
Montclair State University Montclair State University

Montclair State University Digital Montclair State University Digital

Commons Commons

Theses, Dissertations and Culminating Projects

8-2022

SecREP : A Framework for Automating the Extraction and SecREP : A Framework for Automating the Extraction and

Prioritization of Security Requirements Using Machine Learning Prioritization of Security Requirements Using Machine Learning

and NLP Techniques and NLP Techniques

Shada Khanneh

Follow this and additional works at: https://digitalcommons.montclair.edu/etd

 Part of the Computer Sciences Commons

https://digitalcommons.montclair.edu/
https://digitalcommons.montclair.edu/
https://digitalcommons.montclair.edu/etd
https://digitalcommons.montclair.edu/etd?utm_source=digitalcommons.montclair.edu%2Fetd%2F1117&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.montclair.edu%2Fetd%2F1117&utm_medium=PDF&utm_campaign=PDFCoverPages

1

Abstract

Gathering and extracting security requirements adequately requires extensive effort, experience,

and time, as large amounts of data need to be analyzed. While many manual and academic

approaches have been developed to tackle the discipline of Security Requirements Engineering

(SRE), a need still exists for automating the SRE process. This need stems mainly from the

difficult, error-prone, and time-consuming nature of traditional and manual frameworks.

Machine learning techniques have been widely used to facilitate and automate the extraction of

useful information from software requirements documents and artifacts. Such approaches can be

utilized to yield beneficial results in automating the process of extracting and eliciting security

requirements. However, the extraction of security requirements alone leaves software engineers

with yet another tedious task of prioritizing the most critical security requirements. The

competitive and fast-paced nature of software development, in addition to resource constraints

make the process of security requirements prioritization crucial for software engineers to make

educated decisions in risk-analysis and trade-off analysis.

To that end, this thesis presents an automated framework/pipeline for extracting and prioritizing

security requirements. The proposed framework, called the Security Requirements Extraction

and Prioritization Framework (SecREP) consists of two parts:

 SecREP Part 1: Proposes a machine learning approach for identifying/extracting security

requirements from natural language software requirements artifacts (e.g., the Software

Requirement Specification document, known as the SRS documents)

 SecREP Part 2: Proposes a scheme for prioritizing the security requirements identified in

the previous step.

2

For the first part of the SecREP framework, three machine learning models (SVM, Naive Bayes,

and Random Forest) were trained using an enhanced dataset the “SecREP Dataset” that was

created as a result of this work. Each model was validated using resampling (80% of for training

and 20% for validation) and 5-folds cross validation techniques. For the second part of the

SecREP framework, a prioritization scheme was established with the aid of NLP techniques. The

proposed prioritization scheme analyzes each security requirement using Part-of-speech (POS)

and Named Entity Recognition methods to extract assets, security attributes, and threats from the

security requirement. Additionally, using a text similarity method, each security requirement is

compared to a super-sentence that was defined based on the STRIDE threat model. This

prioritization scheme was applied to the extracted list of security requirements obtained from the

case study in part one, and the priority score for each requirement was calculated and showcased.

Keywords-machine learning, natural language processing, text classification, software

security, security requirements engineering, security requirement prioritization.

3

MONTCLAIR STATE UNIVERSITY

SecREP: A Framework for Automating the Extraction and Prioritization of Security

Requirements Using Machine Learning and NLP Techniques

by

Shada Khanneh

A Master’s Thesis Submitted to the Faculty of

Montclair State University

In Partial Fulfillment of the Requirements

For the Degree of

Master of Science

August 2022

College of Science and Mathematics Thesis Committee:
Department of Computer Science _____________________

Dr. Vaibhav Anu
Thesis Sponsor

Dr. Aparna Varde
Committee Member

Dr. Kazi Zakia Sultana
Committee Member

Thesis Sponsor

(08/05/22)

Committee Member

_
(Aug 5, 2022)

08/05/22

4

SecREP: A FRAMEWORK FOR AUTOMATING THE EXTRACTION AND
PRIORITIZATION OF SECURITY REQUIREMENTS USING MACHINE

LEARNING AND NLP TECHNIQUES

A THESIS

Submitted in partial fulfillment of the requirements

For the degree of Master of Science

by

Shada Khanneh

Montclair State University

Montclair, NJ

2022

5

Copyright@2022 by Shada Khanneh. All rights reserved.

6

Acknowledgements

Thanks to:

 Dr. Vaibhav Anu for his continuous counseling, guidance, support, and kind

encouraging words throughout the entire year working on this thesis.

 Dr. Aparna Varde for her interactive, interesting, and fulfilling classes, where my

passion for machine learning and algorithms were ignited.

 Dr. Kazi Zakia Sultana for her diligence in teaching secure programming, where

in her class I discovered my interest in cybersecurity.

 To my Parents Mahmoud Khanneh and Sadika Alotti who always valued

education and planted the commitment to knowledge and learning in me. And for

the unconditional love!

 To my sister Dr. Enas Khanneh whom without her continuous love and support I

wouldn’t be where I’m today.

 For my friends Peter Farid, Roy Rosario, Syed Arif Shahjalal, and Jonathan

Carlin for their faith in me, positive thoughts, and for always being there for me

when I needed them the most!

7

TABLE OF CONTENTS

CHAPTER 1: Introduction ... 13

1.1 Goal ... 15

1.2 Related Work... 15

1.2.1 Machine learning for security requirements classification 16

1.2.2 Security Requirements Prioritization .. 20

1.3 Contributions of this Study ... 22

1.4 Thesis Structure ... 22

CHAPTER 2: Background .. 26

2.1 Requirements Engineering and Elicitation .. 26

2.1.1 Security Requirements Engineering ... 27

2.1.2 Prioritization of Security Requirements ... 29

2.2 Machine Learning and Natural Language Processing ... 31

2.2.1 Information Extraction and Text Classification ... 34

2.2.2 Text Preprocessing ... 34

2.2.3 Word vectors... 37

2.3 Text Similarity... 40

2.4 Naïve Bayes... 41

2.5 Support Vector Machines .. 41

8

2.6 Random Forest .. 44

2.7 Performance Measures .. 46

CHAPTER 3: Isolating Security Requirements from Requirements Datasets 49

3.1 The Datasets .. 49

3.1.1 SecReq Dataset ... 49

3.1.2 The NFR Dataset .. 51

3.1.3 The Enhanced Dataset (SecREP) ... 53

3.2 Data Preprocessing .. 58

3.3 Machine Learning Techniques .. 60

3.3.1 Training .. 61

3.3.2 Experiment 1... 61

3.3.3 Experiment 2... 64

3.3.4 Case Study .. 67

3.4 Discussion ... 72

CHAPTER 4: Security Requirements Prioritization ... 74

4.1 Prioritization Scheme .. 74

4.2 Proposed Prioritization Scheme .. 74

4.3 Case Sturdy and Prioritization Results .. 76

4.3.1 Constructing the Comparison Lists .. 76

4.3.2 Constructing the Super-Sentences .. 78

9

4.3.3 The Prioritized List ... 81

4.4 Discussion ... 82

CHAPTER 5: Conclusion ... 84

5.1 Conclusion ... 84

5.2 Limitation of Study ... 85

5.3 Future Work .. 87

10

LIST OF TABLES

Table 1: Examples of Functional and Nonfunctional Requirements 27

Table 2: Security Requirements as Functional and Non-Functional Requirements. 29

Table 3: Requirements Samples from the SecReq Dataset ... 50

Table 4: Requirements Samples from the NFR Dataset ... 52

Table 5: Machine Learning Predictions Results Comparison ... 57

Table 6: Dataset Text Examples Before and After Preprocessing 60

Table 7: Performance Measures Results Using the SecReq Dataset and 20% Resampling

Validation .. 62

Table 8: Performance Measures Results Using the SecReq Dataset and 5-Folds Cross

Validation .. 64

Table 9: Performance Measures Results Using the SecREP Dataset and 20% Resampling

Validation .. 65

Table 10: Performance Measures Results Using the SecREP Dataset and 5-Folds Cross

Validation .. 67

Table 11: Examples from the Software Requirements List Used for The Case Study 68

Table 12: Security Requirements List Extracted from First Experiment Using the SecReq

dataset ... 70

Table 13: Security Requirements List Extracted from Second Experiment Using the

SecREP dataset ... 70

Table 14: Comparison lists ... 77

Table 15: STIDE Threat Model and The Super-Sentences .. 80

11

LIST OF FIGURES

Figure 1: Security Requirements Extraction and Prioritization Pipeline (SecREP) 25

Figure 2: NLP in Relation to AI and ML .. 33

Figure 3: Natural Language Processing (NLP) Knowledge Areas 33

Figure 4: Information Extraction and Classification .. 34

Figure 5: Word2vec Continuous Bag Of Words and Skip-gram Training Methods 40

Figure 6: SVM Hyperplanes ... 42

Figure 7: SVM Support Vectors and Margins .. 43

Figure 8: Node splitting in a Random Forest Model .. 45

Figure 9: Machine Learning Models Learning Curve for the SecReq Dataset Training .. 61

Figure 10: Performance Measures Results Graph Using the SecReq Dataset and 20%

Resampling Validation.. 62

Figure 11: Machine Learning Models Confusion Metrics for the SecReq Dataset Training

... 63

Figure 12: Performance Measures Results Graph Using the SecReq Dataset and 5-Folds

Cross Validation.. 64

Figure 13: Machine Learning Models Learning Curve for the SecREP Dataset Training 65

Figure 14: Performance Measures Results Graph Using the SecREP Dataset and 20%

Resampling Validation.. 66

Figure 15: Machine Learning Models Confusion Metrics for the SecREP Dataset

Training ... 66

Figure 16: Performance Measures Results Graph Using the SecREP Dataset and 5-Folds

Cross Validation.. 67

12

Figure 17: Identifying Assets, Threats, and Security Properties 78

Figure 18: final extracted and prioritized security requirements list 81

13

CHAPTER 1: Introduction

Security in the context of software systems is an ever-growing concern especially with

the degree of ubiquity and availability the world is witnessing in software driven services,

networking, and shared resources. With that in consideration, security presents itself as an

integral part in implementing a successful and satisfactory software that incorporates the

necessary measures for protecting the stakeholders’ assets [37].

Security concerns must be addressed and accounted for in the early stages of the software

development lifecycle (SDLC) to prevent security risks, exploits, and financial loss

[2,13,28,33,36,38,51,55]. The high costs incurred by organizations due to poor security

requirement engineering (SRE) show that there would be a high value to even a small

improvement in this area. By the time that an application is deployed in its operational

environment, it is very difficult and expensive to significantly improve its security [36]. Bearing

in mind these elements, security requirements engineering and elicitation, was granted a specific

area of knowledge in the information technology literature.

Security Requirements Engineering (SRE) is an activity conducted during the early stage

of the software development process. SRE involves eliciting, analyzing, and documenting

security requirements. However, SRE is still a new area of knowledge that requires considerable

efforts and expertise for identifying complex security requirements. Additionally, for most

software systems used and sold on commercial levels, the system requirements specification

(SRS) document is normally of a large size and intertwined nature. This could result in

neglecting or incorrectly identifying valuable security requirements [1,46].

14

The elicitation and identification of security requirements alone, leaves software

engineers with yet another tedious task of prioritizing the most critical security requirements.

Even though one might think that all security requirements are considered relevant,

implementing all security mechanisms that protect the software against every possible threat is

not feasible and almost impossible. The competitive and fast-paced nature of software

development, in addition to resource constraints makes the process of security requirements

prioritization crucial for software engineers to make educated decisions in risk-analysis and

trade-off analysis and guarantees that at least the topmost security measures are accounted for

and implemented, especially in the software’s early releases [8,15,17,38,41,57,58].

Machine learning techniques have been widely used to facilitate and automate strenuous

and complex tasks [53]. Machine learning refers to the area of knowledge that falls under the

realm of artificial intelligence (AI). Where an algorithm is fed a series of data to either transform,

restructure, extract information, find similarities, or predictions from that said data, using

predefined sets of rules and/or mathematical equations. This can be used in a variety of

applications such as, image recognition, weather prediction, fraud detection, information

extraction, etc. Under the concept of machine learning falls yet another sub area of knowledge,

that is Natural language processing (NLP). NLP offer in depth techniques and focus on

processing natural language raw text artifacts into desired useful information.

The opportunity that presents itself here is to introduce a machine learning process to

automatically identify the security requirements from a software system’s requirements

specifications artifact (these artifacts generally tend to be 100s of pages in length, depending on

the size of the software being developed). Additionally, a prioritization process can be added that

15

provides a reliable scheme for the identified security requirements in a single automated pipeline.

Such pipeline would offer great value, save time, and labor, and potentially improve the

efficiency and the accuracy of an otherwise manual process.

1.1 Goal

The overarching goal of this work is to establish a refined process where security is

adequately incorporated in the early stages of the SDLC, namely the requirements elicitation and

specification stage. This will ensure that the security risks to the software and any future

correction measures can be significantly minimized.

Thus, the overall goal of this thesis is stated as follows:

“To automate the identification/extraction and prioritization of security requirements

from natural language software requirements artifacts”

1.2 Related Work

The literature as it stands offers abundant work in security requirements engineering, as

well as prioritization. Additionally, many scholars tackled the uses of machine learning

approaches to address the extraction, elicitation, and prioritization of software requirements.

However, most of the previous work is mostly focused on the general concept of automating the

extraction of software requirements, without addressing in depth the specificity of security

requirements extraction and prioritization. This section summarizes relevant work addressing

either the identification of security requirements using machine learning approaches, or the issue

of prioritizing security requirements.

16

11.2.1 Machine learning for security requirements classification

In the context of utilizing machine learning techniques for extracting security

requirements form natural language artifacts Riaz et al. [46] introduced a framework that takes as

input natural language artifacts documents. The process then examines each sentence in the

document to determine whether it is a security relevant sentence and then classify it according to

the security objectives, that are either explicitly stated or implied by that sentence. The authors

used and compared the results of a -NN classifier, and from Weka[20], a multinomial naïve

Bayes classifier, and a SMO (sequential minimal optimization classifier). As for the training data

the authors selected six different documents form the health care domain, and with the aid of

three experts classified 10,963 sentences and extracted corresponding security objectives. The

manual analysis showed that 46% of the sentences were security relevant. Of these, 28%

explicitly mention security while 72% of the sentences are functional requirements with security

implications. The proposed tool predicted and classified 82% of the security objectives for all the

sentences (precision) and identified 79% of all security objectives implied by the sentences

within the documents (recall). Finally based on an analysis they conducted; the authors develop

context-specific templates that can be instantiated into a set of functional security requirements

by filling in key information from security relevant sentences.

Kobilica et al.[29] work was more focused on examining to what extent shallow machine

learning classifiers, with basic pre-processing technique, can achieve in terms of accuracy. The

authors conducted multiple experiments to examine twenty-two different machine learning

approaches. Th training was conducted using the SecReq [59] dataset and the results showcased

that ensemble techniques such as LSTM Ensemble Boosted Trees and CNN gave the best

accuracy performance. requirements. Despite that fact that the Long Short-Term Memory

17

(LSTM) reached the highest accuracy level, the authors recommend the use of supervised

machine learning classification approaches in the context of security requirement. Since deep

learning approaches such as the LSTM exhibit longer training time that might not be suitable for

instant and fast classification.

In another paper published by Kurtanovic et al.[32] on the use of supervised learning

machine learning to classify requirements as either functional (FR) or non-functional (NFR).

This classification was conducted on the “Quality attributes (NFR)” dataset. Furthermore, the

non-functional requirements were identified as either usability, security, operational, or

performance requirements. The process the authors adopted in this work consisted of first

identifying whether a security requirement is a functional or a non-functional requirement. In

doing so the most informative features in the text were also identified and the top ten were

selected to conclude the classification. For the non-functional requirements further classification,

the authors filtered out the functional requirements from the dataset and then assessed four

binary classifiers for identifying the four most frequent NFRs in the dataset: usability, security,

operational, and performance. Then a multi-class classifier was used for predicting these four

classes.

Abad et al. [1] work tackles classifying requirements into functional requirements (FR)

and non-functional ones (NFR), and how automated classification of requirements into FR and

NFR can be improved. The proposed approach introduced a preprocessing solution that

standardizes and normalizes requirements before applying the classification algorithms. By

leveraging rich sentence features and latent co-occurrence relations, the authors showcased

improved results in precision when the classification was applied to the processed dataset using

18

the proposed technique. In addition to this work the authors also conducted an analysis to

showcase the performance of several existing machine learning methods that are used for the

automatic classification. This study was conducted on 625 requirements provided by the

OpenScience tera-PROMISE repository.

Dave et al. [10] also used the PROMISE repository dataset of functional and non-

functional requirements, to conduct their experiments. The main premises of this work was to

automate the classification of software requirements into FN and NF requirements, and to further

classify the NF requirements into nine different categories. Using three machine learning

algorithms, SVM, Stochastic Gradient Descent (SGD), and Random Forests, the authors

conducted a comparison of these machine learning performances. Where the results showed that,

SVM with TF-IDF produced the best results when classifying FRs, the SGD with TF-IDF

produced the best results for NFRs, and in the case of both FRs and NFRs, the 3 models

produced quite similar results.

Another consideration regarding the elicitation of software requirements was brought to

light by Emebo et al.[11,44] work on identifying the Implicit Requirements (IMRs) of a said

system. IMRs are assumed needs that a system is expected to fulfill though not elicited during

requirements gathering. The authors highlight that addressing such requirements is crucial for the

completeness and success of the overall system. Especially that, studies have shown that a major

factor in the failure of software systems is the presence of unhandled IMRs. To address this issue

the authors, propose a novel framework called the COTIR (Commonsense knowledge, Ontology

and Text mining for Implicit Requirements) for identifying and managing IMRs based on

combining three core technologies: common sense knowledge, text mining and ontology.

19

Additionally, and building on the COTIR tool, Emebo et al.[43] conducted another work which

incorporates CNN-based deep learning to further enhance the COTIR detection of IMRs from

complex SRS big data such as images and tables. This approach aimed to deploy a Convolutional

Neural Network (CNN) for further analysis of IMRs. This enhanced COTIR framework ability to

extract IMRs was evaluated using three SRS documents and compared against eight software

engineering experts (SE researchers and IT professionals). Where, the eight study participants

first carefully read each of the SRS documents supplied to them and identified requirements with

implicit patterns. As a result of this manual effort, all participants collectively were able to

identify 8 potential IMRs. The COTIR tool was then used to identify the following types of

implicit patterns in the SRS documents: i) Ambiguity, ii) Incomplete Knowledge, iii) Vagueness,

and iv) Miscellaneous. The experts’ evaluation served as the ground truth. A major result of this

study was that the COTIR approach was able to identify 6 out of 8 known instances of implicit

patterns in the supplied requirements. The authors conclude that, such results provide evidence

that COTIR can relieve human analysts from the tedious manual task of reading huge SRS

documents to find IMRs.

What is worth mentioning here is that several approaches and studies were conducted to

classify natural text as functional requirements (FR) or non-functional requirements, and/or the

NFR were classified as security, performance, usability. However, there is clear shortage in

addressing the classification of security requirements as a specific principle of their own.

Security requirements intertwine with all categories of requirements, and many security

requirements can be expressed as functional requirements, performance, availability, and

usability. Thus, security requirements must be extracted from functional requirements and non-

functional requirements alike to achieve the completeness of the security requirements elicitation

20

process and aid the shift of how to address security concerns and issue in software systems. With

that, this work will retain from any pre-classification and instead will aim to extract security

requirements from any sentence described as a requirement.

11.2.2 Security Requirements Prioritization

The extraction and identification of security requirements appears to be the focus of most

of the current literature work when it comes to the use of automation and machine learning

technologies. Which draws the attention to the lack of such automated frameworks for the

purpose of prioritizing security requirements. However, there are significant work that addresses

the issue and suggests feasible process to manually elicit, identify, and prioritize security

requirements. Even though such frameworks require experts’ skill and significant efforts, they

still provide sufficient aid for software engineers. For example, Yoo et al. [58] proposed a rather

easy to understand and implement technique for prioritizing security requirements, which the

authors called the enhanced misuse-case. The enhanced misuse-case extends upon the well-

established use-case diagram. This is perhaps what is most appealing about this approach. The

proposed solution addresses the prioritization of security requirements in terms of the number of

functional requirements and/or assets each security requirement is addressing. In addition to the

risks value that each security requirement is trying to mitigate. The authors suggest calculating

this risk value using the Common Vulnerability Scoring System (CVSS).

In another work presented by Carvalho et al. [8] that was mainly concerned with the

security issues and incidents associated with smart toys that uses sensors and cloud-based

services to collect data. To adequately address these security issues associated with such

systems, the authors proposed an approach where they used the Microsoft SDL method to

21

identify a comprehensive list of security issues based on specific regulations, threats based on

surface attack analysis, and security requirements that address security issues and threats. As for

prioritization, the authors presented a method based on risk assessment, AHP, and generic

scenarios. The suggested process to prioritize security requirements requires to first, identify the

severity of all threats addressed by the security requirements using the security bug bar. Second,

the severity of all security issues addressed by the security requirements must be defined using

standards and regulations that must be considered in the context of a system. Finally, the risk of

each security requirement is calculated based on the severity of the threats and the security issues

addressed by it. This final value is then used to prioritize the security requirement. In the case of

security requirements with the same risk values the authors suggest that using the AHP

techniques provides the most reliable results.

Park et al. [45] approach for prioritizing security requirements facilitates the threat

modeling model to create a process that allows for the prioritization of security requirements via

the valuation of assets, threats, and countermeasures. Modeled in a tree-like structured graph

referred to as a “valuation graph”. The valuation graph requires a total of eight steps: six steps

that must proceed the prioritization scheme to achieve the prioritization, that is manifested in

seventh and eighth steps. The suggested prioritization scheme derives its principle from

identifying the system’s assets, the threats per asset, and their valuation in terms of impact and

risk. Once assets and threats and their values are well established, security requirements become

the countermeasures that can be used to mitigate and address these threats. The priority of these

security requirements is then calculated using the total impact (TI) of threats that a

countermeasure mitigates, the gain (G) of each countermeasure, and the value of assets that the

countermeasure protects.

22

1.3 Contributions of this Study

The contributions of this work can be summarized as follows:

1. An enhanced dataset (called the SecREP dataset), which includes samples of

requirements classified as either a security requirement or non-security requirement. This

enhanced dataset is a combination of the SecReq [59] dataset and the NFR dataset

available on “zenodo.org” [52,60], in addition to some requirements gathered from

security requirements specifications documents.

2. A comparison between three machine learning models (SVM, Naïve Bayes, and Random

Forest) trained using the enhanced dataset.

3. A process that employs a voting ensemble approach for extracting security requirements

from software language artifacts (such as SRS documents).

4. A novel semi-automatic prioritization scheme for security requirements. This scheme

uses sentence features and relation extraction to identify assets, threats, and security

properties. In addition, the scheme uses a sentence similarity technique to identify threats

that correspond to STRIDE [30] modeling.

1.4 Thesis Structure

This thesis presents the Security Requirements Extraction and Prioritization Framework

(henceforth referred to as SecREP). The SecREP pipeline consists of two major parts: Part One,

wherein a machine learning based approach for security requirements identification/extraction is

proposed and evaluated; Part two, wherein a security requirements prioritization scheme is

proposed.

23

The thesis structure is summarized in Figure 1 and a description of the two-step SecREP

pipeline is provided below.

Part One: this part represents the process and the steps taken to conduct the security

requirements extraction framework. The proposed extraction process was a result of the

following iterations:

1. Using the SecReq [59] dataset after manual cleaning, and modifications which yielded a

total of approximately 584 requirements.

2. Using the enhanced SecREP dataset, which included the SeqReq [59] dataset, a portion

of the NFR dataset [52,60] and manually extracted requirements from SRS documents

(total of 752 requirements)

3. For each iteration three machine learning models (SVM, Naïve Bayes, and Random

Forest) were trained, after applying preprocessing techniques to the input datasets. The

trained model was used to extract security requirements from a real-world system

requirements specification artifact (a list of 30 requirements). Using background

knowledge and judgment to evaluate the extracted security requirements list. Satisfactory

results were achieved in the third iteration using the enhanced SecREP dataset.

4. The performance for each model was evaluated in terms of precision, accuracy, recall,

and F1 scores. Using 80% training and 20% testing resampling approach as well as 5-

folds-cross validation.

5. The final extracted security requirements list was based on an ensemble decision where

all three trained models classified a requirement as a security requirement.

24

Part Two: the second part of this work represents the process and the steps taken to

conduct a prioritization scheme for the security requirements that were extracted from the

previous part (part one). The proposed prioritization process was a result of the following steps:

1. The extracted security requirements list from the ensemble extraction process, was

treated with preprocessing techniques to be normalize and reshaped.

2. Using spaCy [23] pretrained natural language medium model, feature extraction

techniques were applied on the processed security requirements list to identify the assets,

threats, and security attributes (such as Authentication, Integrity, Confidentiality…etc.)

that appear in the extracted list.

3. For each security requirement a total score was calculated based on the number of assets,

threats, and security properties present in the said security requirement.

4. For additional mapping, spaCy [23] Word2Vec text similarity algorithm was utilized to

calculate the similarity of each security requirement to a super-sentence. Each super-

sentence corresponds to a STRIDE [30]threat definition.

5. A weight of 1 was added to each STRIDE [30] threat that appears in the security

requirement, based on a similarity of at least 90% to each super-sentence.

6. The total count of STRIDE [30] similarity weight and the total count of assets, threats,

and security properties, becomes the priority score of the security requirement.

25

Figure 1: Security Requirements Extraction and Prioritization Pipeline (SecREP)

26

CHAPTER 2: Background

2.1 Requirements Engineering and Elicitation

Requirements Engineering (RE) is defined as the process of gathering, eliciting,

analyzing, documenting, and maintaining requirements in the software development process

[42]. Requirements engineering (RE) is an essential step that must proceed the design and

development of a software’s code [5]. This importance stems from the fact that addressing

requirements errors, such as ambiguous, incomplete, or omitted requirements, is more expensive

to fix when the software is operational. Due to that its notable that extensive work is done in the

early stages of the software development life cycle (SDLC).

An important outcome of the requirements’ engineering process is the elicitation of the

system’s requirements specification (SRS). Where the functional requirements are distinguished

from the nonfunctional requirements. Functional requirements are those that can directly relate to

an action the system is expected to perform as per the end-user expectations. Nonfunctional

requirements on the other hand are more ambiguous to derive and normally refer to those

requirements that express a system’s constraint or quality, such as performance, reliability,

efficiency, and security[21,34] . Table 1 Provides examples of functional and nonfunctional

requirements to clarify the differences between the two concepts.

27

Table 1: Examples of Functional and Nonfunctional Requirements

Requirement Example Category

The system should allow users to change the

color scheme of the website.

Functional requirement: allows for changing

colors.

Ability to upload large pictures and videos of up

to 5Gb

Nonfunctional requirement: performance,

load

Users should receive notifications of new

features

Functional requirement: allows for

notification action

The system should send emails to the users in

less than 3 seconds of adding new content to the

website

Nonfunctional requirement: performance,

efficiency

The system should allow users to interact with

each other.

Functional requirement: allow for

communication action

Warning and instructions issued by the system

should be, in English without disclosing any

sensitive information. Error messages should be

colored red. Instruction messages should be

colored green.

Nonfunctional requirement: reliability, user

experience, security.

22.1.1 Security Requirements Engineering

Security requirements are most categorized under the non-functional requirements of the

system. These types of requirements describe the constraint on the system’s functions, where

28

these constraints operationalize one or more security goals [19]. Security requirements are

dynamic in nature and evolve as the software is developed. Most researchers classify them as

nonfunctional requirements because they do not have a clear criterion for their specification and

satisfiability [2]. However, security requirements can be also expressed as functional

requirements that describe the system’s behaviors to achieve these security goals of a said

system.

The process of security requirements engineering provides valuable information that

covers the definition of security requirements and the concepts that correlate with it like, assets,

objects, threats, and vulnerabilities. Which in turn provokes important questions, such as what

assets should be protected? Against whom? How should these assets be protected? And to what

extent? It is important to recognize that security requirements do not represent security measures

and policies, nor should they describe the underlying mechanisms that implement these security

measures. With that it is notable that security requirements are complex, and they integrate with

the general concept of requirements. Making the process of eliciting security requirements a

challenging task, that must be addressed early in the software’s development stages [8,31,54] .

When addressing security requirements, it is difficult to derive conclusive rules that can

be used to determine if a requirement is a security requirement or a non-security requirement.

The system’s needs and nature, the standards and regulations of the operational country and

environment, and the software engineers’ expatriates, are some of the important variables that

can drastically influence the categorization of a software requirement. However, guidelines and

standards can still be utilized to tackle the issue of deciding if a requirement is a security

requirement. For example, in information security confidentiality, integrity, and availability are

29

broadly known as the security “Tried” and they are considered the three most important concepts

within information security. Considering these three principles and what they present, could

alone provide a sustainable start to define a security requirement, where a requirement could be

considered a security requirement if it addresses the protection of these concepts and/or the

prevention of the inverse of them. Table 2 Provides some examples of security requirements

expressed as functional and nonfunctional requirements.

Table 2: Security Requirements as Functional and Non-Functional Requirements.

Security Requirement as Functional

requirements

Security Requirements as Nonfunctional

requirements

The system must issue emails to users if their

data was compromised

The system must protect users’ information

and prevent any illegal access to users’

sensitive data.

All secrete data must be encrypted/hashed and

must not be stored or transmitted in plain text

format.

All critical functionalities must be available

and accessible to authorized users.

The system must perform regular scanning to

any data entering the operational environment

as well as any user input.

The system must guarantee the integrity of

users’ assets stored and retrieved within the

system environment.

22.1.2 Prioritization of Security Requirements

Despite the significance of security in software applications. Implementing all security

measures is expensive in time, cost, and effort, in addition to the performance and availability

restrains that it might reflect on the system. Absolute software security is an unrealistic

30

expectation. Thus, it is important to identify the topmost critical security requirements that must

be addressed and accounted for. Which in turn, guarantees that at least the most essential

protection measures are incorporated in the software’s early release [8].

Ideally security requirements prioritization must be considered as an essential task in the

process of requirements engineering. Additionally, the lack of a prioritization process could

leave the process of security requirements elicitation ambiguous and incomplete. Leaving the

decision of which security measures to be implemented to the expertise and skills of the software

engineers performing the elicitation. One might easily argue that without prioritization the

establishment of security requirements alone does not utilize them into tangible use. The optimal

purpose of security requirements is to support the objectives of a project and its overall quality.

Prioritization offers great value for risk-analysis and trade-of-analysis aiding stakeholders and

software engineers in making educated decisions. Many factors are at play when attempting to

prioritize software requirements more so for security requirements. Unlike clear requirements

that present the end-users and stakeholders needs, security requirements tend to be difficult to

evaluate and valuate[2,48,54]. However, a common criterion on how to address and guide the

process of security requirements prioritization can still be derived and established using the most

common factors found in a security requirement. Examples of these factors include, the system

and user assets, the security attribute being addressed according to the security tried

(confidentiality, integrity, and availability), the threats being addressed, and the risks associated

with these threats [8,16,22,26,45,51,58].

31

2.2 Machine Learning and Natural Language Processing

Machine learning (ML) approaches have become in recent years, a necessary part in

numerous commercial and industrial applications and appliances. With the explosion of data

gathering and information mining, a new paradigm emerged where the use of ML is the

automatic determination for otherwise impossible, complex, and/or manual tasks. Such tasks and

applications include robotics, text and image recognition, fraud and anomalies detection,

intelligent chat bots, data classifications and predictions in whether, medical diagnosis, and

navigation...etc. [7,40].

Machine learning (ML): is the scientific study of algorithms and statistical methods that

computer systems use to effectively perform a specific task without using explicit instructions,

relying on patterns and inference instead. It is seen as a subset of artificial intelligence. Machine

learning algorithms build a mathematical model of sample data, known as "training data", in

order to make predictions or decisions without being explicitly programmed to perform the task.

There are five types of machine learning algorithms: supervised, semi-supervised, active

learning, reinforcement, and unsupervised learning [7,27,40].

Natural language processing (NLP): is a subset of artificial intelligence and a

significant filed machine learning. NLP refers to the process where a computer system is used to

understand, parse, and extract human language that is in the form of raw text in often times. NLP

is a broader term where several problem areas fall under it, such as text

categorization\classification, syntactic parsing, part-of-speech tagging (POS), named entity

recognition (NER), coreference resolution, machine translation, and the sub area of natural

language understanding (NLU). Natural language understanding (NRU) describes the area of

32

NLP where the computer systems are trained to extract context, intent, and what is inclined by

the text. NLU is commonly used in areas such as, relation extraction, paraphrasing, semantic

parsing, sentiment analysis, question and answering, and summarization [4,27].

Figure 2 demonstrate the relation between these three fields (AI, ML and NLP), where is

Figure 3 demonstrate the problem areas where NLP and NLU are used in relation to each other.

33

Figure 2: NLP in Relation to AI and ML

Figure 3: Natural Language Processing (NLP) Knowledge Areas

34

22.2.1 Information Extraction and Text Classification

Information extraction and classification are both popular applications of NLP.

Information extraction focuses on transforming raw text into structured and relevant information

to the problem at hand. Whilst text classification is more concerned with labeling and grouping

the unstructured data with relation to its content into two or more classes. Text classification can

be used on either raw data or on restructured data that is the result of an information extraction

process [27,47]. Such pipeline has the potential of producing more accurate and powerful results

for many cases, as shown in Figure 4.

Figure 4: Information Extraction and Classification

2.2.2 Text Preprocessing

In machine learning approaches the most important factor that determines the quality of

the process outcome is the condition, completeness, and plausibility of the data that is being fed

to the machine for training. Incorrect or poor-quality input will always produce faulty output.

More so for NLP techniques, since making a numeric based machines such as computers

understand and derive meaning from human spoken languages is a far more difficult task than

35

processing numeric data. Text preprocessing, describe the cleaning and preparing operations that

transforms the raw text, into a well-defined sequence of linguistically meaningful units. Raw text

datasets normally contain noisy, duplicated, lengthy, high dimensional, corrupted, and empty

data that is not valuable for the NLP task. Which makes preprocessing a vital step that must

proceed every NLP task to produce more accurate and reliable results [27,56]. Below is a

description for essential text preprocessing techniques that were also used in later chapters in this

work.

Manual cleaning: while many automated libraries exist that provide reliable text

preprocessing techniques, in some cases manual cleaning and validation of the dataset is still

necessary. For example, in some cases where many samples are unlabeled, experts’ judgment

will be required to provide an accurate classification and prevent losing the sample. In other

cases, reducing the sentence length would also be a manual task to ensure that this reduction did

not jeopardize the integrity and usefulness of that data sample [27].

General Cleaning: it is important to understand the dataset that will be used for the NLP

task. Therefore, it is advised to scan the text, understand its structure, and content. This helps

identify what cleaning processes might be needed. Additionally, as a rules of thumb, a general

cleaning step that includes removing extra white spaces and line breaks is always a good start to

a better dataset. This can be easily done with a simple automated codes and regular expressions.

Fixing Null and NaN values: Data needs to be checked for NaN and Null values. Such

values do not only compromise the training process but for many cases they can cause the

machine learning algorithm to fail its execution. Null and NaN values can be handled either

36

manually or automatically after importing the data. In many cases it is recommended to fix the

sample where there is a null/Nan value instead of removing it [27]. This fix can be done

manually using expert judgment, or automatically using mean values or estimated values that can

fill the missing data.

Tokenization: or text segmentation is the process of converting a sentence into a series

of words. Each token carries a semantic meaning that is associated with it. The importance of

this process is that it breaks down larger pieces of text into smaller more meaningful ones. The

tokenization process can be achieved by defining the boundaries for a word and separating them

by whitespace and punctuation as well as splitting contractions [4,27].

Stop Words Removal: stop words are very abundant and common in natural language

artifacts, and they provide little to no value in terms of analyzing the special meanings of a given

text. Hence removing stop words reduces the noise in the given data and promotes better results.

Example of such strop words include auxiliary verbs (be, do and have), conjunctions (and, or)

and articles (the, a, and an) [4,25,27].

Stemming and Lemmatization: Stemming refers to reducing inflected (or sometimes

derived) words to their word stem base or root. For example, the words ‘goes’, ’gone’ and

‘going’ will map to ‘go’. Lemmatization on the other hand determines the lemma (the infinitive

form of verbs and the singular form of nouns and adjectives) of each word. For example, the

verbs ("see", "saw", "seeing", "seen"}) will all map to “see”. Both or either techniques can be

used depending on the task at hand, to improve the accuracy of the result, and to reduce the

overhead of finding text similarity problems. However, lemmatization is often recommended and

37

is broadly regarded as more useful than stemming, since it adds a morphological analysis to the

words [4,12,27].

Punctuation Removal: similar to stop words, punctuations also add extra noise to the

data that might affect the tokenization, classification, and extraction processes. However, for

some scenarios it might be necessary to keep some punctuations, for example to detect the end of

a sentence, extract questions, extract quoted phrases…etc. [12,27].

Convert to Lowercase: converting the text to lowercase is vital for text parsing,

similarity extraction, and words vector presentations. For example, the words “Apple” and

“apple” will be given different numerical and weight values. While in essence these words serve

the same purpose and meaning.

Part of Speech (POS) Tagging: in linguistic features, text is analyzed to extract features

related to the interested objective. Part of Speech (POS) tagging involves tagging a word with a

part of speech label (such as noun, verb, adjective, etc.) based on the definition and its context

within the sentence in which it is found [12,23].

22.2.3 Word vectors

Word vectors or word embeddings are numerical representations of words in

multidimensional space through metrices. It is well established that, the working language of

computers is numbers. Which represents a challenge for natural language processing and words

analysis from the perspective of the computer architecture. With that said, many methods were

established to address this limitation where words are converted into corresponding unique

numbers the computers can understand and process quickly. This process of encoding documents

in a numeric feature space is called feature extraction or, vectorization.

38

One of those initial methods, is the bag of words, where words are stored in a dictionary,

each word is that dictionary key and its numerical representation is the value. For example,

{“the”: 1, “she”: 3} etc. However, in such method and while the computer can recognize the

word, it is unable to identify or derive meaning of it, in terms of how that word functions within

a sentence, how it works within a language, and how it relates to other words. Word vectors on

the other hand, add dimensionality to the word, where a word is represented by an array of

decimal numbers. These dimensions are honed via machine learning models that consider the

frequency of that word alongside words across a body of text, in addition to, the appearance of

other words in similar contexts. This allows for the computer to determine the syntactical

similarity of words numerically. Hence why, vectorization is often referred to as Feature

selection. Word vectors approaches use Matrices to represent these relationships numerically. To

represent these matrices more concisely, models flatten a matrix to a float (decimal number)

where the number of dimensions represent the number of floats in the matrix [4,6,27].

Below is a description of two vectorization models that were used in later chapters of this

work.

22.2.3.1 Term Frequency—Inverse Document Frequency (TF-IDF)

The TF-IDF approach is very commonly used for vectorizing terms and extracting

features based on occurrence. It is used in many search engines, information retrieval, and text

mining systems. TF-IDF combines two metrics, the raw frequency value of a term in a particular

document (TF), and the inverse of the document frequency for each term (IDF).

The term frequency TF of a word w in a document can be calculated as follows:

39

() =
Number of times the word w occurs in a document

The inverse of the document frequency IDF for each term w can be calculated as follows:

() = log
Total number of documents

Number of documents containing word w

Finally, the weight of word w in document d can be calculated as follows:

(,) = (,) ()

Hence and according to the above equations, the weight of word w in document d is the

product of the TF of word w in document d and the IDF of word w across the text corpus.

[6,27,35].

22.2.3.2 Word2vec

Word2vec [39] was introduced by Google in 2013 and it was developed by Mikolov et a

l. At Google. Later the model was made available as an open source for the community to use

and build on [27]. In essence the Word2vec is a model that enables the building of word vectors

using contextual information from the neighborhood of a word. For every word whose

embedding is developed, it's based on the words around it. Word2Vec is a pre-trained two-layer

neural network, that takes as input a text corpus and outputs a set of feature vectors that represent

words in that corpus [27,39]. Word2vec models can be trained by two approaches, as follows:

 Continuous Bag Of Words: this approach takes as input the context of each and tries to

predict the word corresponding to the context. Where the context in this case is the

surrounding words.

40

 Skip-gram: the skip-gram predicts the context word using the target word as input. In

this approach the target word, (i.e., the word to generate a representation for) is used to

predict the context.

Figure 5 showcases a simple representation of the two approaches that can be used to

train a Word2Vec model.

Figure 5: Word2vec Continuous Bag Of Words and Skip-gram Training Methods

2.3 Text Similarity

Text similarity from the perspective of the machine is the distance between two vectors

where the vector dimensions represent the features of two objects. Similarity provides insights

into the distance between two vectors and measures how different or alike two data objects are.

If the distance is small, the objects are said to have a high degree of similarity and vice versa.

Once the vector representation of the text, or the text embedding is established, text similarity

41

becomes a simple distance task that can be calculated using simple well-known mathematical

equations, such as the Euclidean Distance and the Cosine similarity [23,27].

2.4 Naïve Bayes

The Naïve Bayes (NB) is a classification technique based on the Bayes' theorem: the

basic assumption is that the predictor variables are independent of each other. It is a statistical

classifier that performs probabilistic prediction. A simple naïve Bayesian classifier has

comparable performance with decision tree and selected neural network classifier.

The Bayes' theorem is mathematically expressed as follows:

(|) =
(|) ()

()

 P(A) and P(B) are the probabilities of observing A and B without regard to each other.

 P(A|B), a conditional probability, is the probability of observing event A give that B is

true.

 P(B|A) is the probability of observing event B given that A is true

For a text classification problem, A can be set to the probability that a specific word

vector/ words vectors belongs to the targeted class, and B as the entire vectors in the vocabulary

set. If P(A|B) > P(¬A|B), then a sentence can be classified accordingly [4,6,12,27,40].

2.5 Support Vector Machines

Support Vector Machines (SVM) is a supervised classification method that works for

both linear and nonlinear data. The SVM algorithm aims to find the optimal hyperplane (i.e.,

42

Decision Boundary) that separates the data points that need to be classified. Naturally, there are

many possible hyperplanes that could be chosen. However, the objective is to find a plane that

has the maximum distance between data points of both classes (i.e., the margin between the two

classes data points).

Hyperplanes: the decision boundaries that separate the data points. Data points falling on

either side of the hyperplane can be attributed to different classes. The dimensionality of a

hyperplane correlates to the number of features each date point presents. If the number of

features is 2, the hyperplane is just a line. If the number of features is 3, then the hyperplane

becomes a two-dimensional plane. Figure 6 demonstrates the SVM hyperplanes.

Figure 6: SVM Hyperplanes

Support vectors: are considered as the critical elements of a dataset. These represent the

data points closest to the decision boundary. Consequently, if these points are removed, altered,

or the data is changed, the position of the dividing hyperplane will be changed and recalculated.

The margin: the distance between the hyperplane and the nearest data point from either

class is known as the margin.

43

Maximum marginal hyperplane (MMH): the hyperplane with the greatest possible

margin which yields a greater chance of new data being classified correctly.

Figure 7 demonstrates the SVM support vectors and margins.

Figure 7: SVM Support Vectors and Margins

Calculating the hyperplane and the margin:

SVM algorithm takes the output of the well-known linear function (y=mx+b) and if that

output is greater than 1, the point is placed in one class and if the output is -1, it’s places with

another class. Since the threshold values are 1 and -1 in SVM, this reinforcement range of

values ([-1,1]) can be obtained, and act as margin.

The separating hyperplane function is defined as follows:

44

() = . + = . + = 0

where W= {w1, w2, …, wn} is a weight vector, and b is a scalar called the bias. The

margin can then be calculated as:

=
2

|| ||

The goal of the SVM as mentioned before, is to determine the weight vector w and bias b

that maximize the margin m to create a distinct hyperplane that satisfies the following constrains:

() =
1 + 1
1 + 1

Where f(x) is the decision function used to create a distinct separating hyperplane that

classify input data in either positive or negative class [4,6,14,18,27,56].

2.6 Random Forest

Random forest (RF) classifiers fall under the broad umbrella of decision trees and

ensemble-based learning methods. Random forests are proven to be a very powerful and

successful techniques in pattern recognition and machine learning for high-dimensional

classification. As the name suggests, random forests consist of a large number of individual

decision trees that operate as an ensemble. Each individual tree in the random forest produces a

class prediction and the class with the majority vote (mode) across them becomes the model’s

prediction. Among other benefits, this voting approach has the effect of correcting for the

undesirable property of decision trees to overfit training data. The reason for this effect is the low

45

correlation between the models. Where the trees protect each other from their individual errors

(assuming the low probability of all trees constantly producing similar errors).

In the training stage, random forests apply a technique known as bagging to individual

trees in the ensemble. Bagging allows each individual tree to repeatedly select a random sample

from the dataset with replacement, resulting in different trees. Each tree is grown without any

pruning. The number of trees in the ensemble is a free parameter learned automatically using the

out-of-bag error (OOB). The OOB error is the average error for each bootstrap sample calculated

using predictions from the trees that do not contain in their respective that bootstrap sample. This

allows the random forest classifier to be fit and validated during its training. Hence, the random

forest, generates trees that are not only trained on different sets of data (du to bagging) but also

use different features to make decisions. Figure 8 demonstrate how a random forest model is split

into different decision trees using different features for each sub tree. [3,12,14].

Figure 8: Node splitting in a Random Forest Model

46

2.7 Performance Measures

Performance measures in machine learning are used to evaluate the correctness and

completeness of the trained model performance in a specific classification problem. These

performance metrics include accuracy, precision, recall, and F1-score. Such metrics provide

tangible insight regarding the strengths and limitations of these trained models, especially when

making predictions on new samples.

True Positive (TP): true positive measures how well the model can correctly predict the

positive class. Where the model predicts that a data sample is positive, and it is actually positive.

False Positive (FP): false positive is the case when the model wrongly predicts the class

of a given data sample. That is, a data ample classified under the negative class, but the model

retrieves it as a positive class sample.

True Negative (TN): true negative measures how well the model can correctly predict

the negative class. Where the model predicts that a data sample is negative, and it is actually

negative.

False Negative (FN): false negative is the case when the model wrongly predicts the

class of a given data sample. That is, a data ample classified under the positive class, but the

model retrieves it as a negative class sample.

The Precision Score: measures the proportion of positively predicted labels that are

actually correct. Precision is also known as the positive predictive value. Precision is used in

conjunction with the recall to trade-off false positives and false negatives. Precision is affected

by the class distribution. If there are more samples in the minority class, then precision will be

lower. The precision score of a model can be calculated using the following equation:

47

 =
TP

(FP + TP)

Where TP is the machine learning model true positive measure, and FP is its false

positive measure.

The Recall Score: represents the model’s ability to correctly predict the positives out of

actual positives. Unlike precision which measures how many predictions made by models are

actually positive out of all positive predictions made. Thus, when calculating the recall score the

value of the model’s false-negative measure would impact the recall score. The recall score for a

model can be calculated using the following equation

 =
TP

(FN + TP)

Where TP is the machine learning model true positive measure, and FN is its false

negative measure.

The Accuracy Score: is described as the ratio of true positives and true negatives to all

positive and negative observations. Accuracy provides insight into how often a machine learning

model will correctly predict an outcome out of the total number of times it made predictions.

Mathematically, it represents the ratio of the sum of true positive and true negatives out

of all the predictions. The accuracy of a machine learning model can be calculated using the

following equation:

 =
(TP + TN)

(TP + FN + TN + FP)

48

Where TP is the machine learning model true positive measure, FP is its false positive,

FN is its false negative measure, and TN is its true negative measure.

The F1-Score: represents the model’s score as a function of its precision and recall. The

F1-score gives equal weights to the model’s Precision and Recall scores to measure its

performance in terms of accuracy. Making it an alternative to Accuracy metrics (it doesn’t

require us to know the total number of observations). It’s often used as a single value that

provides high-level information about the model’s output quality. The F1-Score for a machine

learning model can be calculated using the following equation:

1 =
2 Precision Score Recall Score

Precision Score + Recall Score

49

CHAPTER 3: Isolating Security Requirements from Requirements

Datasets

The objective of this thesis work is to 1) produce an automatic framework that extracts

security related requirements from a software system’s natural language artifacts, for example, a

Software Requirements Specification document (an SRS). And 2) to produce a prioritization

scheme where the extracted list of security requirements can be further refined into a prioritized

list. This section represents the design and approach adopted to tackle the first step in the

SecREP pipeline showed before in Section 1.4.

3.1 The Datasets

The datasets used in this work’s experiments, were mainly the SecReq [59] dataset, and

the NFR [52,60] dataset. Both datasets were obtained online from “zenodo.org”.

33.1.1 SecReq Dataset

The SecRecq dataset introduced by Houmb et al. [24] Is composed of three industrial

SRS documents: Customer Premises Network (CPN), Common Electronic Purse (ePurse), and

Global Platform Specification (GPS). In total the dataset contains 510 samples of non-functional

requirements labeled as either a security requirement or non-security requirement.

Table 3 provides examples form the SecReq dataset.

50

Table 3: Requirements Samples from the SecReq Dataset

SRS

Document

Requirement Description Label

CPN The CNG may support mechanisms supporting nomadism of the

users and their subscribed services from one physical customer

environment to another.

Non-security

The diagnostic operations on the CPN by an operator shall be

performed in accordance with rules protecting the users' privacy.

Security

ePurse A single currency cannot occupy more than one slot. The CEP

card must not permit a slot to be assigned a currency if another

slot in the CEP card has already been assigned to that currency.

Non-security

Load and unload functions must be authenticated using end-to-

end security between the card and the card issuer.

Security

GPS The Card Issuer is responsible for Working with Application

Providers to create and initialize Security Domains other than

the Issuer Security Domain.

Non-security

"The Card Issuer is responsible for Enforcing standards and

policies for Application Providers governing all aspects of

Applications to be provided to the Card Issuer or operated on the

Card Issuer's cards.

Security

51

33.1.2 The NFR Dataset

The NFR [52,60] dataset that can be accessed on “zenodo.org” is also known as the

PROMISE dataset. This dataset can be attributed to Jane Cleland-Huang and was provided for

the RE'17 Data Challenge [9]. It was first made available on the PROMISE Software

Engineering Repository [52]

The NFR [60] software requirements dataset contains a total of 625 software

requirements sentences. All requirements not labeled with “F” are non-functional with the

following types: A=Availability, L = Legal, LF = Look and feel, MN = Maintainability, O =

Operational, PE = Performance, SC = Scalability, SE = Security, US = Usability, FT = Fault

tolerance, and PO = Portability. Table 4 provides examples form the NFR dataset.

52

Table 4: Requirements Samples from the NFR Dataset

Requirement Description Label

The system shall display the Events in a graph by time. F

The product shall be available for use 24 hours per day 365 days per year. A

The product shall retain user preferences in the event of a failure FT

The System shall meet all applicable accounting standards. The final version of the

System must successfully pass independent audit performed by a certified auditor.

L

The website shall be attractive to all audiences. The website shall appear to be fun, and

the colors should be bright and vibrant.

LF

The product must be highly configurable for use with various database management

systems for the end users. 80% of end users are able to integrate new database

management systems with the product without changing the product’s software code.

MN

The product is expected to integrate with multiple database management systems. The

product will operate with Oracle SQL Server DB2 MySQL HSQL and MS Access.

O

The search results shall be returned no later 30 seconds after the user has entered the

search criteria.

PE

The product is expected to run on Windows CE and Palm operating systems. PO

system shall be able to handle all the user requests/usage during business hours. SC

Only authorized users shall have access to clinical site information. SE

The system shall be used by realtors with no training. US

53

33.1.3 The Enhanced Dataset (SecREP)

The SecREP enhanced dataset was the result of multiple iterations experimenting with

three different combinations of the SecReq dataset [59] and the NFR dataset [60], in addition to

requirements that were handpicked from general SRS documents. In each iteration the dataset

was revisited for further enhancement and expansion until satisfactory results were reached.

These alterations made to the datasets were a result of a number of issues that were

encountered working with the above datasets.

 The issues with the SecReq [59]dataset are summarized as follows:

1. The dataset’s security requirements samples are all expressed as non-functional

requirements. Which would jeopardize the completeness of extracting all security

related requirements, since and as explained before, security requirements

intertwine with functional and non-functional requirements.

2. The dataset contained a significant number of corrupted data, large sentences, null

values, unlabeled samples, and samples labeled as security requirements in a

subset of the dataset and non-security in another.

3. Removing these corrupted, unclear, and unlabeled samples will significantly

reduce the size of the dataset (from 510 to 375). This, consequently, made the

machine learning models predictions considerably poor and unreliable.

The issues with the NFR dataset [60] are summarized as follows:

1. Similar to the case with the SecReq dataset [59], all security requirements are

classified as non-functional requirements. Additionally, the 11 categories of NFR

54

could also be expressing a security concern, and thus a considerable amount of

these requirements can also be extracted as security requirements.

2. Manually adjusting the classification of the 625 records, to transform the

dataset into the shape that servers the classification problem at hand requires

multiple experts ruling, taxing time, and considerable effort to ensure the

correctness and completeness of such a large-scale problem.

To address these issues, multiple experiments were conducted with different

combinations of the available datasets. Each experiment/iteration helped improve the prediction

of the trained machine learning models.

First Iteration: using a cleaned version of the SecReq dataset [59] where all corrupted,

unlabeled, unclear requirements where removed. Which yielded a total of 375 requirements

classified as either security or non-security. After using preprocessing techniques to reshape and

vectorize the text. The processed list was fed to the machine learning models namely: SVM,

Naive Bayes and RF. Despite the good performance measures scores, all models exhibited poor

predictions when subjected to a list of requirements from an SRS document.

Second Iteration: in this iteration using educated judgments, the raw SecReq [59] was

manually cleaned, fixed, and reshaped as follows:

1. Corrupted records were rewritten.

2. Unclassified entries were labeled.

3. Some large and unclear requirements samples were split into 2 or more

requirements and labeled accordingly.

55

4. Finally, requirements that were classified as “unknown” were addressed and

added to the list. Which yielded a total of 584 requirements classified as either

security or non-security.

After using preprocessing techniques to reshape and vectorize the text. Theis processed

list was fed to the machine learning models namely: SVM, Naive Bayes and RF. Despite the

good performance measures scores, all models exhibited poor predictions when subjected to a

list of requirements from an SRS document.

Third Iteration: in this iteration the cleaned 584 requirements extracted from the

SecReq dataset [59] were combined with some samples obtained from the NFR [60] dataset.

The sample selection criteria applied on the NFR [60]dataset was as follows:

1. All requirements marked as “LF” (look and feel), and “US” (usability) were

added to the list and labeled as non-security requirements. Since it is safe to

assume that these types of requirements do not express a direct security concern

on the system’s functionality and/or operations in its environment.

2. All requirements marked as “L” (legal) where classified as non-security

requirements. Examining the provided samples that are labeled as “legal”

requirements. It was determined that even though these may contain security

related terms and vocabulary, they do not represent security concerns that effect

the system functionality and ability to operate in its environment. And hence this

classification would yield more reliable results identifying the security

requirements that address operational threats.

56

3. All requirements marked as “SE” (security) were added to the list and labeled as

security requirements.

4. All requirements marked as “A” (availability) were added to the list and labeled

as security requirements. Since availability has a direct correlation to the security

CIA Triad (Confidentiality, Integrity, and Availability).

5. Functional requirements labeled with “F” and the remaining non-functional

requirements (SC, PO, PE, O, MN, and FT) were excluded from the final dataset.

6. Finally, several handpicked samples of security requirements and non-security

requirements from general SRS documents were added. In order to further expand

the diversity and coverage of the dataset.

The combined and enhanced dataset was then subjected to preprocessing techniques and

transformed into a machine digestible form. The processed list consisting of a total of 752

requirements, was then fed to the machine learning models namely: SVM, Naive Bayes and RF.

Despite the slight drop in performance measures scores, all models exhibited improved

predictions when subjected to a list of requirements from an SRS document. The validation on

this iteration concluded that the predictions results were satisfactory.

 Table 5 shows the difference in the predictions results between the SecReq dataset [59]

used in “Iteration Two” and the SecREP dataset used in “Iteration Three”.

The enhanced SecREP dataset is available on the following link, and can be made

available for interested researchers upon request:

https://github.com/shadakhanneh/SecREP-Dataset

57

Table 5: Machine Learning Predictions Results Comparison

Requirement description Iteration Two (Clean and

fixed SecReq dataset)

Iteration Three (SecREP)

The system should support

secure virtual private network

connections

Machine

Learning

Model

Prediction Machine

Learning

Model

Prediction

SVM Non-security SVM Security

Naive Bayes Non-security Naive Bayes Security

Random

Forest

Non-security Random

Forest

Security

The system should be extensible

to provide access to the

interfaces through PDA’s and

mobile data terminals

SVM Security SVM Security

Naive Bayes Non-security Naive Bayes Security

Random

Forest

Security Random

Forest

Security

The system should be designed

for access through browser-

based systems and must impose

minimal requirements on the

client device

SVM Non-security SVM Security

Naive Bayes Non-security Naive Bayes Security

Random

Forest

Non-security Random

Forest

Security

Use of AJAX based technology

to improve user experience.

SVM Non-security SVM Non-security

Naive Bayes Non-security Naive Bayes Non-security

58

Aggressive page loading to be

considered based on the screen

and estimate usage pattern

Random

Forest

Non-security Random

Forest

Non-security

3.2 Data Preprocessing

In machine learning approaches the most important factor that determines the quality of

the process outcome is the condition, completeness, and plausibility of the data that is being fed

to the machine for training. Incorrect or poor-quality input will always produce faulty output. for

NLP techniques the raw text requires considerable preprocessing in order to transform it into a

digestible form that the machine can process and understand. Raw text datasets normally contain

noisy, duplicated, lengthy, high dimensional, corrupted, and empty data that is not valuable for

the NLP task. This makes preprocessing a vital step that must proceed every NLP task to

produce more accurate and reliable results. Detailed descriptions for each text preprocessing

technique used in this work’s experiments is provided in Section 2.2.2

The below listed text preprocessing techniques were performed before feeding the

SecREP to the machine learning models.

1. Manual cleaning and Null/NaN values substitution, which were performed

inherently while producing the enhanced dataset. As described before in Section

3.1.

2. Stop words, non-numeric and punctuation removal

3. Stemming and lemmatization

4. Lower case text conversion

59

5. Part-of-speech (POS) tagging to understand if the word is noun or verb or

adjective…etc.

6. Vectorization using Term Frequency—Inverse Document Frequency (TF-IDF).

Additionally in the context of text preprocessing, negation handling represents a common

issue that must be taken into account especially in sentiment analysis problems. However,

for the problem at hand, negations were considered irrelevant and hence removed. This

decision was made based on the observation, that a security requirement is classified as

such depending on what it offers to the system or what it prevents or both. For example, a

requirement could be considered a security requirement if it is addressing the act of

“access” or the act of “no access”, where both cases will provide similar outcomes to the

classification prediction.

Table 6 shows examples of the dataset before and after applying the preprocessing

techniques.

60

Table 6: Dataset Text Examples Before and After Preprocessing

Original Requirement Text Requirement Text after Preprocessing Label

Successful authentication is a

prerequisite for the processing of

any on-line or offline CEPS

transaction

Successful authentication prerequisite

processing offline ceps transaction.

Security

In the case of an unlinked load,

no presumption may be made as

to the business relationship

between the cardholder, the

funds issuer, the card issuer, or

the load acquirer

case unlinked load presumption may make

business relationship cardholder fund issuer

card issuer load acquirer

Non security

3.3 Machine Learning Techniques

This section describes the training and validation processes adopted to train the selected

machine learning models, which are the SVM, Naive Bayes and Random Forest (These models

are explained in detail in Chapter 2 Background). These three models are highly regarded and

widely praised to exhibit accurate results in classification tasks. Especially for small-size

datasets. Where despite the enhanced SecREP dataset of 752 records, is still the case. For

example, machine learning models such as the Convolution Neural Networks (CNN), Recurrent

Neural Networks (RNN) are known to require thousands of samples to produce satisfactory

result.

61

33.3.1 Training

 The three selected machine learning models: SVM, Naive Bayes and Random Forest,

were trained using the Scikit-Learn library [50] implementation. After applying the selected

preprocessing steps described earlier in Section 3.2. These pre-built models were trained using

the cleaned 584-SecReq dataset, and the enhanced SecREP dataset of 752 requirements. Two

validation methods were applied in each training experiment: Resampling and N-Folds Cross

Validation. The performance of each model was assessed using the performance measure:

Precision, Recall, Accuracy, and the F1-Score. These performance measures or metrics are

described in detail in Section 2.7.

3.3.2 Experiment 1

Using the 584-SecReq dataset, the three machine learning models were trained and

validated using a resampling of 80% training and 20% testing and a 5-folds cross validation.

Additionally, the performance metrics for each validation approach were calculated.

The resulting training curve for each model is exhibited in Figure 9.

Figure 9: Machine Learning Models Learning Curve for the SecReq Dataset Training

62

The performance metrics results for each machine learning model using resampling of

80% for training and 20% for validating are showcased in Table 7 and Figure 10. While the 5-

folds cross validation performance metrics results are showed in Table 8 and Figure 12.

Table 7: Performance Measures Results Using the SecReq Dataset and 20% Resampling
Validation

Model Accuracy correctly

classified samples

Precision Recall

Score

F1

Score

Naive Bayes (NB) 85.47 100 0.81 0.71 0.76

Support Vector Machine

(SVM)

92.30 108 0.89 0.86 0.88

Random Forest (RF) 90.59 106 0.90 0.78 0.84

Figure 10: Performance Measures Results Graph Using the SecReq Dataset and 20%
Resampling Validation

Figure 11 below illustrates the confusion metrics used in calculating the performance scores for

each model.

63

Figure 11: Machine Learning Models Confusion Metrics for the SecReq Dataset Training

64

Table 8: Performance Measures Results Using the SecReq Dataset and 5-Folds Cross
Validation

Model Mean

Accuracy

Mean

Precision

Mean Recall

Score

Mean F1

Score

Naive Bayes (NB) 0.70

0.77 0.67 0.64

Support Vector Machine

(SVM)

0.70 0.76 0.68 0.66

Random Forest (RF) 0.67 0.75 0.64 0.60

Figure 12: Performance Measures Results Graph Using the SecReq Dataset and 5-Folds
Cross Validation

33.3.3 Experiment 2

Using the SecREP dataset, the three machine learning models were trained and validated

using a resampling of 80% training and 20% testing and a 5-folds cross validation. Additionally,

65

the performance metrics for each validation approach were calculated. The resulting training

curve for each model is exhibited in Figure 13.

Figure 13: Machine Learning Models Learning Curve for the SecREP Dataset Training

The performance metrics results for each machine learning model using resampling of

80% for training and 20% for validating are showcased in Table 9 and Figure 14. While the 5-

folds cross validation performance metrics results are showed in Table 10 and Figure 16. These

Table 9: Performance Measures Results Using the SecREP Dataset and 20% Resampling
Validation

Model Accuracy correctly

classified samples

Precision Recall

Score

F1

Score

Naive Bayes (NB) 92.71 140 89 0.93 0.91

Support Vector Machine

(SVM)

93.37 141 0.90 0.93 0.92

Random Forest (RF) 90.59 136 0.89 0.85 0.87

66

Figure 14: Performance Measures Results Graph Using the SecREP Dataset and 20%
Resampling Validation

Figure 15 below illustrates the confusion metrics used in calculating the performance scores for

each model.

Figure 15: Machine Learning Models Confusion Metrics for the SecREP Dataset Training

67

Table 10: Performance Measures Results Using the SecREP Dataset and 5-Folds Cross
Validation

Model Mean

Accuracy

Mean

Precision

Mean Recall

Score

Mean F1

Score

Naive Bayes (NB) 0.68 0.76 0.68 0.65

Support Vector Machine

(SVM)

0.71 0.77 0.71 0.68

Random Forest (RF) 0.65 0.71 0.65 0.62

Figure 16: Performance Measures Results Graph Using the SecREP Dataset and 5-Folds
Cross Validation

33.3.4 Case Study

For both experiments once the training process was completed. Each trained model was

fed a list of a software specifications that was acquired from an SRS document. The

specifications list contained 30 requirements in total. Table 11 shows examples taken from that

requirements list.

68

To obtain a robust list that can be determined as a security requirement list of a said

system. First the list of 30 requirements were subjected to the preprocessing techniques

addressed earlier in Section 2.2.2 to transform it into a machine understandable form. Second, a

majority vote ensemble was adopted, where a requirement is added to the list if the three-trained

models (the SVM, the Naïve, and the Random Forest) label that requirement as security related.

Table 11: Examples from the Software Requirements List Used for The Case Study

Requirement Description

The system should support multilingual interface

The system should work even in an offline mode with the critical functionality

The search should fetch only the fields that need to be displayed to the user. Only when the user

clicks on a particular record to view its further details should a query be fired to fetch the additional

details for this particular record only

Database Indexes should be applied on the key columns used for searching

The system must support multiple types of communication services for remote access

The system should be built on a common User Access and Authentication Service to ensure Single-

Sign on for the end-user

The system should have capability to support public access to a subset of data and functionality

For the first experiment where the ensemble models were trained using the SecReq

dataset [59], the ensemble majority vote extracted only 3 requirements as security requirements.

Examining the ensemble extracted list in comparison to the original 30 requirements list. It was

clear that there was a significant loss in valuable requirements that clearly address security

threats or protect the system assets.

69

Table 12 shows the requirements that were extracted as security related from the first

experiment using the SecReq dataset [59].

For the second experiment where the ensemble models were trained using the enhanced

SecREP dataset, the ensemble majority vote extracted 17 requirements as security requirements.

Examining the ensemble extracted list in comparison to the original 30 requirements list. The list

does exhibit satisfactory results were all the extracted requirements do address a security issue in

terms of threats that need to be accounted for, system assets that needs protecting, or both.

Additionally, and in comparison, to the original 30 requirements list that was fed to the

ensemble, and using educated judgments the extracted list was comprehensive, and included all

the requirements that are indeed security related.

Table 13 shows the requirements that were extracted as security related from the second

experiment using the SecREP dataset.

70

Table 12: Security Requirements List Extracted from First Experiment Using the SecReq
dataset

No. Requirement Description

1: The system should be built on a common User Access and Authentication Service to

ensure Single-Sign on for the end-user.

2: The system should ensure secure transmission of data over the network and utilize SSL

and 2-way digital signatures.

3: The system should ensure high standards of security and access control through: a)

Prevent cross-site scripting b) Validate the incoming data / user request c) Encode the

incoming data / user request d) Prevent SQL Injection e) Utilize parameterized queries f)

Sanitize the user-inputs g) Validate the data both at the client and server h) Do not allow

hard delete and perform only soft tagging the row for deletion.

Table 13: Security Requirements List Extracted from Second Experiment Using the
SecREP dataset

No. Requirement Description

1: The system should work even in an offline mode with the critical functionality.

2: The system should be designed to have satisfactory performance even in Police Stations

connected on low-bandwidth.

3: The system should be built on a common User Access and Authentication Service to

ensure Single-Sign on for the end-user.

4: The system should be developed to be deployed in a 3-tier datacenter architecture.

71

5: The system should be designed to have a n-tier architecture with the presentation logic

separated from the business logic that is again separated from the data-access logic.

6: The system should be extensible to provide access to the interfaces through PDA’s and

mobile data terminals.

7: The system should adopt standardized formats and common metadata elements.

8: The system should be designed for access through browser-based systems and must

impose minimal requirements on the client device.

9: The system should support SSL encrypted connections.

10: The system should support secure virtual private network connections.

11: The system should run on multiple browsers.

12: The system should support selective encryption of the stored data.

13: The system should ensure secure transmission of data over the network and utilize SSL

and 2-way digital signatures.

14: The system should ensure high standards of security and access control through: a)

Prevent cross-site scripting b) Validate the incoming data / user request c) Encode the

incoming data / user request d) Prevent SQL Injection e) Utilize parameterized queries

f) Sanitize the user-inputs g) Validate the data both at the client and server h) Do not

allow hard delete and perform only soft tagging the row for deletion.

15: Use of cache for storing frequent data.

16: The search should fetch only the fields that need to be displayed to the user. Only when

the user clicks on a particular record to view its further details should a query be fired to

72

fetch the additional details for this particular record only.

17: Database Indexes should be applied on the key columns used for searching.

3.4 Discussion

To build part one of the SecREP pipeline where security related requirements can be

identified in an automated manner using a machine learning classification approach. First, and as

for all machine learning classification problems, a reliable dataset must be obtained. That is, a

dataset with sufficient, clear, balanced, and assorted samples, that can be used to achieve a

reliable prediction model. For the classification problem of identifying/extracting security

requirements from software requirements natural language artifacts. Two datasets were identified

that are publicly available and can serve this purpose, the SecReq dataset [59] and the NFR

dataset [60]. However, both datasets present a major challenge to the problem at hand. The issues

with the SecReq dataset [59] besides the intensive cleaning and fixing needed, the security

requirements samples are all expressed as non-functional requirements. Which would jeopardize

the completeness of extracting all security related requirements, since and as explained before,

security requirements intertwine with functional and non-functional requirements. Similar to the

SecReq dataset [59] the NFR dataset [60] also classifies the security requirements under the non-

functional requirements. Additionally, the 11 categories of NFR can also be expressing a security

concern, and thus a considerable amount of these requirements can also be extracted as a security

requirement. To address these issues, different combinations of the available datasets were

conducted and put under the test. Each experiment/iteration helped improve the predictions of

the trained machine learning models. The resulting enhanced dataset “SecREP Dataset” is a

73

combination of a cleaned version of the SecReq dataset [59] where all corrupted records were

rewritten, unclassified entries were labeled using educated judgments, and some large and

unclear requirements samples were split into two or more requirements and labeled accordingly.

This cleaned SecReq dataset [59] was then combined with some samples obtained from the NFR

dataset [60]. The sample selection criteria from the NFR dataset [60] were based on educated

judgments and experimentation. Finally, some samples were handpicked form SRS document to

further increase the diversity of the dataset.

To test the validity of the SecREP dataset, two experiments were conducted where in one

the machine learning models were trained using the SecRq dataset and using the SecREP in the

other. The training results, in terms of performance measures, shows similar results for both

variants of trained models. However, in the case study where each trained ensemble was fed a

list of requirements obtained form an SRS document. The trained model using the SecREP

dataset exhibited significantly improved results, and the ensemble majority vote was able to

extract 17 requirements that clearly address a security concern. Whereas the trained ensemble

model using the SecReq [59] dataset was able to extract only 3 requirements as security related.

These results highlight a notable loss of many requirements that should have been extracted

when the training was conducted using the SecReq dataset, and a notable increase in the

prediction performance using the SecREP enhanced dataset.

74

CHAPTER 4: Security Requirements Prioritization

4.1 Prioritization Scheme

The objective of this thesis work is to 1) produce an automatic framework that extracts

security related requirements from a software system’s natural language artifacts, for example, a

Software Requirements Specification document (an SRS). And 2) to produce a prioritization

scheme where the extracted list of security requirements can be further refined into a prioritized

list. This section represents the prioritization scheme adopted to in second step of the SecREP

pipeline showed before in Section 1.4

Security requirements are complicated in nature. They express many aspects of a

software system and intertwine with all its properties, as well as with other types of

requirements. Examining security prioritization techniques introduced in literature that were also

summarized in Section 1.2.2. Many factors need to be identified in a security requirement to

assess it is quality and importance. These factors can vary depending on the nature and

functionality of the software system under question, the stakeholders need, and the system’s

operational environment. However, and in terms of security, a few constant factors can be used

to express the quality of a security requirement. These are, the assets a security requirement is

protecting, the threats it is attempting to mitigate, and the security properties its expressing (e.g.,

Confidentiality, Integrity, Availability…).

4.2 Proposed Prioritization Scheme

The prioritization scheme in this work, considers the quality and valuation of a security

requirements based on the three constant factors that were identified based on this work’s

literature study. These factors are assets, threats, and security attributes. With the aid of NLP

75

approaches that can be used to extract information form a software system’s requirements

artifacts, such factors can be more adequately identified in the context of a specified system.

To achieve the second part of SecREP framework, the extracted security requirements list

from the first part was subjected to a part of speech tagging method and a named entity

recognition method. To help recognize from that list, assets that need protecting, threats that

need to be addressed, and security properties the system must incorporate. Once these factors are

identified, a list of each factor can be established, where each security requirement can then be

tested against each list and weighed according to the number of assets, threats and security

properties being addressed in that specific security requirement. Additionally, to derive more

meaning to the security requirement and ensure that all threats are accounted for, each security

requirement was granted a STRIDE score. The STRIDE score was calculated based on text

similarity scoring approach. For each STRIDE threat a super-sentence that describes how the

system should prevent such threat was constructed. Using these super-sentences each security

requirement similarity score to each STRIDE sentence can thus be calculated. The security

requirement STRIDE score can then be expressed based on the number of STRIDE threats that

sentence is addressing. Finally, the priority score of each requirement can then be the sum of it is

corresponding STRIDE score, and the count score for each asset, threat, and security property

present in the security requirement.

76

4.3 Case Sturdy and Prioritization Results

Continuing with the case study presented in the first part of the SecREP pipeline under

Section 3.3.4. The list of 17 security requirements was subjected to the preprocessing techniques

discussed in Section 3.2. To transform the text into a machine digestible form.

44.3.1 Constructing the Comparison Lists

Following the proposed prioritization pipeline. First, three lists were constructed: a list of

assets, a list of threats, and a list of security properties or attributes. The values in each of these

lists were chosen using generic values of known assets, threats, and security properties.

Additionally, the security requirements list was loaded into a spaCy natural language possessing

medium model, to utilize the models Word2vec vectorization method discussed in Section

2.2.3.2. In addition to the Word2vec method, the spaCy library offers several built in NLP

techniques.

To further enhance the comparison lists and make them specific to the context of the

given system. The spaCy Part-of-speech (POS) tagging method and the spaCy matcher were

used to extract, subjects, objects, nouns, subjects followed by verbs, and objects followed by a

verb. As expected, the resulting list from this extraction, contained a considerable number of

items. However, using educated judgments, the list was reduced to cover what was considered

either an asset, a threat, or a security property.

With this new insight into the system at hand, the complete comparison lists were

constructed, where each list contains general items, and items extracted from the specific nature

of the security requirement list.

77

Table 14 shows the final comparison lists that were constructed as a result of processing

the security requirements list. While Figure 17 demonstrates the identification of these items in

the security requirements list.

Table 14: Comparison lists

Type Items

Assets Data, network, information, database, client, datacenter, design, user inputs,

record, architecture, access interface, client device, connection, business,

certificate, user.

Threats access, spoof, alter, change, delete, modify, update, edit, tamper, repudiation,

denial, unauthorized, injection, deny, phishing, phish.

Security

Properties

Authentication, authenticity, authentic, authorization, confidential, available,

availability, confidentiality

78

Figure 17: Identifying Assets, Threats, and Security Properties

44.3.2 Constructing the Super-Sentences

To add more robustness to the SecREP framework prioritization scheme. An approach

was adopted to identify if a security requirement protects against or is addressing a threat that

corresponds to the STRIDE threat modeling. The STRIDE model developed by Microsoft [30] is

a popular method used to identify security threats and groups them in six different categories:

Spoofing, Tampering, Repudiation, Information disclosure, Denial of service, and Elevation of

privilege.

To incorporate the STRIDE model into the prioritization scheme. First, each security

requirement must be examined to see not only if a direct mention of a threat is present, but also if

79

that requirement derived meaning correlates to the definitions of the STRIDE threats. To tackle

this task a text similarity technique was chosen. To use the idea of text similarity, first there must

be another sentence that can be compared to the text under question, to see if that text contains

the desired information. To do so, a list of super-sentences was constructed where each sentence

in the list corresponds to a behavior or quality, that would protect against the STRIDE threats.

With the establishment of the super-sentences, the problem becomes a simple similarity

problem to see how similar each security requirement is to that defined super-sentence. For

measuring a similarity score between each security requirement in the case study and the super-

sentences, the spaCy similarity function was used. The resulting score is represented as a

percentage of similar. To simplify the results, a security requirement was given a weight of 1 for

each STRIDE super-sentence with a similarity of 90% and above. Hence, the total STRIDE score

of a security requirement is the sum of all STRIDE similarity scores. Thus, in this case the

minimum STRIDE score a security requirement can have is 0 and the maximum is 6.

Table 15 describes the list of super-sentences.

80

Table 15: STIDE Threat Model and The Super-Sentences

Threat type Property Super-Sentence Description

Spoofing Authentication Prevent illegal access and using another user's authentication

information, such as username and password

Tampering Integrity Prevent the malicious modification of data. Examples include

unauthorized changes made to persistent data, such as that held in a

database, and the alteration of data as it flows between two

computers over an open network, such as the Internet

Repudiation Non-repudiation

services

Prevent users from performing an illegal action without other parties

having any way to prove otherwise, when a user performs an illegal

operation, the system should provide the ability to trace that

prohibited operations. The system should have the ability to counter

repudiation threats.

Information

disclosure

Confidentiality Prevent the exposure of information to individuals who are not

supposed to have access to it. prevent the ability of users to read a

file that they were not granted access to, or the ability of an intruder

to read data in transit between two computers

Denial of

service

Availability Prevent denial of service (DoS) to valid users. Prevent making a

Web server temporarily unavailable or unusable. A system should

be available and reliable

Elevation of

privilege

Authorization Prevent an unprivileged user form gaining privileged access that is

sufficient to compromise or destroy the entire system. A system

should protect against situations in which an attacker has effectively

81

penetrated all system defenses and become part of the trusted

system itself

44.3.3 The Prioritized List

Each security requirement in the list was compared with each item in the three

comparisons list that were constructed earlier. The weight of each security requirement is

increased by 1 if a matching item in these lists appears in the security requirement. Similarly,

after calculating the total STRIDE score for each sentence, the weight of each requirement was

incremented by its STRIDE score. Thus, the priority score for a given security requirement is the

sum of the count of all the assets, threats, and security properties it is addressing, in addition to

its STRIDE score that was defined earlier.

Figure 18 demonstrates the final extracted and prioritized security requirements list as a

result of the SecREP pipeline.

Figure 18: final extracted and prioritized security requirements list

82

4.4 Discussion

To establish part two of the SecREP pipeline where extracted security related

requirements can be further analyzed and prioritized. First, a prioritization criterion was

established. The focus of this prioritization scheme was to incorporate NLP automated

techniques, such that minimal human interaction is needed. The proposed prioritization assesses

each requirement based on the number of assets, threats, and security properties that are directly

being addressed by the requirement. Additionally, and to add robustness to the prioritization, the

underlying meaning of a security requirement was also accounted for, using text similarity

approach to compare the security requirement against six super-sentences each corresponding to

the STRIDE threat model.

The case study showed how this prioritization scheme is conducted and how the priority

score was calculated. The final list of prioritized security requirements showcased the difference

in priority score between security requirements. Additionally, inspecting the list, the topmost

security requirements (with highest priority score) show a high level of correlation to critical

security aspects that must be addressed in every software system. What is worth mentioning

here, is that this prioritization scheme could be a reliable start to eliciting and prioritizing

security requirements. However, to ensure the completeness of a security requirement and its

priority, other factors and calculations must also be considered. For example, this proposed

prioritization scheme could be adopted to help identify assets, threats, security properties, and to

map the threats discussed by the security requirement to the STRIDE threat model. After doing

so, software engineers can use this information to further assess the security requirement in terms

of the risk value, the impact, the system’s vulnerabilities that can cause a threat to occur, the

underlying cost of implementing the security mechanisms...etc. Such values can improve the

83

completeness and correctness to the security requirement and its priority. Additionally, further

valuation of the security requirement can help address those with competing priority scores, that

is two or more security requirement have the same priority weight. Additionally, techniques such

as, the AHP[49,57] the CVSS (Common Vulnerability Scoring System), and the bug bars, can

help in calculating these values and solve the issue with competing security requirements.

84

CHAPTER 5: Conclusion

This chapter provides the major conclusions and the planned future work based on the

results of this research effort.

5.1 Conclusion

This thesis has described the work and steps taken to achieve the Security Requirements

Extraction and Prioritization (SecREP) framework/pipeline. The SecREP pipeline presented in

this thesis consists of two major parts. Part one, demonstrates the efforts and experiments

conducted to establish a machine learning ensemble that extracts/identifies security requirements

from natural language software requirements artifacts. The majority vote ensemble was created

using three machine learning models, SVM, Naïve Bayes, and Random Forests. Two different

experiments were conducted to train and evaluation the machine learning models. In the first

experiment the machine was fed the SecReq dataset [59]. In the second experiment the machine

was fed the enhanced SecREP dataset that was conducted as a result of this work. Both trained

ensembles were applied to a case study. Where each ensemble model was fed a list of 30

requirements obtained form an SRS document. The results showed significantly improved

predictions using the majority vote of the ensemble trained on the SecREP dataset. The proposed

approach was able to extract 17 requirements as security requirements. In comparison, the

ensemble trained using the SecReq dataset [59] was able to extract only 3 requirements.

In the second part of the SecREP pipeline, a prioritization scheme was proposed to

evaluate the importance and analyze the extracted security requirements. The SecREP

prioritization process, valuates the priority of each security requirements in terms of the assets it

85

is protecting, the threats it is addressing, and its security properties. In addition to its similarity to

a super-sentence that corresponds to the STRIDE threat model.

The proposed prioritization scheme was applied to the case study, to prioritize the

extracted list of 17 security requirements. Using NLP techniques such as, Part-of-speech (POS)

tagging and named entity recognition, three lists were conducted that represent the system assets,

threats, and security properties. Each security requirement was then compared against each item

in those lists, to extract the number of assets, threats, and security properties that are present in

the requirement. Finally using the Word2Vec and text similarity methods provided in spaCy

library [23], each security requirement was compared against 6 super-sentence that correspond to

the STRIDE threats definitions. In order to extract its STRIDE similarity score. The priority

score for each requirement was calculated that is, the sum of its assets, threats, and security

properties, and its STRIDE score. The final list of prioritized security requirements was

evaluated using expert judgment, where the list exhibited a variance in the priority scores and the

security requirements with highest priority scores do indeed show a high level of correlation to

critical security aspects that must be addressed in every software system.

5.2 Limitation of Study

Obtaining a dataset that can be utilized in a machine learning approach for classifying

security requirements was perhaps the most challenging aspect of this study. Two datasets that

can be used for such problem were publicly available. The SecReq dataset [59] and the NFR

dataset [60]. The concerns with these datasets are the low count of samples and the domain

specific examples. Additionally, and what is perhaps the biggest limitation is the fact that all

security labeled requirments are expressed as non-functional requirements. This classification

86

under non-functional requirements can jeopardize the task at hand. That is to extract a

comprehensive list of security requirements for a software system form natural language

artifacts. In order for that list to be complete and correct, security requirements must be extracted

from functional and non-functional requirements alike. Due to the fact that security concerns and

the security aspects of a system relate directly to many of its functoriality, environment and

performance.

Despite the construction of the SecREP dataset in this work. Training a machine learning

model to extract security requirements from software systems natural language artifacts. Can be

significantly improved by further improving the dataset to contain more versatile and correct

samples that express the security requirements as functional and non-functional. Additionally,

increasing the size of the dataset will produce better learnt machine models, and can also allow

for training other machine learning models than the ones addressed in this study (SVM, Naïve

Bayes, and Random Forest). For example, models such as the CNN, RNN and deep learning that

require large datasets, can be used to obtain remarkable results.

In terms of this work validity, the SecREP framework/pipeline was tested on one case

study and its results evaluation was based on its performance with that example. Further testing

can help fortify the validity of the SeREP framework/pipeline and can help recognize weak

points that needs addressing.

Finally, and what is worth mentioning here, is that this prioritization scheme provided by

the SecREP is only a reliable start to eliciting and prioritizing security requirements. However, to

ensure the completeness of a security requirement and its priority, other factors and calculations

must also be considered. For example, the risk value, the impact, the system’s vulnerabilities that

87

can cause a threat to occur, the underlying cost of implementing the security mechanisms...etc.

Such values can improve the completeness and correctness to the security requirement and its

priority. Additionally, the prioritization scheme proposed in this work does not address the

problem of security requirements with competing priority scores, that is two or more security

requirement have the same priority weight. However, techniques such as, the AHP [45,52] the

CVSS (Common Vulnerability Scoring System), and the bug bars, can help in calculating these

missing values and solve the issue with competing security requirements.

5.3 Future Work

As a result of the work conducted in this thesis, several research opportunities,

unexplored areas, and enhancements openings can be addressed in future work.

 Enhancing the SecREP Dataset: The SecREP dataset can be further enhanced, in

terms of size, completeness, correctness and diversity of the samples. A need is

still dire for a large in scale dataset of software requirements classified as either

security related as non-security related. That ensures to incorporate security

requirements samples that are expressed as functional security requirements and

non-functional security requirements.

Additionally, different combinations of the SecReq [59] dataset and the NFR

dataset [60] can still be tested to see if that would improve upon the SecREP

dataset.

Finally, there is an opportunity to use the SecREP extraction model, or similar

models, to help extract security requirements samples from software systems

88

natural language artifacts, where these samples can be then added to the SecREP

list and used to retrain the SecREP model or to train different models.

 Evaluating other Machine Learning models: Other machine learning models for

example, CNNs, RNNs, Decision tree, KNN algorithm, K-means…etc. Can still

be experimented with using the SecREP dataset, the SecReq [59] dataset and the

NFR dataset [60], or different combinations of them.

 Additional Case Studies: The SecREP pipeline can be subjected to different case

studies for different domains. For example, to extract security requirements form

users reviews and feedback, or mobile applications reviews. Additionally, there is

a comparison study opportunity, where the SecREP framework validity and

performance can be tested against similar or related models.

 Enhanced Prioritization: The prioritization scheme proposed by the SecREP

framework, has many areas of improvements. First the prioritization can be

further extended and automated to account for other important values regarding

security requirements, for example risk calculation, threat impact, likelihood of a

threat...etc. Second, a scheme can be added to the prioritization process to address

the issue with competing security requirements with similar priority scores. Third,

the scheme can be further automated to extract any human element, wherein the

SecREP pipeline, software engineers need to finalize and review the comparison

lists extracted by the process that correspond to their system assets, threats, and

security properties. Finally, the prioritization scheme can be further tested on

different case studies and can be compared and tested against other similar or

related approaches.

89

References

[1] Zahra Shakeri Hossein Abad, Oliver Karras, Parisa Ghazi, Martin Glinz, Guenther Ruhe,

and Kurt Schneider. 2017. What Works Better? A Study of Classifying Requirements.

(July 2017). Retrieved from http://arxiv.org/abs/1707.02358

[2] Malik Nadeem Anwar Mohammad, Mohammed Nazir, and Khurram Mustafa. 2019. A

Systematic Review and Analytical Evaluation of Security Requirements Engineering

Approaches. Arabian Journal for Science and Engineering 44, 11 (November 2019),

8963–8987. DOI:https://doi.org/10.1007/s13369-019-04067-3

[3] Ahmad Taher Azar, Hanaa Ismail Elshazly, Aboul Ella Hassanien, and Abeer Mohamed

Elkorany. 2014. A random forest classifier for lymph diseases. Computer Methods and

Programs in Biomedicine 113, 2 (2014), 465–473.

DOI:https://doi.org/10.1016/j.cmpb.2013.11.004

[4] Manal Binkhonain and Liping Zhao. 2019. A review of machine learning algorithms for

identification and classification of non-functional requirements. (2019).

DOI:https://doi.org/10.1016/j.eswax.2019.10

[5] Barry Boehm. 2006. A view of 20th and 21st century software engineering. In

Proceedings of the 28th international conference on Software engineering, ACM, New

York, NY, USA, 12–29. DOI:https://doi.org/10.1145/1134285.1134288

90

[6] Edna Dias Canedo and Bruno Cordeiro Mendes. 2020. Software requirements

classification using machine learning algorithms. Entropy 22, 9 (September 2020).

DOI:https://doi.org/10.3390/E22091057

[7] Giuseppe Carleo, Ignacio Cirac, Kyle Cranmer, Laurent Daudet, Maria Schuld, Naftali

Tishby, Leslie Vogt-Maranto, and Lenka Zdeborová. 2019. Machine learning and the

physical sciences. (March 2019). DOI:https://doi.org/10.1103/RevModPhys.91.045002

[8] Luciano Gonçalves de Carvalho, Marcelo Fantinato, and Marcelo Medeiros Eler. 2020.

Security requirements identification and prioritization for smart toys. Electronic

Commerce Research and Applications 41, (May 2020), 100972.

DOI:https://doi.org/10.1016/j.elerap.2020.100972

[9] Jane Cleland-Huang, Raffaella Settimi, Xuchang Zou, and Peter Solc. 2007. Automated

classification of non-functional requirements. In Requirements Engineering, 103–120.

DOI:https://doi.org/10.1007/s00766-007-0045-1

[10] Dev Dave, Vaibhav Anu, and Aparna S. Varde. 2021. Automating the Classification of

Requirements Data. In Proceedings - 2021 IEEE International Conference on Big Data,

Big Data 2021, Institute of Electrical and Electronics Engineers Inc., 5878–5880.

DOI:https://doi.org/10.1109/BigData52589.2021.9671548

[11] Onyeka Emebo, Aparna S Varde, and Olawande Daramola. Common Sense Knowledge,

Ontology and Text Mining for Implicit Requirements.

91

[12] Wael Etaiwi and Ghazi Naymat. 2017. The Impact of applying Different Preprocessing

Steps on Review Spam Detection. In Procedia Computer Science, Elsevier B.V., 273–

279. DOI:https://doi.org/10.1016/j.procs.2017.08.368

[13] Donald G Firesmith. 2003. Engineering security requirements. Retrieved from

http://www.jot.fm/issues/issue_2003_01/column6

[14] Peter Flach. 2012. Machine Learning: The Art and Science of Algorithms That Make

Sense of Data.

[15] Kenneth Kofi Fletcher and Xiaoqing Liu. 2011. Security Requirements Analysis,

Specification, Prioritization and Policy Development in Cyber-Physical Systems. In 2011

Fifth International Conference on Secure Software Integration and Reliability

Improvement - Companion, IEEE, 106–113. DOI:https://doi.org/10.1109/SSIRI-

C.2011.25

[16] Aayush Gulati, Shalini Sharma, and Parshotam Mehmi. 2012. Proposing Security

Requirement Prioritization Framework. International Journal of Computer Science,

Engineering and Applications 2, 3 (June 2012), 27–37.

DOI:https://doi.org/10.5121/ijcsea.2012.2303

[17] Ethan Hadar and Amin Hassanzadeh. 2019. Big Data Analytics on Cyber Attack Graphs

for Prioritizing Agile Security Requirements. In 2019 IEEE 27th International

Requirements Engineering Conference (RE), IEEE, 330–339.

DOI:https://doi.org/10.1109/RE.2019.00042

92

[18] Soma Halder. 2018. Hands-On Machine Learning for Cybersecurity: Safeguard your

system by making your machines intelligent using the Python ecosystem. Ozdemir, Sinan

(2018).

[19] Charles B. Haley, Jonathan D. Moffett, Robin Laney, and Bashar Nuseibeh. 2006. A

framework for security requirements engineering. In Proceedings of the 2006

international workshop on Software engineering for secure systems - SESS ’06, ACM

Press, New York, New York, USA, 35. DOI:https://doi.org/10.1145/1137627.1137634

[20] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann, and Ian

H. Witten. 2009. The WEKA data mining software. ACM SIGKDD Explorations

Newsletter 11, 1 (November 2009), 10–18. DOI:https://doi.org/10.1145/1656274.1656278

[21] Gerhard Hansch, Peter Schneider, and Gerd Stefan Brost. 2019. Deriving Impact-driven

Security Requirements and Monitoring Measures for Industrial IoT. In Proceedings of the

5th on Cyber-Physical System Security Workshop - CPSS ’19, ACM Press, New York,

New York, USA, 37–45. DOI:https://doi.org/10.1145/3327961.3329528

[22] Baber Hayat, Ribha Shakoor, Sahrish Mubarak, and Komal Basharat. 2017. A Goal based

Framework by adopting SQUARE Process for Privacy and Security Requirement

Engineering. International Journal of Computer Applications 169, 11 (July 2017), 31–34.

DOI:https://doi.org/10.5120/ijca2017914873

[23] Matthew Honnibal and Ines Montani. 2017. spaCy 2: Natural language understanding

with Bloom embeddings, convolutional neural networks and incremental parsing.

93

[24] Siv Hilde Houmb, Shareeful Islam, Eric Knauss, Jan Jürjens, and Kurt Schneider. 2010.

Eliciting security requirements and tracing them to design: an integration of Common

Criteria, heuristics, and UMLsec. Requirements Engineering 15, 1 (March 2010), 63–93.

DOI:https://doi.org/10.1007/s00766-009-0093-9

[25] Tahira Iqbal, Parisa Elahidoost, and Levi Lucio. 2018. A Bird’s Eye View on

Requirements Engineering and Machine Learning. In Proceedings - Asia-Pacific Software

Engineering Conference, APSEC, IEEE Computer Society, 11–20.

DOI:https://doi.org/10.1109/APSEC.2018.00015

[26] J. Karlsson and K. Ryan. 1997. A cost-value approach for prioritizing requirements. IEEE

Software 14, 5 (1997), 67–74. DOI:https://doi.org/10.1109/52.605933

[27] Aman Kedia. 2020. Hands-On Python Natural Language Processing: Explore tools and

techniques to analyze and process text with a view to building real-world NLP

applications. Rasu, Mayank (June 2020).

[28] Armin Kobilica, Mohammed Ayub, and Jameleddine Hassine. 2020. Automated

Identification of Security Requirements. In Proceedings of the Evaluation and Assessment

in Software Engineering, ACM, New York, NY, USA, 475–480.

DOI:https://doi.org/10.1145/3383219.3383288

[29] Armin Kobilica, Mohammed Ayub, and Jameleddine Hassine. 2020. Automated

Identification of Security Requirements: A Machine Learning Approach. In ACM

International Conference Proceeding Series, Association for Computing Machinery, 475–

480. DOI:https://doi.org/10.1145/3383219.3383288

94

[30] Loren Kohnfelder and Praerit Garg. 1990. The STRIDE Threat Model. Retrieved July 18,

2022 from Microsoft. Microsoft

[31] Rakesh Kumar and Rinkaj Goyal. 2019. On cloud security requirements, threats,

vulnerabilities and countermeasures: A survey. Computer Science Review 33, (August

2019), 1–48. DOI:https://doi.org/10.1016/j.cosrev.2019.05.002

[32] Zijad Kurtanovic and Walid Maalej. 2017. Automatically Classifying Functional and Non-

functional Requirements Using Supervised Machine Learning. In Proceedings - 2017

IEEE 25th International Requirements Engineering Conference, RE 2017, Institute of

Electrical and Electronics Engineers Inc., 490–495.

DOI:https://doi.org/10.1109/RE.2017.82

[33] Romain Laborde, Sravani Teja Bulusu, Ahmad Samer Wazan, François Barrère, and

Abdelmalek Benzekri. 2019. Logic-based methodology to help security architects in

eliciting high-level network security requirements. In Proceedings of the 34th

ACM/SIGAPP Symposium on Applied Computing, ACM, New York, NY, USA, 1610–

1619. DOI:https://doi.org/10.1145/3297280.3297437

[34] Axel van Lamsweerde. 2000. Requirements engineering in the year 00: a research

perspective. In Proceedings of the 22nd international conference on Software engineering

- ICSE ’00, ACM Press, New York, New York, USA, 5–19.

DOI:https://doi.org/10.1145/337180.337184

[35] Chuanyi Li, Liguo Huang, Jidong Ge, Bin Luo, and Vincent Ng. 2018. Automatically

classifying user requests in crowdsourcing requirements engineering. Journal of Systems

and Software 138, (April 2018), 108–123. DOI:https://doi.org/10.1016/j.jss.2017.12.028

95

[36] Nancy R. Mead and Ted Stehney. 2005. Security quality requirements engineering

(SQUARE) methodology. ACM SIGSOFT Software Engineering Notes 30, 4 (July 2005),

1–7. DOI:https://doi.org/10.1145/1082983.1083214

[37] Nancy R. Mead, Venkatesh Viswanathan, and Deepa Padmanabhan. 2008. Incorporating

Security Requirements Engineering into the Dynamic Systems Development Method. In

2008 32nd Annual IEEE International Computer Software and Applications Conference,

IEEE, 949–954. DOI:https://doi.org/10.1109/COMPSAC.2008.85

[38] Daniel Mellado, Carlos Blanco, Luis E. Sánchez, and Eduardo Fernández-Medina. 2010.

A systematic review of security requirements engineering. Computer Standards &

Interfaces 32, 4 (June 2010), 153–165. DOI:https://doi.org/10.1016/j.csi.2010.01.006

[39] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Distributed Representations

of Words and Phrases and their Compositionality.

[40] Tom Mitchell. 1997. Machine Learning. (1997).

[41] Davoud Mougouei. 2017. PAPS: A Scalable Framework for Prioritization and Partial

Selection of Security Requirements. (June 2017). Retrieved from

http://arxiv.org/abs/1706.00166

[42] Bashar Nuseibeh and Steve Easterbrook. 2000. Requirements engineering: a roadmap. In

Proceedings of the conference on The future of Software engineering - ICSE ’00, ACM

Press, New York, New York, USA, 35–46. DOI:https://doi.org/10.1145/336512.336523

[43] Emebo Onyeka, Vaibhav Anu, and Aparna S. Varde. 2019. Identifying Implicit

Requirements in SRS Big Data. In Proceedings - 2019 IEEE International Conference on

96

Big Data, Big Data 2019, Institute of Electrical and Electronics Engineers Inc., 6169–

6171. DOI:https://doi.org/10.1109/BigData47090.2019.9006086

[44] Emebo Onyeka, Aparna S. Varde, Vaibhav Anu, Niket Tandon, and Olawande Daramola.

2020. Using Commonsense Knowledge and Text Mining for Implicit Requirements

Localization. In Proceedings - International Conference on Tools with Artificial

Intelligence, ICTAI, IEEE Computer Society, 935–940.

DOI:https://doi.org/10.1109/ICTAI50040.2020.00146

[45] Keun-Young Park, Sang-Guun Yoo, and Juho Kim. 2011. Security Requirements

Prioritization Based on Threat Modeling and Valuation Graph. In Communications in

Computer and Information Science. 142–152. DOI:https://doi.org/10.1007/978-3-642-

24106-2_19

[46] Maria Riaz, Jason King, John Slankas, and Laurie Williams. 2014. Hidden in plain sight:

Automatically identifying security requirements from natural language artifacts. In 2014

IEEE 22nd International Requirements Engineering Conference (RE), IEEE, 183–192.

DOI:https://doi.org/10.1109/RE.2014.6912260

[47] Lorijn van Rooijen, Frederik Simon Bäumer, Marie Christin Platenius, Michaela

Geierhos, Heiko Hamann, and Gregor Engels. 2017. From user demand to software

service: Using machine learning to automate the requirements specification process. In

Proceedings - 2017 IEEE 25th International Requirements Engineering Conference

Workshops, REW 2017, Institute of Electrical and Electronics Engineers Inc., 379–385.

DOI:https://doi.org/10.1109/REW.2017.26

97

[48] A.D. Rubin and D.E. Geer. 1998. A survey of Web security. Computer (Long Beach

Calif) 31, 9 (September 1998), 34–41. DOI:https://doi.org/10.1109/2.708448

[49] Mohd. Sadiq, Jawed Ahmed, Mohammad Asim, Aslam Qureshi, and R. Suman. 2010.

More on Elicitation of Software Requirements and Prioritization Using AHP. In 2010

International Conference on Data Storage and Data Engineering, IEEE, 230–234.

DOI:https://doi.org/10.1109/DSDE.2010.23

[50] scikit-learn.org. scikit-learn Machine Learning in Python. Retrieved July 20, 2022 from

https://scikit-learn.org/stable/

[51] Shalini Sharma and Ajit Singh Malik. 2012. A Novel Framework for Security

Requirement Prioritization. International Journal of Computer Applications 38, 8

(January 2012), 9–14. DOI:https://doi.org/10.5120/4626-6868

[52] J, Sayyad Shirabad and Menzies, T.J. 2005. The PROMISE Repository of Software

Engineering Databases. School of Information Technology and Engineering, University of

Ottawa, Canada (2005). Retrieved July 19, 2022 from

http://promise.site.uottawa.ca/SERepository

[53] Hakim Sultanov and Jane Huffman Hayes. 2013. Application of reinforcement learning to

requirements engineering: requirements tracing. In 2013 21st IEEE International

Requirements Engineering Conference (RE), IEEE, 52–61.

DOI:https://doi.org/10.1109/RE.2013.6636705

98

[54] Inger Anne Tondel, Martin Gilje Jaatun, and Per Hakon Meland. 2008. Security

Requirements for the Rest of Us: A Survey. IEEE Software 25, 1 (January 2008), 20–27.

DOI:https://doi.org/10.1109/MS.2008.19

[55] Hugo Villamizar, Marcos Kalinowski, Marx Viana, and Daniel Mendez Fernandez. 2018.

A Systematic Mapping Study on Security in Agile Requirements Engineering. In 2018

44th Euromicro Conference on Software Engineering and Advanced Applications (SEAA),

IEEE, 454–461. DOI:https://doi.org/10.1109/SEAA.2018.00080

[56] Achmad Widodo and Bo Suk Yang. 2007. Support vector machine in machine condition

monitoring and fault diagnosis. Mechanical Systems and Signal Processing 21, 2560–

2574. DOI:https://doi.org/10.1016/j.ymssp.2006.12.007

[57] Thant Z. Win, Rozlina Mohamed, and Jamaludin Sallim. 2020. Requirement Prioritization

Based on Non-Functional Requirement Classification Using Hierarchy AHP. IOP

Conference Series: Materials Science and Engineering 769, 1 (February 2020), 012060.

DOI:https://doi.org/10.1088/1757-899X/769/1/012060

[58] Sang Guun Yoo, Hugo Pérez Vaca, and Juho Kim. 2017. Enhanced Misuse Cases for

Prioritization of Security Requirements. In Proceedings of the 9th International

Conference on Information Management and Engineering - ICIME 2017, ACM Press,

New York, New York, USA, 1–10. DOI:https://doi.org/10.1145/3149572.3149580

[59] SecReq dataset. Retrieved July 18, 2022 from http://www.se.uni-

hannover.de/pages/en:projekte_re_secreq.

99

[60] NFR Software Requirements Dataset. Retrieved July 19, 2022 from

https://zenodo.org/record/268542#.YtgvEHbMKUk

	SecREP : A Framework for Automating the Extraction and Prioritization of Security Requirements Using Machine Learning and NLP Techniques
	Shada-Khanneh-Master-Thesis-Signed.pdf

