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ABSTRACT

Title of Thesis: AN EXPLORATION OF MODELING TECHNIQUES FOR

THE STUDY OF THE DYNAMICS OF E-MAIL VIRUSES

Karin Weule, Master of Science, 2011

Thesis directed by: Dr. Lora Billings

Department of Mathematical Sciences

We analyze real data sets from two e-mail viruses, the Magistr.b and the Sircam.a to explore how 
we can use mathematical models to predict the behavior described by the data. Analysis of the 
data is conducted primarily with computer programming in MatLab. We focus mainly on the use 
of two continuous models commonly used in the study of biological diseases, the SIS and the SIR 
models. A discrete modeling approach using agent-based simulations is also explored and 
revealed to be potentially useful in developing a compartmentalized model that incorporates both 
SIS and SIR model behavior. The theory behind the continuous models and the programming 
method for the simulations are described.

The factors that affect the spread of biological infections, such as exposure rates and recovery 
rates, are factors with similar driving force in cyberspace. The parameters that govern the 
movement of these computer viruses through the susceptible population of computers on the 
internet are identified as the contact rate, (3, and recovery rate, y. We use the real data to estimate 
the values for these parameters and use these values in our models to find the one that best 
matches the behavior described by the data.

We approximate values for (3 using a standard method and find that P must be very small to 
account for an almost linear growth in the infection early on. The recovery rate, y, is found by 
taking the reciprocal of the average duration of infection. Unlike biological diseases which take 
their course in a host for set period of time, these e-mail viruses show durations of infection that 
vary widely. Using a mean duration of infection calculated from the data, the SIS model reaches 
a non-trivial endemic state. However, such an endemic state is not supported by the data.

Closer analysis of both data sets reveals that the durations of infection for infected computers 
actually decreased over time. By applying a time-dependent y(r), we are able to modify the 
behavior of the SIS model. We are able to approximate the shape of the latter half of the time 
series. In a similar fashion, we apply a range of linear functions for y(t) to the SIR model. Using 
very small P, we can approximate the shape of the first half of the time series.

We find that the introduction of a variable y modifies the behavior of both models in such a way 
that it remains unclear which model best reflects the behavior of our viruses. Only qualitative fits 
were achieved with the Magistr.b virus and both the SIS and SIR models. It is possible that a 
precise match to either of the continuous models could not be achieved because the dynamics of 
these viruses involve both SIS and SIR behavior. That is, some of the infected computers become
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completely disabled by the infection and thereby enter the Removed class of an SIR model, while 
others are repaired and enter the Susceptible class of an SIS model. Computers with longer 
durations which have significant lags in time between detections suggest the possibility of re­
infection consistent with the SIS model. The development of a compartmentalized model using 
discrete agent-based simulations may provide us with a better fit to the data and is described as a 
future direction for the work put forth in this paper.

The results of this project demonstrate that, even without achieving a precise match to a model, 
we are able to reveal the existence of a time-dependent y(t) . We show that by decreasing the 
recovery time for infected computers, i.e. by increasing y(t), we can drastically reduce both the 
magnitude of an outbreak and the time it takes for the population to reach a disease-free 
equilibrium.
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1 Introduction
Our technological world is increasingly dependent on having our com puters running 
as continuously and safely as possible. However, the pervasive nature of com puter 
viruses poses a constant th rea t to  the  seamless connectivity of our com puter systems. 
Equally as random  and as patterned  as hum an contact, com puter connectivity in the 
v irtual world of shopping malls, clubs, games, schools and work renders com puters 
as vulnerable to  infections as humans. It makes sense then, in order to  gain a be tter 
understanding of the dynamics of the  spread of com puter viruses, th a t we look to 
the  field of m athem atical biology. Over a century of progress has been m ade in the 
study of the  spread of hum an disease through m athem atical modeling. The factors 
th a t affect the  spread of biological infections, such as exposure rates and recovery 
rates are factors w ith similar driving force in cyberspace.

Among the commonly used models are the  continuous models which use ordinary 
differential equations (ODEs) and the discrete models like Markov chains and agent- 
based simulations. This paper focuses prim arily on the use of continuous models as 
we analyze real da ta  sets from two e-mail viruses, the M agistr.b and the Sircam.a. 
We explore how well we can use the continuous models to  predict the  behavior 
described by the data. It is then  possible to  predict how effective certain intervention 
strategies may be in curbing outbreaks, minimizing the endemic sta te  of a virus, 
and leading it to  extinction.

The models used are the  SIS and the SIR models, which differ prim arily in how 
the population is classified. Brief descriptions of the models are given below. We 
identify the classes in our population (susceptible, exposed, infected, and recovered 
or removed) and the param eters th a t govern the movement of a disease through 
the population, specifically the  contact ra te  and recovery rate. We use the real 
da ta  to  estim ate the  values for these param eters and use these values in several 
m athem atical models to  find the one th a t best m atches the shape of the  real tim e 
series.

W hile many illnesses, like the common cold, take their course in a host for set 
period of tim e, these viruses show durations of infection th a t vary widely. In fact, 
it was found using com partm ental analysis th a t the  duration of infection decreased 
over time. One possible reason for this trend  is an increased awareness by users 
th a t their com puters are infected and need to  be repaired. It will be shown th a t 
decreasing duration length for infections can drastically reduce the m agnitude of 
an outbreak and bring a population to  a disease-free equilibrium more quickly. 
This would imply th a t improvements in rapid response strategies on the part of 
IT  professionals, e-mail providers, and anti-virus software providers could play an 
im portant role keeping our com puters clean and healthy.

2 T he M odels
In the SIS model, the susceptibles, S, come into contact with infectives, / ,  a t a 
particular rate, /3, which is often referred to  as the  contact rate. An infective
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Time Series for SIS Model
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Figure 1: Time series of expected values for the percentage of total population that is 
infected from the SIS model. Parameters are set to (3 = 0.8 day-1 and 7 =  0.4 day-1 . 
Initial conditions range from i = 0.9 to 0.1.

recovers from the disease a t a particular ra te  of recovery, 7, and thereby becomes 
susceptible again. In this type of model, the disease can rem ain endemic in the 
population w ith a perpetual cycle of re-infection and recovery. The existence of an 
endemic sta te  depends on the initial conditions (the num ber of infectives), as well 
as the  rates of infection and recovery. The schematic looks like this:

s ^  i ̂ 4 s.
The SIS model is governed by the following ordinary differential equations:

5 , =  - /5 /5 'l+ 7 /  (1)
I ' =  P IS  — 7 /  (2)

where /3 is the contact ra te  and 7  is the  ra te  of recovery. Note th a t I / 7  is the 
average length of tim e th a t an infective remains in the  infected class and the units 
for bo th  /? and 7 are day-1 . W hile this system can be studied using integers for the 
sizes of bo th  groups in this population, we can also consider a normalized system 
w ith the variables s and i representing fractions of the  population, n, where n  =  1, 
0 <  s < 1, 0 <  i < 1, and s +  i = 1

There are two steady sta tes th a t correspond to the differential equations (1) and 
(2). Since there are only two classes of individuals in this model, we can use the 
equation, s + i = 1, to  simplify our m athem atical analysis. We substitu te  1 — i for 
s into Eqn. (2) and solve for the  steady state , (s*,?*), algebraically:

(3i*(l — i*) — 72* =  0, (3)

gives us the trivial, disease free solution,

** -  0, (4)
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and the non-trivial, endemic solution,

i* -  1 -  7//?- (5)

For this simple model the  only variable factors are the  param eters, (3 and 7, 
which relate to  one another in w hat m athem atical biologists term  the basic repro­
ductive ratio, R 0, [1]. W hen considering the spread of a disease, a reproductive 
ratio  determ ines whether the  num ber of infections will grow or die out. We want to  
know how m any new infectives are produced as the result of a single infective’s con­
tac t with the susceptibles in the population, keeping in mind th a t the  to ta l num ber 
of individuals in the  infective class is m itigated by the num ber of infectives th a t 
recover and leave th a t class. W hen the contact ra te  exceeds the recovery rate, the 
reproductive ratio  is greater th an  one and the disease spreads. W hen the ratio  is 
less th an  one, the disease eventually dies out.

In a fixed population, we can in terpret (3 to  be the rate  a t which a single infective 
makes infectious contacts. As m entioned earlier, 1 /7  is the length of tim e th a t an 
infective rem ains in the infected class and remains a th rea t to  other susceptibles. 
The product of these two term s, then, would give us the expected num ber of infec­
tions caused by any one infective individual, as shown in B ritton  [1]. Therefore, in 
models like the SIS, the basic reproductive ratio  is

#0 =  P /7- (6)

Thus, if R 0 <  1, the  disease dies out. If R q >  1, the  disease rem ains endemic in 
the  population. Figure 1 shows the stability  of the  endemic s ta te  for R 0 > 1 given 
various initial conditions. The stable endemic state , w ith 50% of the  population 
infected (i =  0.5), is consistent with the solution derived w ith Eqn. (5).

The SIR model provides a  different picture of the progression of a disease. We 
add a class of individuals, called the recovered or removed class, R, which are no 
longer susceptible to  infection. The scenario is as follows:

S  ^  I  ^ 4  R

The SIR model is governed by the following ordinary differential equations:

S ' = - P I S  (7)
r = pis - 71 (8)

R' = i l  (9)

where P is the  contact rate  and 7  is the  rate  of recovery. For a fixed population, we 
can reduce th is system to  Equations (7) and (8), since R  can calculated directly from 
the solutions S  and I . The steady sta te  requires th a t I  be zero, bu t does not restrict 
the  other variables other th an  S  + R  = N , or, in a normalized system, s +  r  =  1. 
Therefore,^the only steady sta te  is (S * ,/* ,R *) =  (S, 0, R), where 0 < S  < N  and 
R  = N  — S, determ ined by the initial condition.
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SIR Model

Figure 2: Time series of expected values for the percentage of total population that is 
infected from the SIR model using parameters ¡3 = 1.6 day-1 and 7 — 0.4 day“ 1. Initial 
conditions range from i — 0.9 to 0.1.

Since the individuals leaving the infected class do not re-join the susceptible 
group, the  dynamics of the  SIR model differ from those of the  SIS model. All solu­
tions of the  SIR model will have the disease die out in time. The basic reproductive 
ratio, R q, and the initial conditions determ ine if the  num ber of infectives increase 
into an outbreak before the  decrease to  die out. If R 0 >  1 and s > 1/R q, the 
infection burns through the population a t an exponential ra te  for the  first few days 
to  achieve an early maximum  outbreak. Then the susceptible pool shrinks, leaving 
less targets for infection and, as more individual leave the infected class, the num ber 
of infected declines, a t first, slowly, then  exponentially, as shown in Fig. 2.

These two dynamical systems capture the general behavior of a com puter virus 
as well. They will form the basis on which we model the  da ta  in the  following 
section, since we explore both  reinfection and removal possibilities for recovered 
computers.

3 T he D ata
D ata sets for two viruses, the  M agistr.b and the  Sircam.a, were used for this m od­
eling project. The d a ta  were obtained from Message Labs, an internet provider 
which keeps logs of the  date and tim e th a t any of its users received an e-mail w ith 
a known virus. To protect user confidentiality, a hash num ber was assigned to  each 
IP address from which an infected e-mail was sent. This hash num ber is nothing 
more th an  an identification num ber th a t replaces a unique IP address. An example 
of the d a ta  form at from the  Sircam .a da ta  set:
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date tim e hash #
7/17/2001 7:27 1
7/17/2001 10:56 1
7/17/2001 14:17 1
7/17/2001 18:53 1
7/17/2001 19:33 2
7/17/2001 19:35 3
7/17/2001 19:47 2
7/17/2001 19:52 4
7/17/2001 20:00 2
7/17/2001 20:13 2
7/17/2001 20:16 5

To generate a tim e series for each virus, the  date and tim e are converted to  rela­
tive tim e in days, where the first detection is t = 0 days and subsequent detections 
are recorded as the  difference in tim e from th a t first detection in the  unit of days. 
For example, t = 1.5 days would represent a detection th a t occurs 36 hours after 
the first detection.

4 M agistr.b  V irus
M agistr.b can spread three ways: by e-mail, on a local area network, or through 
shared disks and mainly affects users w ith the Microsoft Outlook, Eudora or Netscape 
email client in the  operating systems W indows 95, 98, Millennium and 2000. In the 
process, it may destroy sectors of the hard  drive and erase the  cm os/bios [2]. The 
virus is triggered when a user opens an infected attachm ent to an e-mail message. 
Most of the  attachm ents and subject headings are taken from the host PC  so th a t 
often the recipient tru sts  the  message and opens the attachm ent. M agistr.b then 
scans the user’s address book, then  runs its own internal e-mail program  to send 
messages to  everyone in the  book.

Since it requires user action to  in itiate spread to  other com puters, the  M agistr.b 
spreads more slowly th an  other viruses. A nother factor affecting its spread is a 
package of executable files, term ed a payload, which the  virus activates on the host 
PC  approxim ately one m onth after infection. The payload attacks the CMOS and 
BIOS of machines running machines running W indows 95, 98, and ME, which is less 
secure th an  W indows NT and 2000 machines and can delete or overwrite sectors of 
the  hard  drive. The CMOS is necessary to  boot the  PC , therefore its destruction 
renders the  com puter inoperable until it is repaired. On the one hand, dormancy 
feature allows the virus to  be propagated w ithout the host user’s knowledge for one 
month. Even using the same address book, the  messages change, thus increasing 
the probability th a t a recipient will unwittingly open one of the  infected e-mails 
sent during th a t m onth’s time. On the other hand, the destructive nature of this 
virus renders PCs w ith less secure operating systems inoperable, which would slow 
the spread. [2]
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Figure 3: The detections reported in the Magistr.b virus data set. Each point represents 
the time a detection was recorded for a hash number. It should be noted that this is a 
finite data set of 288 consecutive days of activity. The new hash numbers are assigned 
consecutively in time, while repeat detections for previously recorded hash numbers are 
recorded. The virus continues to spread after the time frame shown.

The first occurrence of a M agistr.b infection was detected in M arch 2001.The 
da ta  we used was gathered between Septem ber 4, 2001 and June 20, 2002. The 
most recent detections th a t could be found among various technical support sites 
for com puter viruses was April 27, 2009 [2]. Current anti-virus software packages 
still provide protection from M agistr.b, so it continues to  pose a th rea t. Symantec, 
an anti-virus software developer, currently gives th is virus a rating  of 2 out of 5 for 
severity [4]. The decline in infections is mostly due to  the  availability of detection 
and removal software. It is also likely th a t th is virus has lost its ability to  spread 
due to  a decrease in the  num ber of hosts with the older more vulnerable operating 
systems.

A plot of tim e vs. hash num bers for the  all of the detections in the da ta  set, 
shown in Fig. 3, dem onstrates a steady increase in the num ber of new com puters 
infected. It also shows th a t, once infected, m any com puters continue to  send the 
virus to  others for the  duration of the d a ta  set. Detections for a sample of the  hash 
num bers w ith longer durations are plotted  to  show the da ta  points in more detail in 
Fig. 4. Notice th a t  for some infected com puters there are gaps of more th an  three 
weeks for detection times.

The density of occurrences in Fig. 3 might be a reflection of reinfection, which 
would suggest th a t the SIS model is a good candidate for modeling th is virus. On 
the other hand, the virus is known to destroy sectors of the hard drive which could 
put an infected com puter into the removed class of an SIR model. It is not clear 
which is the b e tte r model for this type of virus. To see a profile of the outbreak, we 
derive the num ber of com puters infected each day from the d a ta  set. We record the 
first and last detection for each hash num ber and consider them  the endpoint for 
the  interval during which th a t com puter was infected. Then, we count how m any
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time of detection (days)

Figure 4: Detection tim es for a sample of infected com puters (hash numbers). It 
should be noted th a t virus activity on com puters using other network servers are 
not recorded here and may be taking place during the tim e gaps. For this reason, 
we calculate duration of infection as the  difference between last and first detection.
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Figure 5: The daily count of number of infected computers derived from the Magistr.b 
virus data set.

were infected for a given day. The results are p lotted  in Fig. 5. Since t = 0 was 
defined earlier as the  tim e of the first detection, the graph includes the point (0,1). 
To fit each model to  the  data , we continue by estim ating values for the governing 
param eters, 7  and (3.

4.1 Finding the contact rate, ft
To find an appropriate value for the  contact rate, /?, we use the num ber of infec­
tives per day. Both models assume exponential growth in the  initial stages of the 
outbreak. S tandard m ethods suggest th a t we plot ln (I)  vs. tim e and get a linear 
fit. B ut the first 80 days of the  da ta  shows fairly linear growth, as shown in Fig. 6. 
Therefore, the be ta  th a t we are considering is quite small.

4.2 Finding the recovery rate, 7

We continue by examining the durations of infection in order to  estim ate the  re­
covery rate, 7. The duration of infection for each hash num ber is calculated by
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Figure 6: A linear approximation of the number of infections for the first 80 days of 
Magistr.b virus data set.

taking the difference between the first tim e and the last tim e th a t the com puter 
was detected sending an infected e-mail. Many of the com puters infected were de­
tected  sending only one e-mail, or several at the  same time. For this project, we 
m anipulate the d a ta  set in three different ways to  see which is the best m ethod for 
modeling the behavior of the virus. F irst, we leave the duration values of zero in 
the  d a ta  set for all single detections. Second, we assume th a t duration of infection 
for single detections is one minute. Third, since a single detection can be considered 
an even trade  of one com puter recovering while one is infected, we eliminate those 
hash num bers from the da ta  set.

Including durations of zero for single detections, the  m ean duration is 2.1603 
days w ith a standard  deviation of 16.3282. In fact, m ost of the durations are close 
to  zero and the  m edian is zero. This tells us th a t more th an  half of the com puters 
sent only one e-mail. The com puters with duration close to  zero sent only one batch 
of e-mails almost im m ediately upon becoming infected. We observe another spike 
in frequency around 21 days. Using a value of one m inute for the  duration for single 
detections yields similar results, showing a mean of 2.1608 days w ith a standard  
deviation of 16.3281. However, taking out the  zeros yields a m ean of 11.8241 days 
and standard  deviation of 36.6751. The m edian is 19 m inutes and the  mode is 4 
minutes. We will explore how the SIS model behaves using the second and th ird  
set of results.

If we calculate the  reciprocals of the  m ean durations for bo th  scenarios (without 
single detections and w ith one-minute detections), we find th a t 7 ranges from 0.0846 
day-1 to  0.4628 day-1 , respectively. This gives us a good starting  point for choosing 
a 7  for the  SIS model. We can use as an example ¡3 = 5 day-1 , to  generate tim e 
series for a range of 7  values. See Fig. 7. As predicted by our analysis of the  SIS 
model, R q > 1 for these values and the solution approaches an endemic state , which 
is not reflected in the real da ta  for M agistr.b, as shown in Fig. 5. Therefore, we 
continue w ith an improvement to  the model which captures the tim e varying nature 
of the  recovery time.

Closer exam ination of the da ta  shows the duration of infection actually decreases 
with time, as supported by Fig. 8. W hile much of the  d a ta  has only one detection 
or a very short duration, we see th a t some hash num bers are detected continuously 
throughout the  da ta  set. It should be noted th a t some of the drop-off in duration
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Figure 7: Time series of the number infected predicted by the SIS model with varying 7 
terms. Fixed values for 7 lead to an endemic state, while a time-dependent 7 slows the 
occurrence of new infections and leads to a steady decline.
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Figure 8: Duration of infection for each observed computer, labeled by hash number. A 
steady decrease in duration for each successive hash number infected can be observed over 
a fixed time period. It should be noted that the calculated durations for most computers 
that are still infected on the 288th day are shorter the actual durations due to the finite 
nature of the data set.
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Figure 9: Time series of duration of infection for new infections grouped and counted in 
seven day intervals. Single detections are assigned a duration of one minute. Notice the 
monotonically decreasing duration of infection.

for larger (later) hash numbers may be an artifact due to  the  da ta  set being fi­
nite. For example, if the hash num ber was detected on day 100, there cannot be 
a duration beyond 188 days. We can argue th a t, since the da ta  is finite, a shorter 
duration for a hash num ber towards the end of set is likely to  reflect the absence 
of a subsequent detection for th a t computer. But, given an average duration of 11 
days for com puters th a t sent more th an  one e-mail, it is safe to  assume th a t the 
decrease in duration of infection shown above is real, not artifact.

Figure 8 suggests th a t the introduction of a tim e-dependent 7  may make the 
SIS model a viable candidate for this virus. Since 7  is the  reciprocal of duration, 
a decreasing duration can be translated  into an increasing 7. The fourth curve in 
Fig. 7 uses 7  =  0.5 +  O.lt day-1 and gives us a hint th a t this strategy m ight work.

We begin our analysis of how 7  changes over tim e by separating the da ta  set into 
subsets of equal tim e intervals and plotting a tim e series of the  average duration 
of infection for each interval. To determ ine how long the intervals should be, we 
first take a look at the tim e series of the num ber of new com puters th a t become 
infected each day, shown in Fig. 5. By applying the Fast Fourier Transform  (FFT) 
algorithm  to  this tim e series, we can analyze the frequencies contained in these 
plots. We use the routines provided by M atlab. The F F T  algorithm  reveals a 
strong peak frequency at 0.143 which can be interpreted as a dom inant cycle of 
1/0.143, or approxim ately 7 days. The largest peak is very close to  zero, which 
reflects a quick turn-around tim e for many com puters who were infected and sent 
out only one batch of e-mails im m ediately upon infection.

If we use the dom inant frequency of 7 days to  analyze the average duration 
of infection, we can expect a fairly sm ooth plot of duration over tim e, since each 
interval will contain a local maximum and minimum. As shown in Fig. 9, the  log of 
the  average duration provides us w ith the best linear fit to  th is curve. The resulting 
line is ln (y ) =  —0.11a: -f 2.4 where y is I / 7  and x  is tim e in weeks. We adjust the 
line to  reflect daily average duration by dividing the slope by 7. Solving for 7(f),
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Figure 10: Time series of the number infected predicted by the SIS model for y(i) =
e (0.0157f—2.4) d a y - l

and using t in days, we find

7(i) =  e<aol571- 2'4> day“ 1. (10)

We can now introduce the tim e-dependent param eter into the systems of equations 
governing the continuous models.

4.3 The SIS and SIR models
First, we introduce the  tim e-dependent q(i) to  the SIS model. As shown in Fig. 10, 
we see th a t for smaller values of /3 the  curve bears some resemblance to  the  actual 
tim e series. We hypothesize the slow decrease in the  outbreak is caused by the 
basic reproductive num ber R 0 = decreasing below one. Taking a qualitative
approach and scaling the data , we fit the  SIS model to  the M agistr.b daily count 
da ta  using a very small (3 =  0.00001 day-1 and several linear functions for q(i) as 
shown in Fig. 11. Here, ra ther th an  normalizing the system, we use a population of 
4000 com puters w ith an initial condition of 150 infectives. The dram atic burst in 
infections th a t we saw in Fig. 10 is almost linear for a much smaller ¡3. Notice how 
the severity of the  outbreak is reduced as we increase 7 (t).

In Fig. 12, we show the results for the  SIR model using q(i) =  e(°-0157i- 2-4) 
day-1 as we vary (3. Smaller values for /? show a curve th a t resembles the  real 
data. However, the model shows much slower growth in infection in the  first 30 
days than  the real da ta  supports. In Fig. 13, we fit the  SIR model to  the M agistr.b 
daily count da ta  using a very small /3 — 0.00001 day-1 and several linear functions 
for 7 (t). We use a population of 4000 com puters w ith an initial condition of 300 
infectives, which provides us w ith a shift in the  model th a t adjusts for the initial 
slow growth in Fig. 12. W hile we are able to  generate a qualitative fit to  the SIR 
model, the end of the tim e series, when compared w ith the M agistr.b daily count, 
still differs in its essential shape. The model has an exponential decline in infectives, 
while the da ta  shows a more linear decline.

It should be noted th a t, were we able to  craft the  best relationship between 
the param eters (3 and 7 (t), our model would dem onstrate what we see in Fig. 13.
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Figure 11: Magistr.b daily count fit by the number infected in the SIS model using 
time-dependent 7 (t) day“ 1 and /3 = 0.00001 day“ 1.

SIR Model with time-dependent gamma

Figure 12: Time series of the number infected in the SIR model using time-dependent 
7 (t) — 2.4) day - i  and varying /3 day“ 1.

W ithout further experim entation w ith param eter values, it is evident th a t, for both  
the SIS and SIR models, the outbreak maximum decreases as we increase 7 (¿). T ha t 
is, if we can reduce the average duration faster, the  outbreak is minimized.

5 Future d irections
The approach of using normalized systems of ODEs did not produce models th a t 
exactly m atched our data. Yet more tim e can be spent finding be tte r approxim a­
tions param eter values to  see which normalized system, if any, provides a be tter 
model for our virus.

We were able to  get qualitative fits for the  M agistr.b virus w ith bo th  continuous 
models. However, the  numbers chosen for our trial m odel-fitting were not based on 
actual data. One challenge to  this project was not knowing our to ta l population 
size. This problem  exists in biology as well, where it may not be sufficient to  know 
the to ta l population of hosts. The num ber of potential contacts would provide a 
more accurate assessment of to ta l population size, N . In the  case of e-mail viruses,
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Figure 13: Magistr.b daily count fit by the number infected in the SIR model using 
time-dependent 7 (t) day"1 and (3 = 0.00001 day"1.

the to ta l population of com puters on the In ternet does not represent the susceptible 
class. To get reasonable figures for potential hosts for the  M agistr.b, for example, 
it would be necessary to  to ta l the  sizes of each infected com puter’s address book.

5.1 Agent-based Simulations
A nother challenge was determ ining which model makes more sense for the  M agistr.b 
virus. It is known th a t the  virus can destroy sectors of the  hard  drive and erase 
the cm os/bios, thus rendering the  computer, not recovered, bu t removed, which in 
the SIR model is the  same class. On the other hand the da ta  show significant lags 
in tim e for some IP  addresses sending infected e-mails, which could imply recovery 
and reinfection, the scenario set forth by the SIS model. It would be worthwhile to 
explore another type of modeling approach th a t could sim ulate an epidemic th a t 
includes bo th  SIS and SIR behavior. The discrete modeling approach of agent-based 
sim ulations is a good candidate for this research.

Prelim inary work done for this project involved developing the M atlab programs 
to  simulate the  spread of disease in discrete tim e steps. We began by assigning 
values to  an array th a t represents the  initial s ta te  of the population. A value of 
zero represents an individual who is susceptible and a value of one represents an 
individual who is infected. In the SIS model, these are the  only two conditions for 
any individual in the  population. The num ber of elements in the array, N , is the 
to ta l population.

We s ta rt by evaluating each element of our initial s ta te  for its value. For each 
element, x(i), i = 1,2, ...iV, a value of zero prom pts us to  move to  the next element. 
If x(i) =  1, we m ust now determ ine whether or not this infective individual will come 
in contact with any of the  susceptibles in the  array and infect th a t susceptible. To do 
this, we generate a random  number, between zero and one, and choose a threshold
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'Jii.me Series for Single Agent-based Simulation of SIS Model

Figure 14: Time series of one simulation, 1000 time steps, of agent based simulation of 
SIS model. Parameters are set to IV =  100 computers, ¡3 — 0.8 day-1 and 7 =  0.4day_1. 
The initial state is /  =  1, or one infected computer.

value th a t represents the  probability th a t the  susceptible comes in contact w ith the 
infected individual and th a t the  virus is transferred, (3. If the  random  num ber is 
less th an  /?, the susceptible individual becomes infected and we assign it the  value 
of one in the next tim e step. Otherwise, the  element remains zero in the next tim e 
step. We then  move on to  assess the probability of this infective coming in contact 
w ith and infecting the next susceptible in the  array.

In addition to  having the potential to  infect susceptibles in the  population, an 
infective in the SIS model also has the  potential to  become healed, and thereby 
becoming susceptible. This step involves generating another random  num ber and 
choosing another threshold value, 7. If the random  num ber is less th an  7, the 
x(i) =  1 becomes a zero in the  next tim e step. Otherwise it remains infective. 
Continuing this process, we find the next infective in the  array, and, if one exists, 
determ ine its im pact on the next s ta te  of the  system.

Once the next sta te  is determ ined the process is repeated and a series of tim e 
steps results. We can then take the sum of infectives a t each tim e step and plot 
a tim e series, Fig. 14, th a t shows the neighborhood of the  endemic state . W hile 
the num ber of infectives bounces around from one tim e step to  the next, we can 
see th a t the  average number of infectives is approxim ately 41% of the  population, 
which is within V N  of the predicted value for the ODE of 50% (i — 0.5). The 
differential equation model produces a solution curve th a t is sm ooth since the system 
is solved for a population of infinite size, i.e., the  solution is based on the limit as 
N approaches infinity. The agent-based simulation, using a small fixed population, 
produces an oscillating plot which varies around the sm ooth curve in Fig. 1.

We can generate a histogram  to  see how m any tim e-steps in our sim ulation 
m atch the predicted endemic state . Figure 15 shows the  results of one run of 1000 
tim e steps, taking the last 90% of the  tim e steps. The m ean value of infectives 
should be fairly close to  the  predicted value /  =  N(1  — nf/(3). Running a large 
num ber of these simulations, we can take average num ber of infectives at each tim e 
step and plot a tim e series which can then be compared to  the  resulting tim e series
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Single Agent-based Simulation of SIS Model

Percentage of Infectives

Figure 15: Histogram of agent based simulation of SIS model in Fig. 14. The mean 
percentage of infective individuals in this run is 41%, which is within y/N  of the predicted 
value of 50% (i =  0.5).

Agent-based Simulation for SIS

Figure 16: Agent based simulation of SIS model with initial conditions S  =  99 computers 
and 1 = 1 computer and parameter values ¡3 = 0.8 day-1 and 7 =  0.4 day-1 . Note the 
endemic state.

of the real data. We can repeat the experiment using an agent based SIR model, 
as shown in Fig. (17).

Future research w ith these sim ulations could incorporate a tim e-dependent y(i) 
by increasing the threshold for recovery w ith each tim e step. In addition, these 
simulations are ideal tools to  test a new hypothesis th a t bo th  SIS and SIR behaviors 
make up the dynamics of the M agistr.b virus. We saw in the raw da ta  for M agistr.b 
th a t more th an  half of the  hash numbers were detected sending an e-mail only once. 
These com puters would constitu te the removed class, R, of the  SIR model. The rest 
of the  com puters would be classified as the  susceptibles, S, of the  SIS model. The 
sim ulation program  could be modified to  place a certain percentage of infectives 
into the recovered, or removed, class while the rest enter the susceptible class. This 
proposed com partm entalized model m ay show us behavior th a t accounts for the 
linear ascent and decline of the  virus, bo th  of which could not be captured entirely 
by either the  SIS or SIR model.
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time steps

Figure 17: Agent based simulation of SIR model with initial conditions S = 99 computers 
and 1 = 1  computer and parameter values /? =  0.8 day-1 and 7 =  0.4 day-1 . The 
simulation follows the trend of the SIR ODE model to a disease free equilibrium.

days

Figure 18: The detections reported in the Sircam.a virus data.

Figure 19: Sircam.a daily count fit by the number infected in the SIS ODE model. The 
model uses a fixed population of 5000 computers with an initial condition of 2 infectives, 
¡3 = 0.0005 day-1 and 7 =  0.2 +  0.0065t day-1 .
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5.2 Other D ata Sets
To gain more insight into the a rt of modeling this virus, it would be helpful to  
analyze other da ta  sets for e-mail viruses. Prelim inary work on the Sircam .a virus 
revealed similar challenges to  fine-tuning the continuous models. The Sircam .a virus 
sends itself as well as a clean document with the message “I send you th is file in 
order to  have your advice.” The virus spreads when the newly infected file is sent 
to  all addresses in the W indows address book and all e-mail addresses found in 
tem porary Internet cached pages. It also spreads to  other com puters on the local 
LAN through unprotected network shares. Under certain conditions, the  virus can 
completely fill or even erase the C: drive [3]. A plot of the detections reported can 
be found in Fig. (18).

Since the spreading mechanism is similar to  the M agistr.b virus, the  d a ta  set 
for Sircam .a is a good candidate for comparing the modeling approaches used in 
this project. Using the same qualitative approach th a t we used for M agistr.b, the 
SIS model provides a reasonable fit to  the Sircam .a data. See Fig. (19) for a graph 
of the  daily count overlaid by the SIS model with tim e varying 7 =  0.2 4- 0.0065t 
day-1 . This is a work in progress. Applying this technique to  the  SIR model and 
using the agent-based sim ulation approach, we may come closer to  understanding 
the dynamics of these e-mail viruses.

6 Sum m ary & C onclusion
We analyzed sample da ta  sets from two well known viruses, first detected in 2001. 
This da ta  was limited by the  tim e length of each set which m ade choosing a model 
challenging. The da ta  is also a sample of the  to ta l population, being limited to 
detections of virulent e-mails among the users of a particular internet provider. 
W ith  our atten tion  prim arily on the M agistr.b virus, we identified two continuous 
models, the  SIS and the SIR, th a t could be good candidates for modeling. In the 
SIS model, recovered individuals retu rn  to  the susceptible class. An endemic sta te  is 
possible due to  a perpetual cycle of infection, recovery, and re-infection. In the SIR 
model, the recovered individuals either become immune or die and do not retu rn  to 
the  susceptible class. Infectives eventually run out of susceptibles to  infect and we 
have a die-out.

In the  case of com puters on the internet, those w ith the targeted  anti-virus 
software and those th a t have been destroyed by the virus fall into the recovered 
class of an SIR model. The M agistr.b has the ability to  destroy sectors of the  hard 
drive and erase CM OS/BIOS, rendering the com puter inoperable. However, the 
viruses we studied had significantly long gaps between spurts of activity, which may 
suggest recovery from the virus and re-infection. This could be the  result of having 
a com puter cleaned but not fully protected. Or there m ay be considerable lag 
between the tim e of the first detection of a virus and the tim e it takes for specialists 
to  perfect the  anti-virus software and removal tools.

We ran  program s in M atlab to  elicit more inform ation from the data , particularly
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the  tim e series for infectives, and approxim ations for the  param eters th a t govern 
the differential equations of the  models. The param eter 7  is rate  of recovery for an 
infective and is defined as 1 / (duration of infection). In biology, 7  is derived from 
an average duration of infection since m ost diseases take hold in a host for a set 
period of time. Our data , however, revealed a large standard  deviation from the 
m ean duration of infection. Upon closer analysis of the data, we saw th a t durations 
of infection decreased for com puters infected later in the  study. In fact the  decrease 
was found to  be steady and exponential. Possible explanations for th is decline are 
an increase in public awareness of how to repair and protect their com puters and 
increase in efficiency and effectiveness on the part of IT  professionals to  combat 
the  virus as they learn more about it. This decrease in duration translates to  an 
increase in 7 over time.

The param eter (3 is the  contact rate. We found M agistr.b to  be a slow growing 
virus having a very small /?, on the order of 10-5 for the  tim e-dependent 7  functions 
we used. One reason for its slow initial growth is i t ’s mechanism for invasion. An 
attachm ent m ust be opened by the recipient, as opposed to  simply opening the 
message. It is also possible th a t our ra te  of contact for th is sample da ta  set is 
skewed as it does not include the infected e-mails sent by each infective to  com puters 
outside the network.

The outbreak profile of the  SIR m ade it our first choice for fitting the data . Ex­
perim enting with very small (3 values and both  linearly and exponentially increasing 
7 (i), we were able to  m atch the profile of the  SIR with our scaled data . We were 
able to  show th a t introducing a linearly increasing j ( t )  flattens the  typically expo­
nential die-out of the  SIR model to  the  almost linear decline th a t we see in the  tim e 
series for M agistr.b. More im portantly, by increasing the ra te  a t which j ( t )  grows 
(by increasing the ra te  a t which duration decreases), we can minimize the size of 
the  outbreak and achieve die-out of the  virus sooner.

The SIS model also proved to  be a viable candidate once a tim e-dependent 7 
was introduced. C onstant 7 values produced an endemic sta te  in the SIS model as 
predicted by the  reproductive ratio, 7, and our initial conditions. By introducing 
an increasing 7 (t), the  system  reaches a point in tim e when the ratio  passes under 
the  threshold of one and we begin to  see a die-out. We were able to  show th a t an 
increasing y(t) eventually brings the SIS model profile into closer alignment with 
the data.

The M agistr.b virus has the  ability to  destroy some com puters bu t not others, 
depending on the operating system. Therefore, it is possible th a t the  da ta  sets we 
studied recorded both  SIS and SIR behaviors. More complete da ta  would be needed 
to  test this idea. A m ap of the  network of contacts (who infects whom?) in our 
population could be used to establish param eters for discrete models using agent- 
based simulations. Prelim inary work done here on the development of agent-based 
sim ulations of the SIS and SIR models is discussed among the future directions for 
this project.

In conclusion, the  results of th is project dem onstrate th a t, even w ithout achiev­
ing a precise m atch to  a model, we were able to  reveal the  existence of a time- 
dependent 7. On a practical level, we have shown th a t decreasing recovery tim e for
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infected computers is a critical approach to  bo th  minimizing the size of outbreaks 
and reducing the tim e it takes to  drive an infected population to  a disease-free equi­
librium. Improvements in rapid response strategies on the  part of IT  professionals, 
e-mail providers, and anti-virus software providers will result in a steeper decline 
in duration of infection, an increasing 7 (t), and, consequently, minimized interrup­
tions to  the sm ooth flow of inform ation th a t is so critical to  the  m aintenance of our 
increasingly digitized world.
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