertex of G. If we

let

I(G− v;−1) = a

I(G−N [v];−1) = b
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We have,

I(G;−1) = a− b.

We define the bracket of G by I(G;−1) = a− b = 〈a, b〉.

Definition 3.1.3 (Wedge/Pasting Operation). If Gv and Hw are rooted graphs the

graph Gv ∧ Hw is defined to be the graph obtained by pasting Gv and Hw together

by identifying v with w. For short when we identify vertices in this manner we will

write v = w. We call Gv ∧Hw the wedge of Gv and Hw.

Example 3. Let’s consider an example of the pasting operation. Set rooted graphs

Gv and Hw as shown in Figure 3.1. The pasting operation joins Gv and Hw together

v w

Gv
Hw

Figure 3.1: Graphs Gv and Hw.

at v and w and declares v = w. This is shown in Figure 3.2.

v = w

Gv ∧Hw

Figure 3.2: Graph Gv ∧Hw.

Lemma 3.1.1 (Pasting Lemma). Let Gv and Hw be rooted graphs which are disjoint.

Let the brackets of Gv and Hw have brackets I(Gv;−1) = 〈a, b〉 and I(Hw;−1) =

〈c, d〉, then
I(Gv ∧Hw;−1) = ac− bd = 〈ac, bd〉.
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Proof. By definition of the bracket we have

I(Gv − v;−1) = a

I(Gv −N [v];−1) = b

and

I(Hw − w;−1) = c

I(Hw −N [w];−1) = d.

Then, because Gv and Hw are disjoint and pasted together at v and w it follows

that,

I(Gv ∧Hw;−1) = I(Gv ∧Hw − v;−1)− I(Gv ∧Hw −N [v];−1)

= I(Gv − v;−1)I(Hv − v;−1)− I(Gv −N [v];−1)I(Hv −N [v];−1)

by Proposition 2.2.6

= I(Gv − v;−1)I(Hw − w;−1)− I(Gv −N [v];−1)I(Hw −N [w];−1)

since v = w

= ac− bd

= 〈ac, bd〉.

Definition 3.1.4 (�-extension). Let Gv be a rooted graph and � ≥ 0 an integer. An

�-extension, denoted by G�
v is defined to be the graph obtained by pasting a path

of length � to Gv at v at an endpoint of the path and reassigning v with the other

endpoint of the path. When used, G0
v will be another way of denoting Gv.
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Example 4 (�-extensions of C3). For illustration, consider Gv = C3. Figure 3.3

shows the graphs G0
v, G

1
v, and G2

v.

G0
v G1

v G2
v

v

v

v

Gv = C3

Figure 3.3: G�
v for � = 0, 1, 2.

Example 5. We mentioned earlier that β(G) = φ(G) for infinitely many graphs G

with non-3̃-cycles. We can use the pasting operation to construct an example which

joins disjoint cycles. For each integer n ≥ 1 we can let

G = C1
4 ∧ · · · ∧ C1

4︸ ︷︷ ︸
n times.

For each integer n ≥ 1 we see that there are n disjoint cycles. Because there are n

disjoint cycles, it follows that β(G) = n. Also, to make G acyclic we need to delete

one vertex from each of the n cycles. Therefore, φ(G) = n. Hence it follows that

φ(G) = β(G). As there are infinitely many such integers n, this gives us infinitely

many graphs G with β(G) = φ(G). Because each cycle is C4, each cycle is a non-3̃-

cycle.

Lemma 3.1.2 (Extension Lemma). Let Gv be a rooted graph with bracket I(Gv;−1) =

a− b = 〈a, b〉, then

I(G1
v;−1) = −b = 〈a− b, a〉

I(G2
v;−1) = −a = 〈−b, a− b〉

I(G3
v;−1) = b− a = 〈−a,−b〉 = −〈a, b〉 = −I(Gv;−1).
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Proof. Suppose I(Gv,−1) = a− b = 〈a, b〉, then

I(G1
v;−1) = I(G1

v − v;−1)− I(G1
v −N [v];−1)

= I(Gv;−1)− I(Gv − v;−1)

= (a− b)− a

= −b

= 〈a− b, a〉

I(G2
v;−1) = I(G2

v − v;−1)− I(G2
v −N [v];−1)

= I(G1
v;−1)− I(Gv;−1)

= −b− (a− b)

= 〈−b, a− b〉

I(G3
v;−1) = I(G3

v − v;−1)− I(G3
v −N [v];−1)

= I(G2
v;−1)− I(G1

v;−1)

= −a− (−b)

= 〈−a,−b〉

and notice that

−a− (−b) = −(a− b)

= −〈a, b〉

= −I(Gv;−1).

So, I(G3
v;−1) = b− a = 〈−a,−b〉 = −〈a, b〉 = −I(Gv;−1).

Remark. A simpler way to see the proof of Lemma 3.1.2 is to recognize that for

a rooted graph Gv it follows that (G�
v)

1 = G�+1
v for any integer � ≥ 0. Thus, for

instance, G2
v = (G1

v)
1. So if I(Gv;−1) = 〈a, b〉 it follows that I(G1

v;−1) = 〈a− b, a〉.
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We can re-apply the first statement to G1
v to get

I(G2
v;−1) = I((G1

v)
1;−1)

= 〈(a− b)− a, a− b〉

= 〈−b, a− b〉.

We will use this technique in practice whenever we seek to find G�+1
v given that we

already know G�
v. We illustrate the technique by finding the brackets for C6 and C4.

We will also see in both examples that the bracket values are cyclic in nature and

eventually repeat in multiples of 6 for the value �.

Example 6 (Brackets of C6). Suppose v ∈ V (C6), then

I(C6;−1) = I(C6 − v;−1)− I(C6 −N [v];−1)

= I(P5;−1)− I(P3;−1)

= (−1)2 − (−1) by Theorem 2.2.4

= 1− (−1)

= 〈1,−1〉.
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Using the Extension Lemma gives,

I(C1
6 ;−1) = 〈1− (−1), 1〉

= 〈2, 1〉

I(C2
6 ;−1) = 〈2− 1, 2〉

= 〈1, 2〉

I(C3
6 ;−1) = 〈1− 2, 1〉

= 〈−1, 1〉

I(C4
6 ;−1) = 〈−1− 1,−1〉

= 〈−2,−1〉

I(C5
6 ;−1) = 〈−2− (−1),−2〉

= 〈−1,−2〉

I(C6
6 ;−1) = 〈−1− (−2),−1〉

= 〈1,−1〉

= I(C6;−1).

Notice that I(C6;−1) = 〈1,−1〉 = I(C6
6 ;−1). This demonstrates the cyclic nature of

the set of brackets for extensions of a graph. This observation turns out to be true

in general which we will prove. We summarize these results of the bracket of C6 in

Table 3.1. We will also use these results in later proofs.

Example 7 (Brackets of C4). We find the brackets of all the extensions of C4. Sup-
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� I(C�
6;−1) I(C�

4;−1) I(P �
5 ;−1)

0 〈1,−1〉 〈−1, 0〉 〈0,−1〉
1 〈2, 1〉 〈−1,−1〉 〈1, 0〉
2 〈1, 2〉 〈0,−1〉 〈1, 1〉
3 〈−1, 1〉 〈1, 0〉 〈0, 1〉
4 〈−2,−1〉 〈1, 1〉 〈−1, 0〉
5 〈−1,−2〉 〈0, 1〉 〈−1,−1〉
6 〈1,−1〉 〈−1, 0〉 〈0,−1〉

Table 3.1: Brackets of C�
6, C

�
4 and P �

5 .

pose v ∈ V (C4), then

I(C4;−1) = I(C4 − v;−1)− I(C4 −N [v];−1)

= I(P3;−1)− I(P1;−1)

= −1− 0 by Theorem 2.2.4

= 〈−1, 0〉.

Applying the Extension Lemma gives,

I(C1
4 ;−1) = 〈−1,−1〉

I(C2
4 ;−1) = 〈0,−1〉

I(C3
4 ;−1) = 〈1, 0〉

I(C4
4 ;−1) = 〈1, 1〉

I(C5
4 ;−1) = 〈0, 1〉

I(C6
4 ;−1) = 〈−1, 0〉 = I(C4;−1).

Notice again that I(C6
4 ;−1) = I(C4;−1). We have summarized these results in Table

3.1 as well.

Example 8. We consider the brackets of the extensions of the path P5. Let v ∈ V (P5)

32



be an endpoint of the path, then

I(P5;−1) = I(P5 − v;−1)− I(P5 −N [v];−1)

= I(P4;−1)− I(P3;−1)

= 0− (−1) by Theorem 2.2.4

= 〈0,−1〉.

Using the Extension Lemma we find,

I(P 1
5 ;−1) = 〈1, 0〉

I(P 2
5 ;−1) = 〈1, 1〉

I(P 3
5 ;−1) = 〈0, 1〉

I(P 4
5 ;−1) = 〈−1, 0〉

I(P 5
5 ;−1) = 〈−1,−1〉

I(P 6
5 ;−1) = 〈0,−1〉.

Notice once more that the bracket of the original graph is equal to the bracket with

an extension of size 6; namely, I(P5;−1) = I(P 6
5 ;−1) = 〈0,−1〉. We now prove this

observation in general.

Proposition 3.1.3. Let Gv be a rooted graph with I(Gv;−1) = a− b = 〈a, b〉, then

I(Gv;−1) = I(G6
v;−1).

Proof. If Gv is a rooted graph with I(Gv;−1) = a− b = 〈a, b〉, then by the Extension
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Lemma

I(G3
v;−1) = 〈−a,−b〉

I(G4
v;−1) = 〈−a− (−b),−a〉 = 〈b− a,−a〉

I(G5
v;−1) = 〈b− a− (−a), b− a〉 = 〈b, b− a〉

I(G6
v;−1) = 〈b− (b− a), b〉 = 〈a, b〉

= I(Gv;−1).

Remark. This proposition shows that the brackets for the extensions of a graph are

cyclic in nature. So, for example we can say for � ≥ 0 it follows that I(G�
v;−1) =

I(G� mod 6
v ;−1). This tells us that the bracket for any extension of length � ≥ 6 will

already be found on the list of brackets for � < 6.

3.2 Results on (k, q)-graphs

Definition 3.2.1 ((k, q)-graph). Let k be a positive integer and q be an integer such

that |q| ≤ 2k. A graph G such that φ(G) = k and I(G;−1) = q is called a (k, q)-graph.

Lemma 3.2.1. Let G and H be disjoint connected (k1, q1) and (k2, q2)-graphs, re-

spectively. Set k1 + k2 = k and q1 · q2 = q, then there exists a connected (k, q)-graph

F such that φ(F ) = k1 + k2 = k and I(F ;−1) = q1q2 = q = I(G ∪H;−1).

Proof. Let G = Gv and H = Hw and set

I(Gv;−1) = 〈a, b〉 = q1

I(Hw;−1) = 〈c, d〉 = q2.

34



It follows by the Extension Lemma that

I(G1
v;−1) = 〈a− b, a〉

= 〈q1, a〉

I(G2
v;−1) = 〈−b, q1〉

and

I(Hw;−1) = 〈c− d, c〉

= 〈q2, c〉

I(Hw;−1) = 〈−d, q2〉.

The Pasting Lemma gives

I(G2
v ∧H2

w;−1) = 〈bd, q1q2〉.

So applying the Extension Lemma again gives

I((G2
v ∧H2

w)
1;−1) = 〈bd− q1q2, bd〉 = −q1q2.

Finally, one more application of the Extension Lemma gives

I((G2
v ∧H2

w)
4;−1) = I

((
(G2

v ∧H2
w)

1
)3

;−1

)
= −I((G2

v ∧H2
w)

1;−1) = q1q2 = q.

Thus we can set F = (G2
v∧H2

w)
4. It follows that I(F ;−1) = q1q2 = q. As G and H are

disjoint, note that I(H∪G;−1) = I(G;−1)·I(H;−1) = q1q2. So, I((G
2
v∧H2

w)
4;−1) =
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I(G ∪ H;−1) = q1q2 = q by Proposition 2.2.6. Further, because the extension and

pasting operations do not add any cycles we have φ(F ) = k1 + k2 = k. Therefore F

is a (k, q)-graph with the desired properties.

Corollary 3.2.2. If G is a (k, q)-graph, there exists

(i) a connected (k + 1, 2q)-graph, and

(ii) a connected (k,−q)-graph.

Proof. Let G be a (k, q)-graph.

(i) Apply Lemma 3.2.1 with H = C6, then because I(C6;−1) = 2 by Theorem

2.2.4 and φ(C6) = 1 it follows that there’s a (k + 1, 2q)-graph F .

(ii) Apply Lemma 3.2.1 with H = P 3
5 , then because I(P 3

5 ;−1) = −1 by Example

8 and φ(P5) = 0 it follows that there’s a (k,−q)-graph.

Lemma 3.2.3. Let k ≥ 1 be an integer. For every odd integer q ∈ [0, 2k] there is a

(k, q)-graph Gv such that either I(Gv;−1) = 〈2k, 2k − q〉 or I(Gv;−1) = 〈−2k + q;−2k〉.

Proof. We use induction on k. If k = 1, then φ(C1
6) = 1 and I(C1

6 ;−1) = 〈2, 1〉 = 1

which we saw in Example 6. Therefore we have a graph Gv with q = 1 in the form

I(Gv;−1) = 〈21, 21 − q〉. The result is true for k = 1.

Now, suppose the result is true for k − 1. Let q ∈ [0, 2k] be an odd integer. We

consider two cases; either q ∈ [2k−1, 2k] or q ∈ [0, 2k].

Case 1. If q ∈ [2k−1, 2k] is an odd integer, then there’s an odd integer r ∈ [0, 2k−1]

with q = 2k − r. By assumption, there’s a (k− 1, 2k−1 − r)-graph Gv such that either

I(Gv;−1) = 〈2k−1, 2k−1 − (2k−1 − r)〉

= 〈2k−1, r〉
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or

I(Gv;−1) = 〈−2k−1 + (2k−1 − r),−2k−1〉

= 〈−r,−2k−1〉.

If I(Gv;−1) = 〈2k−1, r〉, because I(C1
6 ;−1) = 〈2, 1〉 by Example 6 and φ(C1

6) = 1, it

follows by the Pasting Lemma that

I(Gv ∧ C1
6 ;−1) = 〈2k−1 · 2, r · 1〉

= 〈2k, r〉

= 〈2k, 2k − q〉.

Also, φ(Gv ∧ C1
6) = k − 1 + 1 = k. Therefore, Gv ∧ C1

6 is a (k, q)-graph with

I(Gv ∧ C1
6 ;−1) = 〈2k, 2k − q〉.

If I(Gv;−1) = 〈−r,−rk−1〉, then because I(C2
6 ;−1) = 〈1, 2〉 by Example 6 and

φ(C2
6) = 1, it follows again by the Pasting Lemma that

I(Gv ∧ C2
6 ;−1) = 〈−r · 1,−2k−1 · 2〉

= 〈−r,−2k〉

= 〈−2k + q,−2k〉.

Further, φ(Gv ∧ C2
6) = k − 1 + 1 = k. Therefore Gv ∧ C2

6 is a (k, q)-graph with

I(Gv ∧ C1
6 ;−1) = 〈−2k + q,−2k〉. The result in this case follows then by induction

for odd integers q ∈ [2k−1, 2k].

Case 2. If q ∈ [0, 2k−1] is an odd integer, then q = 2k − r for an odd integer

r ∈ [2k−1, 2k]. By Case 1, there’s a (k, q)-graph Gv such that either I(Gv;−1) =

〈2k, 2k − r〉 or I(Gv;−1) = 〈−2k + r,−2k〉.
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If I(Gv;−1) = 〈2k, 2k − r〉 = 〈2k, q〉, then notice from the Extension Lemma that

I(G3
v;−1) = 〈−2k,−q〉

I(G4
v;−1) = 〈−2k + q,−2k〉.

Therefore, G4
v is a (k, q)-graph with I(G2

v;−1) = 〈−2k + q,−2k〉.

On the other hand, if I(Gv;−1) = 〈−2k + r,−2k〉 = 〈−q,−2k〉, then by the

Extension Lemma,

I(G1
v;−1) = 〈2k − q,−q〉

I(G2
v;−1) = 〈2k, 2k − q〉.

So, it follows that G2
v is a (k, q)-graph with I(G2

v;−1) = 〈2k, 2k − q〉. The result in

this case for values odd q ∈ [0, 2k−1] follows by induction.

3.3 Density Result of Cutler and Kahl

Having laid the ground work the proof of the conjecture proposed by Levit and

Mandrescu follows easily by using an induction argument.

Theorem 1.0.4 (Cutler, Kahl 2016). Given a positive integer k and an integer q

with |q| ≤ 2k, there is a connected graph G with φ(G) = k and I(G;−1) = q.

Proof. The prove uses induction on k. Given any positive integer k notice that we
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can choose any graph H with φ(H) = k. For example, we can let

H = C3 ∧ · · · ∧ C3︸ ︷︷ ︸
k times

.

Because φ(C3) = 1 and the pasting operation joins k such graphs in a way that H has

disjoint cycles, it follows that φ(H) = k. Then, because I(P1;−1) = 0 by Example

1, it follows by Proposition 2.2.6 that I(H ∪ P1;−1) = I(H;−1) · I(P1;−1) = 0. So,

for any positive integer k we have a connected graph G = H ∪P1 with φ(G) = k and

I(G;−1) = 0. The case when q = 0 is handled.

Suppose k = 1, then because for integers � ≥ 0 it follows that φ(C�
6) = 1 and

I(C6;−1) = 2

I(C1
6 ;−1) = 1.

Therefore, we have (1, 1) and (1, 2)-graphs. By Corollary 3.2.2 there are also (1,−1)

and (1,−2)-graphs. This proves the result for k = 1.

Now, suppose the result is true for k−1. By Corollary 3.2.2(ii) we need only show

the result for positive values of q ≤ 2k. So, if q is positive, by assumption, there exist

(k − 1, q)-graphs for q ≤ 2k−1. By Corollary 3.2.2 there exist (k, 2q)-graphs. Which

proves the result for even integers q ∈ [0, 2k]. For the odd integers q ∈ [0, 2k] we can

apply Lemma 3.2.3. This proves the result.
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Chapter 4

Our work

We now seek to prove the following result. The idea will be to modify and use the

series of definitions and lemmas that lead to Theorem 3.3. Recall that we defined

a 3̃-cycle to be a cycle in a graph G where the length of the cycle is a multiple of

3. Also, recall that when the cycles in a graph G are vertex disjoint, the cyclomatic

number β(G) counts the number of cycles in the graph.

Theorem 1.0.9. Let k ≥ 0. For every positive integer k and integer q with |q| ≤ 2k,

there is a graph G such that all cycles of G are vertex disjoint, I(G;−1) = q and the

number of 3̃-cycles of G is k.

We begin with a few definitions.

Definition 4.0.1. For a graph G we will denote the number of 3̃-cycles by ζ(G).

Definition 4.0.2 ((k, q)-3̃-graphs). Let k ≥ 0. Define a (k, q)-3̃-graph G to be a

graph with ζ(G) = k and I(G;−1) = q.

Example 9. We give a few examples of different type of (k, q)-3̃-graphs in Figures

4.1, 4.2 and 4.3.
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G = C1
6 ∧ C1

6

Figure 4.1: Example of a (2, 3)-3̃-graph.

Note that ζ(G) = 2 and I(G;−1) = 〈4, 1〉 = 3 since I(C1
6 ;−1) = 〈2, 1〉.

G = C1
6 ∧ C1

6 ∧ C1
6

Figure 4.2: Example of a (3, 7)-3̃-graph.

Note that ζ(G) = 3 and I(G;−1) = 〈8, 1〉 = 7 since I(C1
6 ;−1) = 〈2, 1〉.

We restate the major lemmas of Cutler and Kahl in terms of (k, q)-3̃-graphs. Note

that for rooted graphs Gv and Hw the pasting operation doesn’t create any new cycles

in the resulting graph Gv ∧Hw; so that β(Gv ∧Hw) = β(Gv) + β(Hw). However, we

will need to be careful when dealing with disjoint graphs and the pasting operation.

It is possible to have the resulting graph after pasting not have vertex disjoint cycles

at the joined vertex. For example, if we set Gv = C6 and Hw = C6 where v and w

are any two vertices in C6, the resulting graph Gv ∧Hw will not have vertex disjoint

cycles. This problem can be avoided however by taking extensions before pasting. For

example, if Gv = C6 and Hw = C6, as above, notice that G
1
v ∧H1

w has vertex disjoint

cycles. If we want the resulting graph to have the same bracket then we can appeal

to the cyclic nature of extensions. For instance, I(Gv ∧ Hw;−1) = I(G6
v ∧ G6

w;−1).
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G = C1
3 ∧ C1

4 ∧ C1
6

Figure 4.3: Example of a (2, 3)-3̃-graph.

Note that ζ(G) = 2 and I(G;−1) = 〈4, 1〉 = 3 since I(C1
3 ;−1) = 〈−2,−1〉,

I(C1
4 ;−1) = 〈−1,−1〉 and I(C1

6 ;−1) = 〈2, 1〉.

The former doesn’t have vertex disjoint cycles whereas the latter does. The following

result is analogous to Lemma 3.2.1.

Lemma 4.0.1. Let G and H be disjoint connected (k1, q1) and (k2, q2)-3̃-graphs, re-

spectively, which have vertex disjoint cycles. Let k1 + k2 = k and q1q2 = q, then there

is a connected (k, q)-3̃-graph F with vertex disjoint cycles such that ζ(F ) = k and

I(F ;−1) = q.

Proof. If G = Gv and H = Hv are (k1, q1) and (k2, q2)-3̃-graphs we can set F =

(G2
v ∧H2

w)
4 as in the proof of Lemma 3.2.1. By the nature of the pasting operation

and since extensions add no new 3̃-cycles we have ζ(F ) = ζ(Gv)+ζ(Hw) = k1+k2 = k.

Further, F has vertex disjoint cycles since Gv and Hw have vertex disjoint cycles and

the extensions prevent cycles from overlapping on the pasting vertex. Then, as in

Lemma 3.2.1 we have I(F ;−1) = q1q2 = q.

Next we prove a Corollary similar to Corollary 3.2.2 which allows us to find (k +

1, 2q)-3̃-graphs and (k,−q)-3̃-graphs given a (k, q)-3̃-graph. This will allow us to

handle even and negative values in the proof of our result.

Corollary 4.0.2. Let G be a (k, q)-3̃-graph. Then,

42



(i) there is a connected (k + 1, 2q)-3̃-graph with vertex disjoint cycles.

(ii) there is a connected (k,−q)-3̃-graph with vertex disjoint cycles.

Proof. Let G be a (k, q)-3̃-graph.

(i) Apply Lemma 4.0.1 with H = C6. (ii) Apply Lemma 4.0.1 with P 5
5 .

The following is an updated form of Lemma 3.2.3 for (k, q)-3̃-graphs while also

emphasizing the fact that we want graphs that have vertex disjoint cycles.

Lemma 4.0.3. Let k ≥ 1. For each odd integer q ∈ [0, 2k] there is a connected

(k, q)-3̃-graph Gv with vertex disjoint cycles such that either I(Gv;−1) = 〈2k, 2k − q〉
or I(Gv;−1) = 〈−2k + q,−2k〉.

Proof. The proof follows verbatim to the proof of Lemma 3.2.3. The reason is that

we used C1
6 and C2

6 which ensure the result has vertex disjoint cycles. Further, we

note that ζ(Gv ∧H�
w) = ζ(Gv) + ζ(Hw) for any rooted graphs Gv and Hw.

We can now prove our final result.

Theorem 4.0.4. For every integer k ≥ 0 and integer q with |q| ≤ 2k, there is a

graph G such that all cycles of G are vertex disjoint, I(G;−1) = q and the number

of 3̃-cycles of G is k.

Proof. The result follows by induction on k. Let k = 0, then we need (k, q)-3̃-graphs

with q ∈ {−1, 0, 1}. We have

I(P5;−1) = 1

I(P1;−1) = 0

I(P 3
5 ;−1) = −1.
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Notice that each of the above graphs have no 3̃-cycles. Therefore the result follows

for k = 0. In general, for any k ≥ 0 for a graph G with ζ(G) = k take H = P1 in

Lemma 4.0.1 and I(F ;−1) = I(G;−1) · I(H;−1) = 0.

Suppose the result is true for k, then we need only prove there are (k, q)-3̃-graphs

for positive q ≤ 2k+1 by Corollary 4.0.2. It follows that there are (k, q)-3̃-graphs for

even integers q ≤ 2k+1 by Corollary 4.0.2. Finally, for odd values of q ≤ 2k+1 we

apply Lemma 4.0.3. The result follows by induction.
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Chapter 5

Further Directions

We discuss some further questions for investigation. As mentioned, a major result of

Cao and Ren [1] is the following result which gives a closer bound than Engsröm’s

result in the case when φ(G) = β(G).

Theorem 1.0.7 (Cao, Ren 2021). If G contains a non-3̃-cycle, then

|I(G;−1)| ≤ 2β(G) − β(G).

This theorem lends itself to asking whether we can prove a density result in this

case.

Question 1. For every positive integer k and each integer q such that |q| ≤ 2k−k, is

there a graph G which contains a non-3̃-cycle with β(G) = k and I(G;−1) = q such

that |q| ≤ 2k − k? Or is there some further condition needed on k, q or G?

This seems to hold true for the cases where k = 1, 2. When k = 0 we would need

graphs G with q = I(G;−1) ∈ {−1, 0, 1} and β(G) = 0. We can find the necessary
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graphs for each value of q as follows.

I(P5;−1) = 1, β(P5) = 0,

I(P1;−1) = 0, β(P1) = 0,

I(P 3
5 ;−1) = −1, β(P 3

5 ;−1) = 0.

However, each of the above graphs contain no cycles and therefore do not contain a

non-3̃-cycle.

For k = 1, we need graphs G with I(G;−1) ∈ {−1, 0, 1} and β(G) = 1 which

contain non-3̃-cycles. Notice that

I(C3
4 ;−1) = 〈1, 0〉 = 1 by Example 7,

I(C4
4 ;−1) = 〈1, 1〉 = 0,

I((C3
4)

3;−1) = I(C4;−1)

= −I(C3
4 ;−1) = −1.

Each of the above graphs satisfy β(G) = 1 for each G and each of these graphs contain

non-3̃-cycles since the length of C4 is 4 and 3 � 4. So, the question holds for k = 1.

For k = 2, we would need graphsG with non-3̃-cycles with I(G;−1) ∈ {−2,−1, 0, 1, 2}
and β(G) = 2. Notice that applying the Pasting Lemma and Extension Lemma to
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the brackets of C6 and C4 in Examples 7 and 6 gives

I((C2
6 ∧ C2

4)
3;−1) = 2,

I((C5
4 ∧ C5

4)
3;−1) = 1,

I((C3
4 ∧ C5

4 ;−1) = 0,

I(C5
4 ∧ C5

4 ;−1) = I(((C5
4 ∧ C5

4)
3)3;−1)

= −I(C5
4 ∧ C5

4)
3;−1)

= −1,

I(C2
6 ∧ C2

4 ;−1) = I(((C2
6 ∧ C2

4)
3)3;−1)

= −I(C2
6 ∧ C2

4)
3;−1)

= −2.

Each of the above graphs satisfy β(G) = 2 for each G and contain C4 which is a

non-3̃-cycle.

There seems to be a problem applying extensions and pasting operations when k =

3. We would need a graph G with non-3̃-cycles such that β(G) = 3 and I(G;−1) = 5,

for example. Notice that the general form of the bracket for 3̃-cycles and non-3̃-cycles

by Theorem 2.2.4 is given by

I(C3n;−1) = 〈(−1)n, (−1)n−1〉,

I(C3n+1;−1) = 〈(−1)n, 0〉,

I(C3n+2;−1) = 〈0, (−1)n〉.

Recall the bracket values of C6 and C4 shown in Table 3.1. These were the following.

Observe that the brackets of C6 and C4 encompass all the possible bracket values
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� I(C�
6;−1) I(C�

4;−1)

0 〈1,−1〉 〈−1, 0〉
1 〈2, 1〉 〈−1,−1〉
2 〈1, 2〉 〈0,−1〉
3 〈−1, 1〉 〈1, 0〉
4 〈−2,−1〉 〈1, 1〉
5 〈−1,−2〉 〈0, 1〉
6 〈1,−1〉 〈−1, 0〉

Table 5.1: Brackets of C�
6, and C4.

for arbitrary cycles Cn; 3̃-cycles will have a similar form as C�
6 whereas any non-3̃-

cycle will have a similar form to C�
4 by consideration of the general form of the bracket

above.

A problem for the case where k = 3 and q = 5 seems to occur by taking these

ideas into consideration. Optimally, we would seek for a graph G with bracket of the

form 〈4,−1〉 with β(G) = 3. We could do this easily by taking G = C1
6 ∧ C1

6 ∧ C6.

The Pasting Lemma gives I(G;−1) = 〈4,−1〉. However, G in this case contains only

3̃-cycles. We cannot simply wedge another non-3̃-cycle on G – for instance C4
4 would

be the perfect candidate – the problem then would be that β(G ∧ C4
4) = 4 	= 3.

We could seek for a way to introduce a mixed sign into the bracket I(C1
6 ;−1) =

〈2, 1〉 with a non-3̃-cycle, say H with bracket I(H;−1) = 〈1,−1〉. This would give

I(C1
6 ∧ H;−1) = 〈2,−1〉. Then we could take G = C1

6 ∧ H ∧ C1
6 . The bracket here

would be I(G;−1) = 〈4,−1〉. However the problem here is the fact that it doesn’t

seem like there are non-3̃-cycles with I(H;−1) = 〈1,−1〉 using our construction. We

saw that non-3̃-cycles all seem to only have the form of C4 where there is no bracket

I(C�
4;−1) = 〈1,−1〉.

It seems that our construction fails to be able to confirm Question 1. The issue

may be due to pasting graphs together with disjoint cycles.

Cao and Ren [1] also proved the following result.
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Theorem 5.0.1 (Cao, Ren 2021). Let G be a graph with non-3̃-cycles. If G contains

no vertices of degree 1, then |I(G;−1)| ≤ 2β(G)−1.

This theorem suggests the following question for investigation.

Question 2. For every positive integer k and q, are there graphs G with non-3̃-cycles

containing no vertices of degree 1 with I(G;−1) = q and β(G) = 1 with |q| ≤ 2k−1?

Our techniques certainly seem to fail due to the condition that G contain no

vertices of degree 1. This condition forces us to avoid using graphs with extensions.

For example, in the proof of Lemmas 3.2.1 and 4.0.1 we set F = (G2
v∧Hw)

4. However,

the condition that F contain no vertices of degree 1 causes a problem for choosing

F ; the reason being that the extension operation produces vertices of degree 1 unless

the extension is eventually pasted to another graph.
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