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Abstract 

Angle measurement is a significant topic in almost all areas of mathematics learning and also in 

many disciplines outside mathematics education, such as engineering and architecture. 

According to the literature, there are three common conceptions of angles – as union of rays, 

rotations, and wedges. Researchers argued that students must consider these three angle concepts 

together to construct a meaningful understanding of angles. However, the curriculum standards 

for mathematics often present these angle conceptions separately to students, probably resulting 

in a fragmented understanding of the angle concept. In addition to this problem, the research 

literature documents multiple alternative conceptions that students exhibit when they engage 

with static representations of angles, which is the prevalent way of the current teaching and 

learning of the concept. Consequently, this dissertation study aimed to explore how students may 

reason about angles when they engage in tasks that present angles dynamically and bridge the 

three conceptions. Specifically, this dissertation examined (a) the forms of reasoning that 

students exhibit as they engaged in dynamic digital tasks that bridged the three conceptions of 

angles, (b) the characteristics of the design (tasks, tools, and questioning) that supported 

particular forms of students’ reasoning, and (c) how the design evolved to support students’ 

reasoning for angles. 

Prior research on dynamic measurement and quantitative reasoning guided the design of tasks in 

GeoGebra to prompt the students to examine how angles are generated and change dynamically. 

A design experiment methodology was followed to engineer particular forms of reasoning about 

angles in these dynamic situations and explore how the specific design supports these forms of 

reasoning. Video-recorded data were collected from four third-grade students working on the 

tasks individually. Two phases of data analysis were conducted – ongoing analysis and two 
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levels of retrospective analysis. The ongoing analysis as each design experiment unfolded 

showed how students’ prior knowledge and in-the-moment reasoning about angles influenced the 

modification of the design. The first level of retrospective analysis conducted at the end of each 

design experiment illustrated four categories of student reasoning, namely reasoning about the 

three angle conceptions, constructing multiplicative comparisons between angles, reasoning 

about an angle as a discrete or continuous quantity, and measuring angles using multiplicative 

reasoning. The second level of retrospective analysis at the end of all design experiments cross-

compared all students’ reasoning and demonstrated the specific characteristics of the design that 

supported students’ reasoning about angles in those four categories. These findings can be 

foundational for supporting students’ conceptual understanding of angles in both research and 

practice. 

Keywords: angles, design experiment, dynamic measurement, quantitative reasoning  
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Chapter 1: Introduction 

In this introductory chapter, I explain why a conceptual understanding of angles is 

important. To do that, I discuss how angles are presented in mathematics education and beyond 

and what kind of understanding students need to have about angles. Through this exploration, I 

outline what is missing from the current research and practice. I also present the type of 

contribution my dissertation aims to make by providing opportunities for students to experience 

angles dynamically and merge the three common conceptions of angles. Finally, I conclude the 

chapter by presenting the contents of the subsequent chapters. 

1.1.  Rationale: Angles in Mathematics Education and Beyond 

I argue the importance of learning angles and discuss the rationale for this study. First, I 

explain how learning angles is prevalent in all aspects and levels of mathematics education. 

Next, I present some aspects of real-world situations where angles are experienced outside the 

mathematics classroom. Then, I discuss some challenges in the current teaching of angles, 

aiming to provide an argument of why the current study is needed. 

1.1.1.  Angles in Mathematics Education: The three categories 

“The concept of angle causes much ambiguity in higher level mathematical studies. It is 

basic in the sense that no mathematical curriculum can do without it, but it appears to be 

far from basic in other sense” (Barabash, 2017, p. 31).  

A conceptual understanding of angles is significant in almost all areas of mathematics 

learning, such as in geometry and trigonometry. For instance, angle measures are used in 

geometry to prove relationships between other geometric objects or statements. In trigonometry, 

for example, angles in a triangle are used in finding the lengths of the triangle sides or other 

angles. These examples show that the angle concept is a significant topic in the mathematics 
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curriculum, yet it is too complex to understand its multifaceted nature. Throughout history, an 

angle has been described in different ways. This is because an angle is a complex concept in 

which both students and mathematicians have struggled to define (Keiser, 2004; Sinclair & 

Bruce, 2015).  

Early mathematicians defined an angle based on one or all of the three Aristotelian 

categories – a quantity, a quality, or a relation (Keiser, 2004). According to Proclus (410–

485/1970), an angle can be described as a quantity that defines its measurement, a quality that 

identifies its attributes, and a relation of lines, rays, or planes as its boundaries. Similarly, 

Freudenthal (1973) distinguished angles in three ways – as a static pair of sides (quality), as an 

enclosed planar or spatial area (quantity), and as the process of change of direction (relation). 

While Proclus (1970) and Freudenthal (1973) considered all three categories to define angles, 

many scholars continued to define angles in terms of one or two of these categories. For instance, 

in Euclid’s Elements, an angle is defined as “the inclination to one another of two lines in a plane 

which meet one another and do not lie in a straight line” (Heath, 1956, p. 153). This definition 

emphasizes angles as a relation and a quality between a pair of lines based on the inclination of 

one line to another. However, according to Euclid’s definition, a straight line formed by two 

colinear rays is not even considered an angle. Therefore, this definition may lead students to 

form alternative conceptions, which are conceptions that differ from what is expected of them to 

learn (Mevarech & Kramarsky, 1997). 

One way to contrast Euclid’s definition is to examine angles in terms of the amount of 

openness (quantity) between two sides. Using this approach, in the Devichi and Munier (2013) 

study, students who initially argued that there is no angle in 180° reorganized their reasoning by 

conceiving that one side of the angle opens (increasing) while the other side closes (decreasing) 
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and that the two sides can open as a “flat angle.” Alternative conceptions about angles such as 

described above take place when the three Aristotelian categories (quantity, quality, relation) of 

angles are not considered altogether. This view is based on the work of Freudenthal (1973), who 

suggested that students need to consider multiple angle concepts in order for them to create a 

meaningful understanding of angles. Consequently, I explored how the three Aristotelian 

categories are presented in the current mathematics curriculum standards of learning angles.  

1.1.2.  Learning Angles According to Mathematics Curriculum Standards 

Angles are taught in almost every grade level of education according to the Common 

Core State Standards for Mathematics (CCSSM) (National Governors Association Center for 

Best Practices & Council of Chief State School Officers [NGA & CCSS], 2010), and this shows 

the significance of the angle concept. Based on the Geometry standards of the CCSSM, 

kindergarten students begin their learning of angles by using their informal notion of angles as 

corners or vertices to analyze and compare shapes (CCSS.M.K.G.B.4). This notion of angles 

often leads students to define angles as corners of a shape (Clements & Battista, 1989). Such a 

definition of an angle illustrates a quality according to the Aristotelian categories because it 

refers to the attributes of connected sides that form a corner. In second grade, students are 

expected to recognize and draw shapes using the number of angles (CCSS.M.2.G.A.1) rather 

than merely counting corners as expected in kindergarten mathematics. This learning standard 

illustrates a relation of the number of angles to define a shape.  

In fourth grade, mathematics standards categorize an angle as a quantity by pertaining to 

an angle measurement. At this grade level, students are formally introduced to language such as 

acute, right, or obtuse to classify different groups of angle sizes measured in degrees 

(CCSS.M.4.G.A.1). Measuring angles using protractors is also introduced to students 
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(CCSS.M.4.MD.C.5). In terms of angle measurement, the CCSSM states that an angle is 

measured with reference to a circle where a “one-degree angle” means 1/360 of a circle 

(CCSS.M.4.MD.C.5.A). These standards show the angle as a quantity that can be measured. In 

sum, from kindergarten until fourth grade, the three Aristotelian categories are presented to 

students separately. 

Starting in fifth grade, the standards for angles begin to combine two Aristotelian 

categories together. To elaborate, students are expected to classify geometric figures according to 

the number and size of their angles (CCSS.M.5.G.B.3). For instance, all rectangles have four 

right angles, and squares are categorized as rectangles because squares have four right angles. In 

this standard, an angle is treated as a relation between the number of angles in a shape and the 

name of the shape. It is also a quantity because the equality of angles is also considered to 

categorize a shape.  

Similarly, in seventh grade, angles are accounted for both as a quantity considering its 

measure and a relation between the angle sides. For example, students are expected to construct 

triangles from three measures of angles (CCSS.M.7.G.A.2). This standard uses angle measures 

illustrating an angle as a quantity. It also requires knowledge of the relation between angle sides 

and the angle size to construct triangles. At this grade level, students also use derived facts about 

supplementary, complementary, vertical, and adjacent angles in word-problems involving 

unknown angle measures (CCSS.M.7.G.B.5). In this standard, the relation between the positions 

of the angle sides or the quantity in terms of angle measures are often used to judge how angles 

are related to each other. The same categories of angles (a quantity and a relation) are also 

illustrated in the teaching of angles in eighth grade. Students learn to verify the congruence of 

http://www.corestandards.org/Math/Content/4/MD/C/5/
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angle measures as a quantity by experimenting with the relations between the angle size and 

positions of sides through rotations, reflections, and translations (CCSS.M.8.G.A.1.B).  

Freudenthal (1973) argued that students would never learn to carefully distinguish 

different angle concepts and grasp the meaning of angles if they do not consider all the angle 

concepts. The standards above show a disintegrated definition of an angle in terms of the three 

Aristotelian categories (quality, quantity, and relation). These standards involving the learning of 

angles in K-8 are applied at the high school level to learn trigonometry, similarity and 

congruence, proof, and constructions. For example, the fourth-grade learning standard where 

students learn about right angles (CCSS.M.4.G.A.1) is utilized to learn about angles in circles in 

high school (CCSS.M.HSG.C.A.2). One way to support students to broaden their conception of 

angles is to present angles using all three categories, which is more comprehensive and could 

offer them better preparation for angles in higher level mathematics (Keiser, 2004).  

Following the suggestions of Freudenthal (1973) and Keiser (2004), in this dissertation I 

started with the conjecture that the three Aristotelian categories – a quantity, a quality, and a 

relation, are necessary to show this multiple nature of angles. In my review of related literature 

in the next chapter, I discuss in detail the three common conceptions of angles that students often 

exhibit, which correspond to the three Aristotelian categories. First, students may conceive an 

angle as a union of rays, which illustrates a quality category because this conception shows the 

qualitative components of angles of two pairs of sides with a common point. Second, students 

may conceive an angle as a rotation of angle sides, which illustrates a relation between the 

starting position and the terminal position of an angle side. Finally, students may conceive an 

angle as a wedge, which illustrates a quantity because wedges show the amount of openness 

http://www.corestandards.org/Math/Content/HSG/C/A/2/
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between two angle sides and are often used to quantify angles. In the next chapter, I argue that all 

three angle conceptions need to be considered by students.   

1.1.3.  Angles Beyond Mathematics Education: The Dynamic Component 

An understanding of angles is also essential for learning concepts in other disciplines, 

such as engineering and architecture. For example, in engineering, angles are fundamental in 

surveying to determine the relative positions of points on the earth’s surface. In architecture, 

angles are often used to create balance and symmetry in designing structures such as windows 

and doors. Devichi and Munier (2013) documented how the understanding of the angle concept 

is significant in solving real-life problems that are motivating and meaningful for students.  

Most angles in real-life situations are dynamic in nature, and this makes the study of 

angles more useful and engaging. Individuals engage with angles in practical activities such as 

playing sports, describing locations, and driving. For instance, children who ride scooters and 

bicycles estimate the amount of turn they make with their handlebars without formal knowledge 

of angle measures. In playing basketball, shooting a ball from behind the free-throw line requires 

a smaller angle between the position of the elbow and the face. In these experiences, dynamic 

angles can be easily quantified yet do not require computations of numerical values. Instead, 

angles are given meaning and usefulness to day-to-day activities. Extending the formal learning 

of angles to situations in applied fields can create more opportunities for students to construct a 

meaningful conception of an angle.  

Although in real-life situations, angles are utilized dynamically, angles continue to be 

presented statically in mathematics classrooms. A vast amount of research has shown that the 

current state of teaching angles causes students to have difficulties in understanding the concept 

and leads them to construct problematic alternative conceptions that they often carry at higher 
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levels of schooling (Lehrer et al., 1998). There is limited research on elementary students’ 

reasoning about angles presented in dynamic situations (e.g., Clements & Battista, 1990; Smith 

et al., 2014). Even if dynamic rotations are introduced in later years of schooling, the primary 

focus of students is on measuring the static output of rotations. Additionally, the disconnection 

from real-life applications is another example of problematic approaches to teaching angles. 

Students are not encouraged to seek connections between the learning of angles in the classroom 

and the use of angles in their everyday lives. 

To elaborate, Smith and Thompson (2007) argued that students are unable to find 

meaning and purpose in mathematics because teachers expect them to work with mathematics 

that is too abstract for them to understand. Students do not think of what they measure when 

measuring an angle (Thompson, 2013). Often, this results in a vicious cycle of not understanding 

angles because students do not know which part of an object being measured is an angle. Instead, 

we need to provide opportunities for students to create angles, manipulate them dynamically, and 

reason about relationships between the quantities involved in generating angles. One way to offer 

these opportunities is to illustrate dynamic angles through a digital technology platform. 

Research has shown that dynamic geometry environments offer the affordance of dynamic 

manipulation of mathematical objects and immediate feedback with precise measurements 

(Browning et al., 2007; Smith et al., 2014). 

In this dissertation, I engaged students with instructional tasks, tools, and questioning to 

explore angles and examine how students would reason about angles in dynamic situations. To 

achieve that, I utilized the power of digital technology to illustrate angles dynamically and bridge 

multiple angle conceptions – an angle as a union of rays (quality), as a rotation (relation), and as 

a wedge (quantity). Specifically, the goal was for students to explore the dynamic generation and 
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change of angles through rotations, identify the quantities involved, and construct relationships 

between those quantities. I also aimed to examine how the design supports students’ reasoning. 

1.2.  Preview of Subsequent Chapters 

This dissertation is organized into seven chapters. In Chapter 2, I discuss my literature 

review that provides insights about the three common conceptions of angles: an angle as a union 

of rays (quality), as a rotation (relation), and as a wedge (quantity). For each form of angle 

conception, I discuss the alternative conceptions that students exhibit when engaging with static 

angles. Knowing these conceptions and alternative conceptions significantly informed the initial 

designs of my tasks, tools, and questioning. In Chapter 3, I discuss the theoretical framing of my 

study, which includes radical constructivism, dynamic measurement, and the quantitative 

reasoning approach. Chapter 4 describes the design experiment and its characteristics as my 

research methodology. I also detail my design and conjectures, presenting the initial design of 

tasks, tools, and questioning. Then, I describe my data collection methods and the framework I 

use to analyze my data. In Chapters 5 and 6, I present my findings. Specifically, Chapter 5 

includes the results from my ongoing and first level-retrospective analyses of each of the four 

design experiments. Chapter 6 is devoted to the continuation of the findings from the second 

level of retrospective analysis. Finally, in Chapter 7, I present my conclusions, which discuss the 

contributions of this dissertation for research and practice. I also outline the limitations of this 

study and suggest areas for future research. 
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Chapter 2: Literature Review 

A conceptual understanding of angles is foundational for working with other geometric 

concepts such as polygons, symmetry, transformations, as well as for developing arguments in 

geometric proofs. Understanding angles and their measurement can also support the 

understanding of non-geometric concepts, such as trigonometric functions (Moore, 2012). Even 

though an understanding of angles is essential for conceptualizing many aspects of mathematics, 

students continue to struggle with this concept. For instance, the results of the Trends in 

International Mathematics and Science Study (TIMSS) in 2015 show that, in the United States, 

eighth-grade students’ achievement in reasoning about angles is relatively low compared to their 

performance in other cognitive and content domains (Mullis et al., 2016). Indeed, Lehrer et al. 

(1998) found that students develop a variety of alternative conceptions about angles that they 

often continue to have even in later years of schooling.  

According to Piaget’s (1971) genetic epistemology, children develop their conception of 

ideas over a period of time. Specifically, in geometry, children’s imagination is initially attentive 

to topological relationships (e.g., proximity, separation, order) while ignoring the Euclidean 

relationships (e.g., length, size, magnitude) of an object in a space (Piaget & Inhelder, 1956). For 

instance, 4- to 6-year-old children focusing on topological relationships may copy angles by 

visually estimating the proximity of sides without attempting to measure them (Piaget et al., 

1960). In later years of schooling, the reverse may happen where students consider topological 

relationships may not be enough, and instead, they focus on the Euclidean relationships. For 

example, 8- to 10-year-old students are more likely to copy angles by measuring the proximity of 

the sides or the distance between the endpoints of the sides (Piaget et al., 1960). Piaget and 

Inhelder (1956) argued that students must focus on both angles as the union of straight lines and 
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as the space between the two sides for them to bridge the topological and Euclidean relationships 

in developing their meanings about angles.  

Students form their meanings about angles as they make sense of their everyday 

experiences, language, and formal and informal aspects of their schooling. In geometry, when 

tactile and concrete explorations are lacking, children develop their conceptions as they apply an 

egocentric perspective that is characterized by a lack of awareness of different views (Piaget & 

Inhelder, 1956). Children’s egocentric perspective commonly leads them to develop alternative 

conceptions. Alternative conceptions are students’ conceptual configurations of ideas that are 

culturally embedded and vary based on students’ language and historical backgrounds (Confrey, 

1990). Students respond according to their expectations, predictions, confirmations, or rejections 

(Confrey, 1990). In other words, students exhibit alternative conceptions as they construct ideas 

within the context of their perspectives and experiences. 

 In this chapter, I provide an overview of the three most common conceptions of angles 

that students appear to develop, namely angles as two sides sharing an endpoint, angles as 

rotations, and angles as wedges. I describe the research studies that focused on each conception 

and compare and contrast those conceptions based on the findings from the literature. Through 

this exploration, I also discuss alternative conceptions that students form. This literature review 

examines how the conceptions of angles are developed based on students’ experiences.  

2.1.  Angles As Two Sides Sharing a Common Point 

When Clements and Battista (1989) asked third-grade students “What is an angle?”, 

students’ responses included the term “corners” which, as the researchers interpreted, indicated 

that a corner must be part of a geometric object and that it involved perpendicularity. Clements 

and Sarama (2014) also found that as students grow older, they define an angle as the union of 
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two rays. This definition may be due to how angles are introduced in textbooks and standards. 

For instance, Keiser (2004) examined sixth-grade students’ conceptions of angles when they 

investigated angles of polygons from Lappan et al.’s (1996) Connected Mathematics Project 

(CMP) textbook unit, Shapes and Designs. According to CMP 3 an angle is where the sides of a 

geometric shape meet (Lappan et al., 2014). Keiser (2004) found that most students believed that 

angles must have two sides and that a vertex connects them. In terms of curriculum standards, 

such as the Common Core State Standards for Mathematics (NGA & CCSS, 2010), fourth-grade 

students are expected to identify angles in two-dimensional figures (e.g., triangles, 

quadrilaterals). In other words, students should consider two connecting sides as an angle.   

This form of angle conception seems similar to how angles are defined in the ancient 

history of mathematics. For instance, Euclid defined angle as “the inclination to one another of 

two lines in a plane which meet one another and do not lie in a straight line” (Heath, 1956, p. 

153). Euclid’s definition can be problematic in the sense that it does not pay attention to angle as 

a quantity of space between two sides and it does not include straight angles (i.e., 180°). Students 

who used textbooks published in the late 20th century continue to reflect angle conceptions 

similar to Euclid’s definition. For example, one student thought of an angle as having two sides 

and how they are inclined to each other, while another student excluded 180° as an angle because 

they do not see where the two sides connect (Keiser, 2004).  Since the ancient angle definition 

does not emphasize which feature of an angle must be measured, students often confuse the 

angle measure as being dependent on side lengths (Keiser, 2004). Instead of understanding that 

the size of an angle is irrelevant to the length of its sides (Figure 1), students associate longer 

sides with a bigger angle or shorter sides with a smaller angle. Other studies have reported the 
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same alternative conceptions about angle size and side length relationship (e.g., Clements & 

Battista, 1989; Devichi & Munier, 2013; Fyhn, 2008; Lehrer et al., 1998; Smith et al., 2014). 

Figure 1  

Examples of Angles with the Same Measure but Different Side Lengths 

  

Note: Example of two angles with the same measure but different side lengths showing that 

angle size is irrelevant to the length of its sides.  

In addition to the above alternative conception, several studies documented that students 

also demonstrate other conceptions when they conceive angles as union of two rays. For 

instance, it was reported that students conceive angles as the linear distance between the two 

connected rays (Clements & Battista, 1989; Keiser, 2004; Lehrer et al., 1998; Thompson) 

(Figure 2a). Elementary students often associate the proximity of the two sides of an angle with 

the angle size. For instance, Keiser (2004) found that one student referred to an angle as the 

“width between two lines.” But a student who objected to the use of “width between two lines” 

to refer to angles argued that no linear width could be drawn between the sides of a 270° angle as 

an example. This student viewed angles as the relationship between two connected sides and that 

these sides can open to more than 180°. Clements and Battista (1989) also reported that students 

in their control group associated the size of an angle measure with the length of the line segment 

between the two sides. For these students, a shorter segment between the two legs corresponds to 

a smaller angle, while a longer segment that connects the legs of an angle means a bigger angle. 
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Students who worked with activities involving turns and rotations in the treatment group did not 

exhibit this alternative conception about the distance between the two segments.  

Research shows that this alternative conception is not only prevalent among elementary 

school students but also among high school students. For example, Hardison (2019) observed 

that ninth-grade students described the openness of an angle by demonstrating with their two 

fingers the sweeping of segments through a pair of chopsticks as illustrated in Figure 2b. This 

demonstration of awareness of an angle is what (Hardison, 2019) refers to as a segment sweep. 

Although students may attempt to show an angle using line segments between the two sides, the 

linear distance should not be considered to define angle measure (Lehrer et al., 1998). As 

Clements and Battista (1989) emphasized, this linear distance is not always equidistant from the 

vertex; therefore, it should not be considered to define the size of an angle. One way to support 

students moving beyond this conception is to help them notice that it is impossible to draw a 

linear distance for angles greater than 180°, as exemplified by one student (Keiser, 2004). 

Figure 2  

Alternative Conceptions about Angles as Linear Distance Between Rays and as Segment Sweep 

  

Note: Angle as (a) a linear distance between two rays and (b) a segment sweep between sides. 

 Another common alternative conception of angles that research reports is that young 

students initially develop the idea that all angles are right angles (Devichi & Munier, 2013; 

Piaget & Inhelder, 1956) (Figure 3). Piaget and Inhelder (1956) noticed that right angles are 

ubiquitous in children’s drawings showing two connected perpendicular segments, even before 
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children develop an understanding of perpendicularity. For these students, an angle has “arms” 

parallel to the edges of a perpendicular corner, such as a rectangular tabletop. Devichi and 

Munier (2013) reported that every angle drawn by most third- and fourth-grade students was a 

right angle. Students’ personal experiences with corners such as tables, doors, or walls as their 

first examples for angles may influence them to develop this conception. This alternative 

conception is prevalent among elementary school students and is difficult for some students to 

develop. Devichi and Munier (2013) argued that children continue to have this alternative 

conception, which could hinder them from developing other angle concepts. They suggested that 

students should be confronted with angles of different sizes. 

Figure 3  

Students Consider Only Right Angles as Angles  

 

Students also consider orientation an essential component in recognizing an angle 

(Clements & Battista, 1989; Devichi & Munier, 2013; Hardison, 2018). They believe that angles 

always have a horizontal side as its base, while the other side is non-horizontal (Clements & 

Battista, 1989; Hardison, 2018; Mitchelmore & White, 2000) (Figure 4a). Children often use 

languages such as tilted, bent, slanted up, or slope side to describe the openness between the non-

horizontal side and the horizontal base (Clements & Battista, 1989; Mitchelmore & White, 

2000). Interestingly, some older students continue to experience difficulties in recognizing 

angles that do not have a horizontal side (Browning et al., 2007). 
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Figure 4  

Students Develop Other Alternative Conceptions of Angles 

 

Note: (a) Some students believe that angles have a horizontal base and another non-horizontal 

side. When students acknowledge straight angles, they only recognize (b) straight angles oriented 

horizontally, but they have difficulties with (c) straight angles oriented vertically. 

Students also struggle in recognizing an angle formed by two coinciding rays or two rays 

forming a straight line (Clements & Battista, 1989; Keiser, 2004). For example, when students 

encounter 0°, 180°, and 360° angles, they could not recognize an angle (Keiser, 2004). Students 

also think that coterminal angles in a standard position have the same measures (Keiser, 2004). 

For instance, students may see that the relationship between the initial and terminal rays is the 

same for the angles with measurements of 90°, 450°, and 270°. Keiser (2004) argued that 

students struggle because they only experience angles in geometric shapes but not with the 

turning motion. He suggested that if students are given more opportunities to experience angles 

in turning objects, they would develop these conceptions. These difficulties are probably due to 

students’ conception of angles as formed by the union of two rays. Students may not recognize 

angles when the vertex of overlapping rays or rays forming a straight line is not visible to them. 

For these students, a vertex is an essential component of an angle. Smith et al. (2014) found that 

when students do recognize straight angles, they often visualize them as horizontal straight 

angles (Figure 4b). Vertical straight angles (Figure 4c) can be difficult for students who rely on 

angle examples with horizontal bases. 
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These alternative conceptions arise because students experience them from their personal 

lives or they have not perceived angles as the openness between the two angle sides. The 

development of these alternative conceptions is probably because of the use of static 

representations in exploring angles (Devichi & Munier, 2013; Keiser, 2004; Smith et al., 2014). 

Static representations are usually found in textbooks that do not involve any movement on the 

position of angle sides (Mitchelmore & White, 2000). As a result, students create different 

alternative conceptions and they reason at the visual level of the van Hiele (1984) levels of 

geometric thinking. Students at the visual level focus on the appearance of a geometric figure 

(configuration) rather than reasoning about the underlying properties and principles at higher 

levels of thinking (van Hiele, 1984). Even if students develop their geometric levels of thinking, 

they often continue to have this alternative conception in higher grades of education (Lehrer et 

al., 1998). Static representations alone support the conception that angles are formed by the 

union of two rays and encourage students to develop a variety of alternative conceptions (Smith 

et al., 2014). Instead, Devichi and Munier (2013) suggested that a combination of static and 

dynamic representations can help students move beyond their alternative conceptions such as the 

association of side length and angle size. Research suggests that providing students with dynamic 

representations of angles, such as conceptualizing angles as rotations may help students 

overcome these difficulties. In the next section, I discuss how students may develop the concept 

of angles as rotations. 

2.2.  Angles as Rotations 

The conception of angles as a rotation is primarily characterized by the movement of one 

or both sides. Recent work in teaching angles as a turn or rotation focused on the transformation 

of geometric objects. Particularly, Lehrer et al. (2014) use rotation as a transformation of 
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geometric figures which provides a dynamic basis for describing and analyzing geometric 

relationships. Students’ conception of angles as rotations was broadly studied in mathematics 

education. From the literature, I identified three forms of angles as rotations, namely rotating one 

ray as a transformation from an initial position to a final position, rotating one ray while the other 

ray is fixed, and rotating two rays (Figure 5). In case (a), only one ray is rotating, and the angle is 

the amount of turn from the initial position to the final position. In case (b), there is also one 

rotating ray while the other ray is fixed, and the angle is the amount of turn made by the rotating 

ray away from the fixed ray. In case (c), two rays are rotating, and the angle is the openness 

between the two rays. 

Figure 5  

The Three Forms of Angles as Rotations 

 

Note: Angles as rotations can be (a) rotating one ray from an initial position to a final position, 

(b) rotating one ray while the other ray is fixed, and (c) rotating two rays. 

Angles as rotations are commonly measured using the non-standard unit of a turn and the 

standard units of degrees or radians (e.g., Confrey et al., 2012; Keiser, 2004; Moore, 2012). 

Often, students initially measure rotations in terms of the fraction of a turn, and then relate this to 

a measure in degrees (e.g., Clements & Sarama, 2014; Keiser, 2004) (Table 1). For example, one 

full turn is 360°, half of a full turn is equal to 180°, and a quarter of a full turn is 90°. When 

counting the amount of turn after a full turn, younger students instinctively count further. For 
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instance, Kaur (2020) found that students consider the measure of a turn after a full rotation as 

bigger than only one full turn. 

Table 1  

The Equivalent of Turns with Its Degree Measure 

Turns Degree measure 

One full turn (1) 360° 
3/4 turn 270° 

Half turn (1/2) 180° 

Quarter turn (1/4) 90° 
1/8 turn 45° 
1/360

th turn 1° 
n/360

th turn n° 

 
In the next paragraphs, I describe how students may conceptualize angles based on the 

three forms of angles as rotations mentioned above, and for each one I discuss how students may 

measure them.  

2.2.1.  Rotating One Ray  

The first type of angle as rotation is illustrated as a transformation of one ray from an 

initial position to a final position (Figure 5a). Freudenthal (1973) described an angle as a 

transition from side to side showing continuous change. An angle as a rotation of a ray is often 

observed through turning or rotating physical objects (Browning & Garza-Kling, 2009; Clements 

& Sarama, 2014; Mitchelmore & White, 2000). Specifically, students’ use of concrete movable 

objects can offer them a dynamic representation of this type of rotation (Clements, 2000). For 

example, Mitchelmore (1997) examined 7-years-old students’ conception of angles and turns 

when they used realistic rotation models such as turning a doll. The students were asked to 
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predict the doll’s position if they turn the doll model for a half turn, a quarter of a turn, and 

multiple turns. Although the doll offered a dynamic representation of angles as rotations, 

Mitchelmore (1997) found that the students could not correctly explain those turns. In particular, 

students mentally construct a half-line to represent the final position of the doll model (Figure 6). 

But, a half-line does not visually form an angle.  

Figure 6 

A Doll Model Representing a Rotation of One Angle Side 

 

Note: A doll model that students used to mentally construct a half-line to represent the final 

position after the rotation (Mitchelmore, 1997). 

In another study, Mitchelmore and White (2000) presented models of movable situations, 

such as a wheel or a door, to investigate the development of students’ angle concept in grades 2-

8. When Mitchelmore and White (2000) asked students to demonstrate how a wheel turns by 

bending a drinking straw, most students intuitively used only one arm of the straw to represent 

the rotation (Figure 7a). Although students were able to demonstrate the rotation of one side, 

they struggled in identifying the center of rotation on the wheel model. Students also found it 

difficult to determine the initial position of the door model since only one side is being rotated 

(Figure 7b). The difficulties that students encounter with physical models can be addressed using 

digital technologies.  
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Figure 7 

Wheel and Door Models Representing Rotation of One Angle Side 

 

Note: Modeling a rotation of one side using a wheel and a door (Mitchelmore & White, 2000). 

Some digital technologies, such as Logo programming (Papert, 1980), were used to 

investigate students’ conception of angles as rotations. In Logo, a turtle icon on a computer 

screen receives and enacts two commands: the turn and the distance commands. For instance, the 

command “rt 74” makes a right turn of 74° or “fd 22” makes a forward move of 22 turtle steps. 

The user can use the visual tracing of a path as a useful feature for understanding geometric 

shapes and angles as shapes’ attributes. Several studies used Logo to explore how students 

conceptualize angles as dynamic turns (e.g., Browning et al., 2007; Clements et al., 1996; 

Clements & Burns, 2000). For example, Clements and Battista (1989) found that activities in 

Logo benefited fourth-grade students in understanding angles as rotations. Browning et al. 

(2007) also found that Logo activities enabled students to define angle as a turn and measure it 

based on the amount of turn. They discussed that the Logo environment helped students 

distinguish between the angle itself and the degree as the angle’s standard unit of measure 

(Browning et al., 2007). 

Logo also offers visuals to illustrate an angle as turning a ray and the space between a 

ray’s initial and final positions. It is worth mentioning here that Logo’s turtle turns using the 

exterior angle rather than the interior angles. For instance, when sixth-grade students 
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commanded the turtle to create sides of a polygon, they noticed that the 60° right turn command 

creates an interior angle of 120° (Browning et al., 2007) (Figure 8). According to Browning et al. 

(2007), students’ experience with Logo potentially helped them discover the relationship 

between exterior and interior angles and visualize the creation of angles through the turtle’s 

turning motion. 

Figure 8  

An Illustration of Logo’s Turtle Turning 60° Angle Creating a 120° Angle 

 

Several studies using Logo also showed evidence that students bridge their understanding 

of digital turns with their body rotations. In particular, Clements et al. (1996) and Clements and 

Burns (2000) argued that students used their body movements to verify the direction of turns and 

approximate the amount of turn. For example, students twisted their bodies to align with the 

direction of the turtle (Clements et al., 1996). Clements et al. (1996) found that a third-grade 

student consistently used hand gestures to internalize a strategy for turns that he was struggling 

with. Another third-grade student would gesture her arm 90° to estimate whether the measure of 

a turn was equal to, greater than, or less than 90°. Indeed, students used body gestures that they 

found necessary for representing turns (Clements et al., 1996). Both studies showed that when 

students used their body movements, they were able to verify their responses and produce correct 

answers regarding the direction and amount of turns (Clements et al., 1996; Clements & Burns, 

2000). It is also interestingly noticeable from these examples of body gestures that students used 

a single body part (e.g., arm, hand) to relate with the rotation of one ray.  
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Also, Clements et al. (1996) found that students who worked with the digital features of 

Logo avoided certain alternative conceptions in measuring turn and angle. An example of an 

alternative conception that students did not portray was the use of 45° and 90° turns to refer to 

oblique and horizontal or vertical lines, respectively. For example, an oblique line can be 

associated with 45° turn while the horizontal and vertical lines are associated with a 90-degree 

turn (Figure 9a). Students also avoided the incorrect use of a protractor image in which turning 

an object is based on a protractor in standard position but disregards the initial position of a ray. 

For instance, if a ray corresponds to 45° on a protractor in standard position regardless of its 

initial orientation, the turn measures 45° (Figure 9b).  

Figure 9 

Two Alternative Conceptions That Were Developed When Students Worked with Logo Activities 

 

Note: The two alternative conceptions on (a) creating 45-90 angles, and (b) misusing a protractor 

were developed when students worked with Logo activities. 

As Clements et al. (1996) argued, students with these alternative conceptions make an 

oblique line by using an input command of “rt 45” but disregard the turtle’s initial position. 

Instead, students used the turtle’s perspective, which can be more meaningful to students as they 

associate their bodies with the rotational view of Logo’s turtle. They also found that other 

common alternative conceptions about angles, such as associating the linear distance with the 

angle size, were not evident when students were working with Logo.  
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To examine students’ measurement strategies for angles, Clements and Burns (2000) 

introduced an electronic Logo’s protractor tool to guide the students to turn an arrow to direct the 

turtle’s heading. However, students used their estimation on the amount of turn and changed the 

input in the protractor tool. For instance, when the protractor tool provided the command rt 20 to 

turn the turtle at 20 to the right, one student adjusted it to rt 22 because he reasoned that it was 

more accurate than what was shown in the tool. The student’s estimation and adjustment on the 

amount of turn enabled him to work on their task on navigating around a map successfully. 

Indeed, students can conceptualize angles as a rotation of one ray when they experience 

turning physical or digital objects and gesture the turns with their bodies. However, students 

continue to experience difficulties in visualizing the continuous movement of an angle side as 

well as in measuring angles when only one side is visible (Mitchelmore & White, 2000). Using 

these three tools (physical objects, digital objects, and body movements) in representing an angle 

as a rotation of one side does not seem to offer students constructive opportunities to visualize 

how angles are created and continuously change. Even though Clements and colleagues (1996; 

Clements & Burns, 2000) tried to help students quantify angles using the digital protractor in 

Logo, they found that some students continued to rely on their inaccurate estimates of the 

amount of turn while some students focused on the number but not on the direction of turn.  

2.2.2.  Rotating One Ray While the Other Ray Is Fixed 

The second type of an angle as rotation is described as having one visible side fixed 

(usually a horizontal ray) and the other side rotates to create an angle (Figure 5b) (Clements & 

Battista, 1989; Mitchelmore & White, 2000). Angle measure in this type is the difference 

between the position of the rotating ray from its fixed base (Keiser, 2004). For instance, when 

children perceive angles as rotations, they describe such movement as departures from straight 
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lines (i.e., bending, slanting) (Lehrer et al., 1998; Mitchelmore & White, 2000). One conception 

that students often develop about angles as rotations is that the rotating side of an angle always 

goes counterclockwise while the other side is positioned horizontally as in a standard position.  

Research found that students may develop their understanding of an angle by turning 

physical objects which have both angle sides visible (Mitchelmore & White, 2000). An example 

of this type of rotation can be illustrated using a movable model of a hill with a car on it (Figure 

10) (Mitchelmore & White, 1998). As Figure 10 illustrates, the line representing the hill was the 

movable angle side and the horizontal plane below the hill was the fixed angle side. The slope of 

the hill represented the size of the angle between the movable and the fixed sides. In each 

question for the students, the slope of the hill model was set at approximately 30°, then 45°, and 

then 15°. When students were asked to predict whether the car would travel faster or slower 

uphill and downhill as the slope changed, they reasoned that the steeper a hill, the more difficult 

it is for the car to ascend or that the car could not drive up the hill if it was straight up 

(Mitchelmore & White, 1998). The steepness of the hill is relative to the size of the slope. 

Although students did not measure the slope, they reasoned about the steepness of the hill based 

on the openness between the movable and fixed sides. This study illustrated the potential of 

using angles for studying the change of covarying quantities in the real world. 

Figure 10 

A Hill Model Representing a Rotation of One Angle Side 

  

Note: A hill model that represents a rotation of one angle side while the other side is fixed 

(Mitchelmore & White, 1998). 
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Aside from turning physical objects, angle as a rotation of one ray while the other ray is 

fixed can also be demonstrated through body motions. Studies have found that physically 

experiencing angles through relative positions, body enactment of turns, and hand rotations can 

help students verify their perception of angles from static configurations (Clements & Burns, 

2000; Devichi & Munier, 2013; Fyhn, 2006, 2008; Smith et al., 2014). For instance, seventh-

grade students identified angles in climbing activities using relative positions of their body and 

gestures of their body parts (Fyhn, 2006, 2008). Specifically, (Fyhn, 2008) engaged students in 

climbing activity, then she asked students to demonstrate, draw, and point out the angles from 

their climbing experience. One group of students bent their elbows to create acute or obtuse 

angles between their arms to climb up the wall successfully. The use of body gestures such as 

bending arms helped students conclude that it is more tiring to climb if your arms are held at a 

right angle than if they are stretched at an obtuse angle.  

Another tool used for understanding this type of angle as rotation is through digital 

illustrations. Browning et al. (2007) used activities using SmileMath, the angle estimation feature 

on the T1-73 calculator (Figure 11). The SmileMath tool allows the user to create an angle of a 

particular measure by pressing the freeze key to stop the moving ray or guess the measure of an 

angle once the moving ray stops.    

Figure 11 

The Angle Estimation Feature on SmileMath 

 

Note: Sample screens from the SmileMath application (Browning et al., 2007). 
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SmileMath engages students with the idea of angles as a rotation of a ray turning away 

from another ray. The Browning et al. (2007) study found that as students engaged with the tool, 

they recognized that several angles of different orientations have the same measure. According to 

Browning et al. (2007), this observation helped the students overcome the limitations of typical 

angles such that 90° should have at least one horizontal ray. However, angle situations with only 

one rotating ray lead younger students to respond differently than with situations where both 

rotating rays are visible (Mitchelmore & White, 2000). The next sub-section describes this 

difference in conceptions by exploring angles as a movement of both sides. 

2.2.3.  Rotating Two Rays 

The third type of angle as rotation involves the movement of both angle sides (Figure 5c).  

The first two types only involve one ray turning and can be measured by the amount of turn. In 

contrast, angle as rotation of both rays can be measured according to the openness between the 

two angle sides. One of the benefits of this approach is that moving both sides of an angle does 

not restrict the other side as the initial position. Instead, both sides of an angle can rotate and can 

take different orientations. Two physical models of this type of rotation that illustrate the 

openness of two sides are a pair of scissors and a hand fan. According to Mitchelmore and White 

(2000), students reasoned that these models have two lines and are considered examples of 

objects that open but not turn.  

The clock hands model is another example of rotation with both sides opening. (Fitz, 

2016) used an analog clock to engage middle-school students in identifying and measuring 

angles between the hands of the clock. In another study, (Pagni, 2005) helped eighth-and-ninth 

grade students explore the application of angles in identifying the number of degrees formed by 

the minute hand and the hour hand or the degrees rotated by the hour hand of a clock. In terms of 



DYNAMIC ANGLES 

 

27 

the amount of rotation made by the hour hand, students used proportional reasoning to explain 

that the hour hand moves a twelfth of 360° of its way around the clock every hour, and that the 

number of degrees the hour hand moves is a fraction of 30° which is equivalent to the fraction of 

60 minutes moved by the minute hand. Although students could quantify the degree measure 

made by hour hand in multiples of 30, it was not clear from the study if the students were able to 

measure smaller increments of angles made by both clock hands. Consequently, more research is 

needed to examine whether students understand the angle measure in terms of discrete smaller 

increments of degrees or even perceiving angle as a continuous quantity. 

 Researchers also engaged students in representing the opening of both rays of an angle 

through physical positions. Devichi and Munier (2013) engaged students in playground activities 

to physically illustrate the area hidden from an observer behind a screen. The students were 

presented with two versions of the physical demonstrations (Figure 12) that helped them mitigate 

the side length-angle size alternative conception discussed in the previous section. Specifically, 

in the first version, one student facing the center of an obstacle screen served as an observer and 

as the vertex of the angle as shown in Figure 12a. All the other students lined up behind the 

screen and were holding cone markers. Each student in the line walked out from behind the 

screen and away from the observer until the observer could notice them on the left or the right 

side of the screen. As soon as each student became noticeable from the observer, they put their 

cone markers on the ground. After the students finished setting the markers, they observed that it 

formed two oblique straight lines. Then, the students checked the alignment of the boundary 

markers by connecting the markers with ropes. When the teacher asked the students how far they 

could go if they could have stood farther apart in the line, some students conjectured that the 

lines could be extended beyond the length of the ropes. This demonstration was repeated, 
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showing the same observer position with different rope lengths. Since the observer position did 

not change, the size of the alignment of ropes also stayed the same. This example shows that the 

angle size is the same regardless of the length of sides; thus, it invalidates the alternative 

conception that angle size is dependent on side length.  

Figure 12  

Two Versions of a Dynamic Angle Demonstrated in a Playground 

 

Note: Illustrations of (a) angles with the same observer position but different rope lengths, and 

(b) angles with different observer positions. The observer is represented by an orange point. 

In the second version, the students demonstrated the same procedure in connecting the 

cones with ropes, but the observer was moved to two different positions (Figure 12b). In this 

demonstration, students noticed how the area hidden from the observer increased or decreased as 

the observer moved closer or away from the screen. At the end of this task, the teacher asked the 

students to represent the shape of the area using body gestures as it corresponds to the observer’s 

successive change in position. The students straightened their arms and moved them as if they 

were opening and closing the angle’s sides when the vertex position moved toward or away from 

the screen. Devichi and Munier (2013) concluded that students associated the shape of the area 

with the farther apart opening of both sides of the angle. Although students associated the 

opening of angle sides with the shape of the area between them, this conception can be 

problematic. The hidden area between the angle sides does not represent the size of its angle.     
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In another study, Hardison (2018) investigated students’ conceptions of angles as a 

rotation of both rays using two pairs of chopsticks. One pair of chopsticks was shorter while the 

other pair was longer. In one of his tasks, he asked the students to use the chopsticks to model 

two angles with the requirement that the shorter angle model is four times as open as the longer 

angle model. When students were asked to verify the congruence of the chopsticks’ opening, 

they were not given any protractor, yet they were able to represent the angle size efficiently. To 

compare the size of the angles represented by the chopsticks, students put one pair of chopsticks 

on top of the other pair and rhythmically moved both sides of the shorter chopsticks four times 

wider than the longer chopsticks. In this example of opening both angle sides, the students 

compared the static and discrete result of openness instead of experiencing the dynamic and 

visible continuous motion of angle opening.  

Similar to the examples of representations for rotating one side, the rotation of both rays 

was also studied using digital tools. Smith et al. (2014) used a digital environment to examine 

how embodied activities enhance students’ learning of angles. Smith et al. (2014) drew on the 

context of embodiment (Lakoff & Núñez, 2000) that recognizes the close connection between 

cognition and action, to design a body-based angle task using the Kinect environment for 

Windows. Kinect is a motion-controlled learning environment that tracks and translates body 

movements into motions on a digital screen. Smith et al. (2014) used this motion-sensor 

technology for students to learn angles by positioning their arms and estimating a range of angle 

measures that were associated with a particular color on the screen. For example, to create a pink 

screen, students had to raise their arms illustrating an acute angle; to create a light blue screen, 

they had to create a gesture of an obtuse angle. The design of their tasks aimed for students to 

recognize and create both static and dynamic representations of angles. For instance, students 
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either used dynamic sweeping motions of their arms to show a range of possible angle measures 

that would qualify for such color requirement, or a static motion stopped at a particular arm 

position to show only one angle (Smith et al., 2014).  

After the above explorations, Smith et al. (2014) added a digital protractor on the screen 

to show benchmark degree angles, such as 0°, 45°, 90°, 135°, and 180°. They reported that by 

using the protractor, a student dynamically opened their arms to associate a range of arm 

movements from one benchmark angle to the other. The feedback from the screen supported 

students’ arm movements in creating angles. Although associating the opening of both arms with 

the screen feedback supported students to generate and explore angles dynamically, the design of 

the tasks did not support students in engaging with quantitative operations on angle measure or 

developing a conception of an angle as a continuous quantity. 

2.2.4.  Understanding Angles as Rotations: Pushing Forward 

The understanding of angles as rotations has significantly helped students to avoid some 

common alternative conceptions that they develop when angles are conceptualized as merely a 

union of two rays. In all forms of angles as rotation, two essential features of an angle are 

established. First, the generation of an angle by rotating one or both sides of an angle. Second, 

the generated angle is illustrated as a continuous quantity. In other words, the rotational motion 

supports students to visualize the continuous generation of angles. Indeed, angles as rotations 

provide a more dynamic way of showing how angles can be generated and how angles are 

continuous quantities that can vary. 

However, multiple and continuous rotations are difficult for students to quantify. 

Although students were able to conceptualize angles as turning or opening of objects when both 

angle sides are visible, they mostly focused on the static output of the movable model and not on 
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the dynamic turn (Mitchelmore & White, 1998; Mitchelmore & White, 2000). In other words, 

students maintain their attention on the static result of a movable model. Also, many students 

were not able to conceive turning as related to angle size (Mitchelmore & White, 2000). Because 

of these difficulties, Mitchelmore and White (2000) argued that definitions of an angle as an 

amount of turn seemed particularly inappropriate in elementary mathematics education and are 

less helpful to younger students. Instead, they proposed an angle definition as an angular relation 

between two lines meeting at a common point. This angular relation between two connected 

lines seems to call for quantifying angles. The next section describes the conception of angle as a 

wedge that may be the way to support students’ quantification of angles.  

2.3.  Angles as Wedges 

Another conception of an angle is what research refers to as a wedge, or the quality of a 

contained area, or delineated space between the two angle sides (Browning & Garza-Kling, 

2009; Browning et al., 2007; Lehrer et al., 1998; Thompson, 2013). As Figure 13 illustrates, a 

wedge is a static representation of an angle defined by the area created between the two sides. A 

more dynamic way of looking at a wedge is as the trace of the movement of rotating one side or 

rotating both sides of an angle. In other words, a wedge can be the traced outcome of a rotation. 

Indeed, wedges have the potential to support the conception of angles as being a continuous 

quantity generated from a rotation. 

Figure 13 

Illustration of Angles as Wedges 
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Research shows that wedges can be useful for quantifying angles. Browning and 

colleagues (Browning & Garza-Kling, 2009; Browning et al., 2007) provided the example of 

middle school students who were given a piece of patty paper to invent a device that would 

measure angles. They folded the patty paper into wedges of different sizes and reasoned about 

those wedges as non-standard units of measure. For example, as students folded their paper into 

small triangular wedges, some described that their wedges are fractions of a corner (i.e., “I have 

one-fourth of a corner”) (Figure 14a) (Browning et al., 2007). Browning and Garza-Kling (2009) 

suggested that these experiences can help students develop a sense of a degree as a standard unit 

of angle measure. For instance, students described an angle in terms of a space filled with small 

one-degree wedge units (Figure 14b).  

Figure 14 

Illustrations of Wedges as Non-Standard Units of Measure for Angles 

 

Note: (a) A small wedge as a fraction of a corner and (b) one-degree wedges. 

The Measurement standards of the Common Core State Standards for Mathematics 

(CCSS.M.4.MD.C.5.A) also suggest connecting angle measure to the fraction of a circle. To do 

so, we need to consider the fraction of the circular arc between the points where the two rays 

intersect the circle, provided that the center of the circle is at the common endpoint of the rays. 

The specific standard defines an angle that turns through 1/360 of a circle as a “one-degree 

angle” that can be used as a measurement unit. In describing this standard, Confrey et al. (2012) 

provided a table (Table 2) connecting students’ conceptions of a turn, with the fraction of the 
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circle and the degree measure. For instance, ¼ of a turn is ¼ of a circle and it is ¼ of 360°, which 

is equal to 90°. 

Table 2 

The Equivalent of Turns as Fractions of a Circle and its Degree Measure 

 

Indeed, understanding angles as wedges can help students progress into the understanding 

of angle measure as it can help them recognize the attribute being measured (Browning & Garza-

Kling, 2009) and help them quantify angles. However, defining an angle as a wedge can elicit 

alternative conceptions among students. In their longitudinal study, Lehrer et al. (1998) found 

that elementary school students refer to angle size as a relative area or space between its two 

sides. They also found that this conception of angles continues to prevail even in later years of 

schooling (Lehrer et al., 1998). This conception is evident in the Browning et al. (2007) study 

where some middle school students associated the size of an angle with roughly triangular 

wedges. An angle can contain wedges of different sizes but these wedges do not represent the 

size of an angle. Moore (2012) also noticed that college students initially refer to the area or 

space between the angle sides in his attempt to help students make sense of angle measure 

through arclength measure. As a result, students often misconceive angles as having different 
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measurements when inscribed in circles with different areas (Moore, 2012). This alternative 

conception probably develops when angles are illustrated only as static wedges with a fixed 

length of sides.  

2.4.  Bridging the Three Conceptions of Angle 

The exploration of the literature shows that angles are often narrowly defined in 

mathematics textbooks and classrooms as a union of two rays through a common point 

(Browning & Garza-Kling, 2009). Because of this, students initially conceive angles as 

geometric objects with two sides connected by a vertex. This first form of angle conception 

results in a plethora of alternative conceptions about angles and the relation between the angle 

sides. This led me to an exploration of angles as rotations and as a wedge. Angles as rotations are 

usually illustrated through the rotation of a single ray, rotation of one ray while the other ray is 

fixed, or rotation of both rays. This second common conception of angle is also problematic 

because it is difficult to quantify smooth and continuous rotations. Angles as wedges, on the 

other hand, can be used to easily quantify angles in relation to the fraction of the circle that the 

space or region between the angle sides generates. Additionally, angles as wedge can illustrate 

the smooth and chunky generation of angles and represent angles as a continuous quantity. Still, 

researchers have found this third conception of an angle problematic as students reason about the 

size of an angle based on the area between the rays and not in relation to the arc of the circle.  

Freudenthal (1973) emphasized that several concepts of angles must be considered to 

avoid restricting conventional definitions from the meaningful learning of mathematical ideas. 

Indeed, using one angle conception in isolation may limit students into memorization, single-

word responses, and procedural thinking rather than offering them opportunities for reasoning 

(Boston & Candela, 2018). Furthermore, there is no proper definition that can describe angles 
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from all areas of personal experiences (Taimina & Henderson, 2005). Since students also 

recognize angles in one context different from another context, Mitchelmore and White (2000) 

suggested that they should be presented using various angle models. Considering the above, I 

would argue that the three conceptions of angles are not enough when taken apart from each 

other. Instead, combining all three conceptions of angles may help students develop a robust 

understanding of an angle as being generated through a rotation or turn and being quantified in 

terms of a fraction of a circle and number of degrees. This might be the kind of activity that 

would help students to bridge the topological and Euclidean relationships in forming their 

meanings about angles (Piaget & Inhelder, 1956). 

The literature also has shown that the way angles are modeled (static vs. dynamic 

physical models, body movements, digital tools) influences students’ experiences and, therefore, 

the different conceptions they build about angles. The static models of angles are the output of 

the rotation of angle sides and lack the rotational motion that dynamic models have. As a result, 

research documents how static models usually encourage more alternative conceptions that 

students continue to have even in later years of schooling. Since static models do not help 

students develop their conception about angles, I looked into the literature on what dynamic 

representations could offer. Generating and changing angle size using digital technologies can 

help students resolve limitations and difficulties that students experience with the static 

representations (e.g., Browning et al., 2007; Clements & Battista, 1989; Clements et al., 1996; 

Clements & Burns, 2000). Specifically, Browning et al. (2007) proposed the use of digital 

technology to help students make meaning of dynamic angles beyond paper-and-pencil tasks. 

The dynamic models of angles offered students opportunities to interact with the rotational 

motions of angles and are represented through body movements or using digital technologies. 
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The embodied approaches showed that angles are perceived through body gestures but have 

limitations when arms can only be rotated to some extent and it is difficult for students to 

visualize the generation and quantification of angles. These limitations experienced from the 

physical embodiment of angles can be eliminated using digital tools. Indeed, the exploration of 

angles in digital environments offered students visual platforms to experience angles as rotations. 

However, studies about angle conceptions using digital tools were only limited to the generation 

of angles as rotations and were difficult for quantifying angles.  

For this reason, I explored the potential of using a digital environment to engage students 

in a dynamic exploration of angles that focuses on all three angle conceptions. The theoretical 

framework that I describe in the next section aims to engage students in exploring angles 

dynamically by bridging the three conceptions of angles into a unified construct, what I refer to 

as a dynamic measurement for angle. In particular, I began with the assumption that elementary 

school students can construct meaning of an angle as a continuous quantity that can be quantified 

and dynamically changed with careful task design. Specifically, I aimed to explore the following 

research questions: 

1. What forms of reasoning do students exhibit as they engage in dynamic digital tasks that 

aim to bridge the three conceptions of angles? 

2. What characteristics of the design (e.g., characteristics of tasks, tools, and questioning) 

support the particular forms of students’ reasoning for angles? 

3.  How did the design evolve to support students’ reasoning for angles? 
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Chapter 3: Theoretical Framework 

 To investigate the research questions that I presented in the previous chapter, I followed 

the perspective of radical constructivism. Specifically, I explored the theoretical elements of 

radical constructivism and discussed how this perspective to learning provides a platform to 

illustrate how students construct their mathematical reasoning about angles and how I could 

examine those forms of reasoning. Additionally, I discussed how quantitative reasoning could be 

used as a window for students to construct their meaning of angles and for me to explore 

students’ thinking.  

3.1.  Looking at Angles from a Radical Constructivism Perspective 

Von Glasersfeld (1987, 1995) drew upon his vast collection of experiences to describe 

constructivism. According to him, radical constructivism posits that knowledge is constructed by 

students based on their experiences. For von Glasersfeld (1987), learning means drawing 

conclusions from experiences and activities. In analyzing patterns of student learning, von 

Glasersfeld (1995) proposed a scheme theory that was built on Piaget’s (1976) tripartite 

conception of reflex. Specifically, this tripartite conception of reflex includes a perceived 

situation, an activity associated with the situation, and a result of the activity that turned out to be 

beneficial for the actor (Piaget, 1976). Building on this, von Glasersfeld’s (1995) scheme theory 

specified the three parts of schemes as a) recognition of a certain situation, b) a specific activity 

associated with that situation, and c) the expectation that the activity produces a certain 

previously experienced result. As Piaget (1976) promoted the use of clinical interviews to 

warrant the study on what goes on in students’ heads, von Glasersfeld (1995) took a step further 

to validate the perspective that children’s knowledge has an epistemological value though it 
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could fundamentally differ from that of an adult. Specifically, von Glasersfeld (1995) formulated 

the two principles of radical constructivism: 

1. Knowledge is not passively received either through the senses or by way of 

communication; knowledge is actively built up by the cognizing subject. 

2. The function of cognition is adaptive, in the biological sense of the term, tending towards 

fit or viability; cognition serves the subject’s organization of the experiential world, not 

the discovery of an objective ontological reality (p. 51). 

The first principle of radical constructivism highlights an individual’s active construction 

of knowledge drawn from their experiences and reflections on their experiences. It does not 

follow the transmission-of-knowledge model of learning where an existing knowledge from an 

external source is viewed to be imparted to students (Cobb et al., 1993). In other words, it asserts 

that it should be carefully taken as a lens on how children come to understand the world and 

validate their thinking (Confrey, 2011). The second principle is the radical piece which contends 

the purpose of cognition where individuals organize their experiential reality to meet their needs. 

In  radical constructivism, an individual’s reality is constructed based on their experiences rather 

than discovered. Confrey (2011) supported that these two principles are inseparable, and one 

could not coherently and completely accept one without the other.  

From the perspective of radical constructivism, mathematics is constructed by individuals 

and mathematical meanings are developed within the structure of an individual’s experiences. 

The term meaning refers to “the space of implications that the current understanding mobilizes –

actions or schemes that the current understanding implies, that the current understanding brings 

to mind” (Thompson et al., 2014, p. 12). In the sense of Piaget (1977/2001), constructing a 

meaning is synonymous to constructing an understanding by repeatedly engaging in mental 
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actions to assimilate a situation, and reflecting on these experiences, in which meanings are 

reorganized. In mathematics education, one can study students’ construction of mathematical 

meaning within the space of their experience (Steffe & Kieren, 1994). Steffe and Thompson 

(2000) refer to mathematical realities that students construct as “students’ mathematics.”  

Mathematics is assumed to include more than its definitions and logical relationships, such as 

forms of representations, evolution of problems, and methods of proof and standards of evidence 

(Confrey, 1991). According to Confrey (1991), radical constructivism also upholds what students 

do as reasonable and seeks to describe student activity from the students’ view. She supports that 

to study how students construct their mathematical knowledge, one can use sophisticated 

mathematical perspectives but recognize that the goal is to uncover students’ voices. Student 

knowledge, as students construct it, exists in their minds and is not readily available, unless 

students’ discourse and actions are made accessible to observers.   

To make students’ thinking accessible to observers, I refer to Noss and Hoyles’ (1996) 

window metaphor. This window metaphor pertains to how windows mediate what we see and 

how we notice things through them. Also, the window has a dual nature as it allows students to 

look through the window and construct their meaning of what they notice; at the same time, this 

window allows us to see what students think. For instance, (Noss & Hoyles, 1996) refer to the 

use of computer environments as windows for students in constructing their mathematical 

meanings and for researchers to study in-depth what the students have constructed. Accordingly, 

my goal is to engage students in a mathematical activity that may serve as a window for them to 

construct their mathematical meaning of angles and a window for me, as a researcher, to look 

into the students’ minds. Looking through a window to view the students’ minds is what Confrey 

(1991) suggests as uncovering students’ voices and accessing their thinking. Given that the 
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design of the window influences what and how one sees through it, it is also crucial to consider 

how a window should be designed. 

In designing the window for this study, I considered the principle that student knowledge 

is constructed based on their experience and that experience is dynamic in nature. I also 

understand that knowledge can be dynamically developed through constructive mathematical 

activity with specific tasks, tools, and questioning. From this idea of dynamic construction of 

knowledge, I aimed to document the reflexive relation (Cobb et al., 2001) between specific 

forms of student reasoning about dynamic angles and the design of the tasks, tools, and 

researcher questioning that constructively shape such reasoning. By studying the reflexive 

relation, I intended to understand how student reasoning is developed as students interact with 

the tasks, tools, and questions. Additionally, this type of relation does not prime one element as 

independent from the other. Instead, the reflexive relation between student reasoning and the 

design of mathematical activities shows that the two elements co-evolve. Student reasoning 

about angles emerges within the context of the designed activities, and the design of activities is 

modified in light of that student reasoning.  

To unfold this reflexive relation between student reasoning about angles and the design 

of mathematical activity, I first considered the possible constructs of an angle. I examined 

students’ reasoning about angles through the interplay of geometry and multiplicative reasoning. 

The geometric and multiplicative natures of an angle co-exist and complement one another. In 

particular, the exploration of the literature shows that the conception of an angle is geometric in 

nature. In order for students to construct their mathematical meaning of angles, it is not enough 

to only consider their geometric nature. It is also important to consider the multiplicative 

relationships between quantities involved in angles. To describe the interplay between geometry 
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and multiplicative reasoning in the angle concept, I examined how quantitative reasoning may 

serve as a platform for bridging these two aspects as a unified construct.   

3.2.  Looking at Angles from a Quantitative Reasoning Lens 

Quantitative reasoning focuses on quantities as measurable attributes of an object in a 

given situation (Smith & Thompson, 2007; Thompson, 2011). Quantities are described as mental 

constructions; in other words, quantities are created in mind (Thompson, 2011). Quantitative 

reasoning refers to the mental process of an individual in conceiving an experiential situation at 

hand, constructing quantities of the conceived situation, and reasoning about the constructed 

quantities and their relationships (Smith & Thompson, 2007; Thompson, 2011). Reasoning about 

quantities involves quantification, a mental process of “conceptualizing an object and an attribute 

of it so that the attribute has a unit of measure, and the attribute’s measure entails a proportional 

relationship with its unit” (Thompson, 2011, p. 37). Although looking through the lens of 

quantitative reasoning could potentially advance students’ mathematical meaning of angles, the 

literature shows that quantitative reasoning about angles is not commonly encouraged in 

elementary mathematics education. If this type of mathematical reasoning is cultivated from 

students’ elementary years of education, it can potentially produce flexible and generalizable 

mathematical forms of reasoning that can be further developed in higher levels of schooling 

(Smith & Thompson, 2007). Accordingly, through the quantitative reasoning lens, I explored 

how the geometric and multiplicative components of angles can be unified as a single construct 

that guided the design of mathematical activity for angles. In the following sub-sections, I first 

describe possible ways of how students may conceive angle situations and identify quantities 

involved in those situations. Then, I discuss the probable means of students’ reasoning about the 

relationships of those quantities. 
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3.2.1.  Conceiving angle situation and identifying quantities involved: What is changing? 

The exploration of the literature shows that students may conceptualize an angle in three 

ways, namely as a geometric union of two rays, as a wedge, and as a rotation. The literature also 

has shown that considering multiple but unified angle conceptions may help avoid the limitations 

and difficulties encountered from working with individual conceptions (e.g., Boston & Candela, 

2018). Considering these suggestions, it is more intuitive to design mathematical tasks involving 

the three conceptions of angles rather than focusing on each form as isolated constructs.  

The dynamic measurement (DYME) (Panorkou, 2017, 2021) approach can unify the 

three angle conceptions and can potentially support how students may use quantitative reasoning 

to bridge the multiplicative and geometric attributes of angles (Figure 15). The notion of DYME 

can offer an entry point to examining the interplay between geometric and multiplicative 

reasoning perspectives of angles. Panorkou (2017, 2021) defined DYME as an approach to 

geometric measurement focusing on how a space is measured by lower-dimensional objects that 

generated it. Kobiela and Lehrer (2019) talked about this generation as a physical enactment of a 

dynamic sweep of one quantity to generate another quantity. The process of generation of an 

object may potentially support students in bridging the discrete and continuous conception of a 

quantity (Kobiela & Lehrer, 2019; Panorkou, 2017, 2021). For instance, tracing the continuous 

change in a rotation of a ray can illustrate the generation of an angle as a continuous quantity. 

Moreover, experiencing the dynamic sweep can foster thinking about the multiplicative 

composition of a geometric object, which in turn, can serve as a springboard for students to 

generate quantities through more sophisticated multiplicative operations (Kobiela & Lehrer, 

2019).  
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Figure 15 

Dynamic Measurement Bridges the Three Angle Conceptions and Quantitative Reasoning 

Bridges Geometric and Multiplicative Relationships 

 
 

To visualize the generation process, researchers used the tracing feature of either physical 

tools or dynamic geometry environment (DGE) in their studies. Kobiela and Lehrer (2019) used 

physical squeegees in tracing areas and found that the tracing of the generation process offered 

feedback to students to see their errors and modify their interaction with the tool. Meanwhile, 

Panorkou (2021) who used the tracing feature of GeoGebra, a DGE, found that this feature 

assisted students to imagine the sweeping of a 2-D surface both as iterated into chunky identical 

layers and also as the smooth transformation of the 2-D surface into a 3-D shape. These 

experiences led students to construct both smooth and chunky images of change. 

According to Castillo-Garsow and colleagues (Castillo-Garsow, 2012; Castillo-Garsow et 

al., 2013), chunky thinking involves imagining change in discrete chunks, regardless of the sizes 

of chunks. Smooth thinking, on the other hand, involves imagining a change in progress when 

students may envision the intermediate and infinite amounts of change in a continuous and 

smooth way (Castillo-Garsow, 2012). These smooth and chunky images of change have 

implications for students’ conceptions of situations involving quantities that change (Castillo-

Garsow et al., 2013). For instance, Castillo-Garsow et al. (2013) argued that smooth thinking 

encourages a smooth conception of change, while chunky thinking encourages chunky 
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conception of change. These two forms of thinking may also imply different conceptions of 

angles as quantifiable objects. For instance, the literature in the previous chapter has shown that 

smooth and continuous rotations are difficult to quantify and that chunky images of wedges can 

be easily used in quantifying angles. Examining angles from a dynamic measurement perspective 

would ultimately help students construct both smooth and chunky images of change about angles 

and conceptualize an angle as both a rotation and a wedge. 

In applying the DYME approach for angles using the quantitative reasoning lens, 

students may conceive an angle as generated by the rotation of connected rays and identify the 

quantities involved in generating the angle. For example, students may enact the rotation motion 

of rays to generate an angle by a quantity (e.g., amount of rotation). The literature shows three 

ways that an angle may be conceived via rotation, namely rotating one ray, rotating one ray 

while the other ray is fixed, or rotating both rays (Figure 16).  

Figure 16 

Illustrations of Dynamic Generation of Angles via Rotation 

 

Note: Angles can be dynamically generated through (a) rotation of one ray, (b) rotation of one 

ray while the other ray is fixed, and (c) rotation of two rays. 

To illustrate the generation of angles via rotation of rays, the tracing feature of GeoGebra 

may help students visualize the rotation of 𝐴𝐴𝐴𝐴�����⃗  to generate the wedge ∠𝑎𝑎 and they may identify 

the amount of rotation a (Figure 16a). Similarly, students may conceive that while 𝐵𝐵𝐵𝐵������⃗  is fixed, 



DYNAMIC ANGLES 

 

45 

the rotation of 𝐵𝐵𝐵𝐵�����⃗  generates ∠𝐵𝐵𝐵𝐵𝐵𝐵 and identify the amount of rotation b (Figure 16b), or that the 

rotation of both 𝐶𝐶𝐶𝐶�����⃗  and 𝐶𝐶𝐶𝐶�����⃗  generates ∠𝐶𝐶𝐶𝐶𝐶𝐶 by an amount of rotation c (Figure 16c). 

In addition to situations perceiving angles as a rotation of connected rays, students may 

conceive angles as wedges being generated via rotation of a radius of a circle. While these 

quantities are recognized as being generated, students may reason that these quantities also 

change. This angle situation illustrates a combination of three angle conceptions as suggested in 

the literature. Students may identify the quantities involved in generating the wedge BAC such as 

the amount of rotation and the openness between the two radii 𝐴𝐴𝐵𝐵���� and 𝐴𝐴𝐶𝐶���� (Figure 17). Students 

may also recognize other quantities that are changing such as the space inside the wedge BAC 

and the circumference of circle A. The literature shows that the wedge exemplifies the idea of an 

angle as a continuous quantity that may support students’ construction of smooth and continuous 

images of change. A wedge is also a static representation that can be split, iterated, and used to 

create other angles as composites of an angle. In other words, it may also support students’ 

chunky images of change that would eventually help them with quantification.  

Figure 17 

The Generation of Angles Conceived as Wedge and the Identification of Quantities Involved 

  

Note: Quantities involved in generating an angle may include the amount of rotation and the 

openness between the two radii in a circle. 
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In both angle situations, students may not only conceive an angle as a dynamic rotation or 

wedge but also as a static openness of space being formed by two rays and a vertex. This 

dynamic versus static perception of angle from these situations may support students’ bridging of 

the three conceptions of an angle as a rotation, a wedge, and formed by two rays and a vertex. 

Also, both examples may help students avoid the alternative conception that the length of angle 

sides influences the angle size, as discussed in the section “Angles As Two Sides Sharing a 

Common Point”1.1. Instead, students may reason that although the amount of rotation is 

changing, the length of sides remains the same because they are radii of a circle. Similarly, 

students may explain that the size of wedge is changing, but the side length is the same.  

In conceiving angle situations, students may not only construct the quantities, but they 

may also conceive that the quantities are changing. Students may characterize these quantities as 

dynamic rather than having one static value. This characterization of changing quantities, in turn, 

offers the space for students to construct multiplicative reasoning such that an angle can be 

generated in chunks or as a quantity that increases or decreases. From the quantitative reasoning 

perspective, there are possible ways that students may construct multiplicative relationships 

between the quantities conceived from the generation of dynamic angles.  

3.2.2.  Constructing relationships about angles: How is it changing? 

In exploring the DYME for volume, Panorkou (2021) found three forms of reasoning, 

namely reasoning about the quantities involved in the generation of 2D and 3D space, reasoning 

about the multiplicative change of those quantities, and coordinating the change in those 

quantities. Students from the DYME study did not only conceive volume through the generation 

process and identify the quantities that are changing, but they also have constructed relationships 

between those quantities. Similarly, students may also construct relationships between the 
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quantities in an angle situation. For instance, in conceiving an angle with rotated rays, students 

may reason about the angle generation as getting wider, more open, or bigger. When the 

generation is reversed such that the rays approach each other, the angle measure is decreasing, 

approaching zero. From this reverse action, students may reason about angles as getting thinner, 

narrower, less open, or smaller.  

Students may coordinate the change in one quantity with the change in another quantity 

by using covariational reasoning. Covariation is the relationship of change in quantities, 

describing how one quantity varies in relation to another varying quantity (Confrey & Smith, 

1995). Coordinating two quantities changing while focusing on how they change in relation to 

each other is what research refers to as covariational reasoning (Confrey & Smith, 1995; 

Thompson & Carlson, 2017). Covariational reasoning may be non-numeric or numeric. Smith 

and Thompson (2007) argued that reasoning about quantities does not necessarily require 

numerical values. In non-numeric reasoning, students are not required to carry out the numerical 

measurement. Instead, they only need to coordinate the direction of change and amount of 

change in quantities.  

In the exploration of dynamic angles, students may engage in covariational reasoning as 

they construct the relationship between the change in quantity involved in the generation of 

angles with the change in other quantities. For example, students may reason about the amount 

of rotation as a magnitude and how this rotation relates to the wedge it creates as another 

magnitude, and not on specific values. As students increase the amount of rotation for 𝐴𝐴𝐶𝐶����, the 

space inside the wedge DAC also increases (Figure 18). As students construct covariational 

relationships between quantities involved in this example, I conjecture that they may also not 

exhibit the alternative conception of associating the side length with the change in the size of the 
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angle. A series of rotations may offer students the idea that the length of  𝐴𝐴𝐶𝐶���� did not change as 

the amount of rotation and the size of the wedge did.  

Figure 18 

An Illustration of Increasing Rotation and Size of the Wedge 

   

As students mentally coordinate the change in quantities involved in generating angles, 

they may exhibit chunky or smooth images of change (Castillo-Garsow et al., 2013). Reasoning 

about the multiplicative change of the quantities illustrates a chunky form of reasoning. This 

form of reasoning may provide students a space to use the values in constructing multiplicative 

relationships between quantities involved in generating an angle.  

3.3.  Comparing Angles 

The previous section focuses on the possible ways that students may conceive the 

generation of a single angle and how they may reason about what is changing and how quantities 

are changing in that angle. It is also interesting to examine students’ conceptions as they compare 

the sizes of angles (Figure 19). Students may construct multiplicative relationships as they 

compare two angles. They may conceive the reciprocal relationship of the relative size of two 

quantities (Thompson & Saldanha, 2003).  
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Figure 19 

Comparing Angles Multiplicatively 

 

Note: Students may compare angles multiplicatively (a) when an angle is 1/n the size of another 

angle or n times bigger than the other, or (b) when an angle is a product of groups of unit angles. 

For instance, reasoning that the size of ∠𝐵𝐵𝐴𝐴𝐶𝐶 is 1/n the size of ∠𝐵𝐵𝐴𝐴𝐵𝐵 means that ∠𝐵𝐵𝐴𝐴𝐵𝐵 

is n times bigger than ∠𝐵𝐵𝐴𝐴𝐶𝐶 (Figure 19a). To examine students’ multiplicative reasoning about 

the change in angle measure, I also consider the definition of multiplication as coordinated 

measurement N • M = P formulated by Izsák and Beckmann (2019). This multiplication is 

applicable to situations involving a product quantity (P) that is simultaneously measured using 

two other units called base units and groups, where N is the number of base units that make one 

group, and M is the number of groups that make the exact product amount P. For instance, one 

may coordinate three base units of a 20°-angle to make 1 group of a 60°-angle, and then 

coordinate three groups of this 60°-angle to make a 180°-angle as shown in Figure 19b. 

This multiplication of angles in degree units via coordinated measurement is what 

Hardison (2018) calls extensive quantification of angles via units coordination. The units 

coordination of angles involves conceptualizing the openness of an angle and the number of 

angle base units needed to cover the openness. Geometrically, this is what Battista (2004) defines 

as composite units. Students may construct composite units to reason multiplicatively about 
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angles. For example, the iteration of a 1°-angle 45 times creates a 45°-angle. This 45°-angle may 

serve as a composite unit for creating larger angles, such as iterating it three times to create a 

135°-angle. The 135°-angle is a composite of three 45°-angles but also a composite of 135 

groups of 1°-angles. Students may reason that an angle unit is created through an iteration of 

smaller angle units. If students engage in multiplicative operations, they may successfully work 

with different levels of units (Reynolds & Wheatley, 1996; Steffe, 1992). Students’ reasoning 

about units coordination is an example of a form of reasoning that describes the interplay 

between the multiplicative and geometric perspectives of dynamic angles. 

3.4.  Concluding remarks 

The purpose of this chapter was to set the theoretical basis that could guide the design of 

mathematical activities that could be used for developing elementary school students’ reasoning 

about angles, and for characterizing the forms of reasoning of angles that students could exhibit 

as they engage with those mathematical activities. I discussed how the notion of DYME in 

generating angles could bridge the three angle conceptions making learning about angles more 

accessible to students. I also discuss how DYME could support student reasoning about angles. 

Reasoning about angles involves both reasoning geometrically and multiplicatively and this 

chapter presented how quantitative reasoning could be utilized for describing this interplay. 

Thompson (2013) argued that quantitative reasoning is important in the development of 

mathematical meaning because it is established in the conception of situations that are 

experienced by students. Quantitative reasoning as a lens involves examining the ways that 

students perceive angle situations, construct quantities that are changing in these situations, and 

also construct relationships about how these quantities change simultaneously. Since quantitative 

reasoning is established in the conception of situations that are often experienced by students, 
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Thompson (2013) argued that quantitative reasoning is important in the development of 

mathematical meaning. In terms of angles, I conjectured that mathematical activities designed 

with the lenses of DYME and quantitative reasoning in mind could engage students in 

constructing their mathematical meaning about angles and avoid the difficulties and alternative 

conceptions found in the literature.   



DYNAMIC ANGLES 

 

52 

Chapter 4: Methodology 

The goal of my dissertation was to develop mathematical tasks and examine how students 

could reason as they engage with my design. In this chapter, I discuss my research methodology, 

which is the design experiment (Barab & Squire, 2004; Brown, 1992; Cobb et al., 2003). I 

describe the characteristics of design experiments and then discuss the three phases of my design 

experiment, namely, the design and conjectures phase, the data collection phase, and the data 

analysis phase. In the design and conjecture phase, I discuss the initial task design, and my 

conjectures on how the design could help achieve the intended goal, which was for students to 

construct reasoning about angles as discussed in the Theoretical Framework. In the data 

collection phase, I describe the participants, the research setting, and the methods for collecting 

the data. Finally, in the data analysis phase, I discuss the framework that I used to analyze the 

data to seek answers to the following research questions: 

1. What forms of reasoning do students exhibit as they engage in dynamic digital tasks that 

aim to bridge the three conceptions of angles? 

2. What characteristics of the design (e.g., characteristics of tasks, tools, and questioning) 

support the particular forms of students’ reasoning for angles? 

3.  How did the design evolve to support students’ reasoning for angles? 

4.1.  Design Experiment 

The primary principle of the design experiment methodology is the design of educational 

interventions to engineer particular forms of learning and the study of those forms of learning 

with the goal of supporting them (Cobb et al., 2003). Design experiments also aim to develop 

learning theories and inform pedagogical practices (Barab & Squire, 2004; Cobb et al., 2003; 

Schoenfeld, 2006). Additionally, this methodology focuses on the development and evaluation of 
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educational interventions (e.g., Anderson & Shattuck, 2012; Cobb et al., 2003; Plomp, 2013). In 

my research, I aimed to engineer particular ways of student reasoning about angles and to study 

students’ forms of reasoning as they engage with my design. I conjectured that the design of my 

tasks, tools, and questioning could significantly influence students’ construction of reasoning 

about angles. By conducting a design experiment, I aimed to evaluate this educational 

intervention with the goal to develop a learning theory about students’ reasoning of angles, 

which in return could inform pedagogical practices.  

The following paragraphs describe some characteristics of the design experiment 

methodology, namely being systematic, iterative, and authentic, that are the prominent features 

adopted in my research. 

4.1.1.  Systematic  

Schoenfeld (2006) described the design experiment as a test-bed for innovation and 

argued that a design experiment is conducted with a goal toward the systematic data generation 

and examination and theory refinement. In a design experiment, researchers systematically study 

the relationships and interactions between design interventions and the impact of those 

interventions in learning that takes place in naturalistic but complex settings (Cobb et al., 2003; 

Cobb et al., 2001; Schoenfeld, 2006). For instance, Cobb et al. (2001) systematically worked 

through their data by continually testing and revising their conjectures. This means that the 

design experiment is a systematic way of constructing designs and testing and refining both the 

theory about learning and the design. In this dissertation, I anticipated that my design could 

evolve to support students’ quantitative reasoning as discussed in the Theoretical Framework 

chapter. Furthermore, I studied how my design and student reasoning about angles co-evolve. By 
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following how my design influenced students reasoning, I pointed out the affordances and 

drawbacks of my design and suggested possible ways to develop it in future iterations. 

4.1.2.  Iterative  

One unique quality of a design experiment is its nonlinear cycles of design, 

implementation, analysis, and redesign (Anderson & Shattuck, 2012; Cobb et al., 2003; Cobb et 

al., 2001; Design Based Research Collective [DBRC], 2003). These iterations are individual 

experiments of systematic design modifications to generate an effective intervention (Barab & 

Squire, 2004). In other words, the design experiment undergoes an ongoing, recursive design 

process which offers more flexibility in generating a better and desired output than traditional 

experimental methods (Wang & Hannafin, 2005). According to the DBRC (2003), innovative 

interventions also involve multiple iterative steps. The first step is theory development for 

hypothetical solutions. Then, researchers design and re-design interventions based on the initial 

theory. Next, a thought experiment is implemented in classroom settings according to the 

hypothetical solution and design. Then, design researchers analyze the artifacts for theory 

refinement, achieve satisfactory design intervention, and explain how the evolution of design 

might support students’ learning.  

Figure 20 illustrates how design researchers first identify the problem and explore 

existing theories that can potentially address some elements of the problem (Anderson & 

Shattuck, 2012; Brown, 1992). Theories, which design researchers describe as humble theories, 

are developed on domain-specific learning processes and used to inform the design of the 

intervention (Cobb et al., 2003). Humble theories are often presented as instructional activities, 

associated materials, and the norms and discourse that are existing in a classroom setting (Cobb 

& Gravemeijer, 2008).  
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Figure 20 

The Stages of the Design Experiment 

 

In this study, my humble theories included engaging students with tasks that bridged the 

three angle conceptions that could support their reasoning about dynamic angles. I also 

conjectured that my design could help students avoid exhibiting alternative conceptions about 

angles that I discussed in the Literature Review chapter. The Design and Conjectures section 

offers additional details on my design and humble theories (conjectures). 

4.1.3.  Authentic  

Another characteristic of a design experiment is that educational interventions are 

implemented in authentic settings such as classrooms (Anderson & Shattuck, 2012; Barab & 

Squire, 2004; Brown, 1992; Design Based Research Collective [DBRC], 2003). Design 

experiments also examine classroom interactions, an immediate feature of the setting (DBRC, 

2003). According to Brown (1992), the realistic interactions in a classroom delineate why 

interventions work and make them reliable and reproducible designs situated in authentic 

contexts. This study was conducted during the global pandemic when classroom settings and 

interactions with students were limited to virtual platforms. Considering this limitation, I 

employed a series of virtual in-person interviews with students through Zoom (https://zoom.us/). 

Students in this study experienced meeting with their classes virtually that they were already 

https://zoom.us/
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familiar with the virtual classroom norms such as using a computer, its tools, and sharing their 

computer screens. 

4.2.  Design and Conjectures 

The purpose of this study was to design dynamic digital tasks that aim to bridge the three 

conceptions of angles and examine students’ possible forms of reasoning as they engage in these 

tasks. My main conjecture was that by engaging with my design, students could reason about 

angles generated dynamically. Specifically, I conjectured that they could identify the changing 

quantities in situations modeling an angle as a union of rays, a rotation, and a wedge and that 

they may reason about the relationships between those quantities.  

Student reasoning about dynamic angles can be best supported using digital technology. 

As discussed in the literature review, several studies show that digital technologies can offer 

dynamic explorations of generating angles and changing angle measures. This dynamic 

exploration could support students to bridge the three angle conceptions and recognize the 

quantities involved. It could also support them in making conjectures about the relationships 

between quantities and use the immediate feedback that these technologies provide to verify or 

refine their conjectures. This kind of exploration could help mitigate difficulties that students 

encounter from working with static illustrations only (e.g., Browning et al., 2007; Clements & 

Burns, 2000; Smith et al., 2014). For instance, Smith et al. (2014) reported that students 

associated their arm sweeping movement with the change in an angle size when they engaged in 

activities using a digital software which would be difficult for students if using static images.  

In addition to using digital technology as a tool for students to explore angles 

dynamically, I also considered the dynamic measurement (DYME) approach (Panorkou, 2017, 

2021) to illustrate the generation of angles in my tasks design. After exploring the construction 
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of angle tasks in different digital software, I chose the sweeping, tracing, and measurement 

feedback offered by GeoGebra (https://www.geogebra.org) as the most suitable tools to help 

students construct their reasoning about angles. The goal of my design was for students to 

dynamically generate angles and the sweeping tool may help achieve this objective. The tracing 

tool could help students visualize the angles they generated. This visualization could also aid 

students to conceive the quantities involved in the generation process and construct relationships 

between those quantities. The measurement feature of the GeoGebra could help students verify 

the relationships they constructed.  

In the following two sub-sections, I used the two forms of quantitative reasoning 

discussed in my theoretical framework – what is changing and how it is changing – to present the 

three sets of tasks that I designed (https://www.geogebra.org/m/axvjtjxm). I also discuss my 

conjectures about student reasoning in each task. The first sub-section describes the Task Set 1 

and how students could conceive an angle situation and identify quantities that are changing. The 

second sub-section presents Tasks Sets 2 and 3 and discuss the possible ways that students could 

reason about the change of quantities and the relationships between these quantities.  

4.2.1.  Task Set 1: Conceiving angle situations and identifying quantities (What is changing?) 

Task Set 1 consisted of tasks designed to help students explore how they could generate 

angles by rotating angle sides and identify the quantities involved in this generation. In this 

section, I present three examples of these tasks. First, in the “Three Pairs of Different Objects” 

task, I designed a red segment, a blue ray, and a green line that can be rotated around in a full 

circle (Figure 21). The goal of this first task was for students to explore the program and 

differentiate between a segment, a ray, and a line. I conjectured that this task could provoke them 

to recognize that the three geometric objects can be used to generate angles.  

https://www.geogebra.org/
https://www.geogebra.org/m/axvjtjxm
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Figure 21 

Illustrations of the Three Pairs of Different Objects Task 

 

Note. The “Three Pairs of Different Objects” task as shown in (a) and after the generation of 

three angles via rotation of a segment, a ray, and a line as shown in (b).  

In the “Comparing Angles with a Fixed Angle” task, the goal was to help students reason 

that the side length is not relevant to the size of the angle being generated. This kind of reasoning 

does not illustrate the alternative conception of associating the side length with the angle size as 

discussed in the literature review. To achieve this goal, I designed three angles that could be 

generated with the same openness but have different side lengths (Figure 22). The purpose of this 

design was to enable students to compare angles with side lengths that do not change and an 

angle with side length that changes. I first asked students to explore the task. I conjectured that 

students could create angles with the same or different amount of openness. Then, I asked them 

questions such as “What is changing in each?” and “What stays the same in each?” to provoke 

them to identify the quantities that were changing and quantities that were not changing. I also 

asked them questions such as “How are they the same?” and “How are they different?” to further 

examine if they could identify other quantities involved in the generation of angles. If students 

created all angles with the same amount of openness, they could use the fixed angle object 

(Figure 22a) to verify the equality of their openness. Otherwise, students could generate angles 

of different measures and reason that these measures make the angles different from each other. 
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Figure 22 

Illustrations of the Comparing Angles with a Fixed Angle Task  

 

Note. The “Comparing Angles with a Fixed Angle” task as shown in (a) and after the generation 

of three angles of the same size via rotation of different side lengths as shown in (b).  

The “Blue Wedge” task aimed to bring in the conception of angles as wedges (Figure 23). 

In this task, students could drag one or both angles sides, and identify the openness, the amount 

of rotation of one side or both sides of the angle, and the space inside as the quantities that 

change. Students could also recognize the side length as the quantity that did not change.  

Figure 23 

Illustrations of the Blue Wedge Task 

 

Note. The “Blue Wedge” task as shown in (a) and after the generation of an angle as a wedge via 

dragging the angle sides as shown in (b). 

In this task, I asked students “What makes this different from other tasks?” to help them reason 

about the difference between angles generated by tracing the rotation and angles as wedges. 
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4.2.2.  Task Sets 2-3: Constructing relationships about angles (How is it changing?) 

The primary goal of Task Sets 2 and 3 was to examine students’ reasoning about the 

relationships between the quantities. To begin with, the primary goal of Task Set 2 

(Multiplicative Comparison) was for students to construct multiplicative relationships when 

comparing the openness of angles. In the “Ferris Wheel” task, I designed a cart that could go 

around the Ferris wheel (Figure 24). In each consecutive quarter turns from the starting point, the 

cart aligned with candies, cookies, and chocolates, respectively. The goal of this task was for 

students to reason multiplicatively about angles as a quarter of a full turn. For example, I asked 

students questions “How much of a turn will make the cart from Start to Start?”, “How much of 

a turn will make the cart reach for the cookies?”, “How much of a turn will make the cart reach 

for the candies?”, and “How much of a turn will make the cart reach for the chocolates?” This 

series of questioning could provoke students to associate a complete turn with a whole circle, 

half a turn with half a circle, a quarter of a turn with a quarter of a circle, and three-quarters of a 

turn with three-quarters of a circle, respectively (e.g., Confrey et al., 2012). 

Figure 24 

Illustration of the Ferris Wheel Task 

 

Note. This task shows an angle is generated as 3/4 of a full turn and a wedge of 3/4 of a circle. 
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In the “Comparing the Openness Between Two Angles” task, the goal was to examine 

how students may multiplicatively compare two angles of different openness. In this series of 

tasks, my goal was to provoke students to reason about two angles with one angle being three 

times (Figure 25), four times (Figure 26), or six times (Figure 27) bigger than the other angle. 

This progression was intended for students to reason from less sophisticated to more complex 

multiplicative reasoning about quantities (Thompson & Saldanha, 2003). I asked students 

questions “Which is more open?” or “How many times bigger is that angle than the other?” To 

help students identify these relationships, I created some supportive rays on the side that students 

could use as they iterate a smaller angle within the bigger angle.  

Figure 25 

Illustration of Comparing an Angle Three Times Bigger than the Other Angle Task 

  

Note. Comparing two angles where the blue angle is three times bigger than the red angle. 

Figure 26 

Illustration of Comparing an Angle Four Times Bigger than the Other Angle Task 

  

Note. Comparing two angles where the red angle is four times bigger than the blue angle. 
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Figure 27 

Illustration of Comparing an Angle Six Times Bigger than the Other Angle Task 

  

Note. Comparing two angles where the blue angle is six times bigger than the red angle. 

The previous three tasks engaged students to compare two angles multiplicatively while 

the “Growing and Shrinking Angles” task engaged students to multiplicatively change one angle. 

In this task, I designed an angle and a circle with 12 equal partitions with the goal to prompt 

students in reasoning about the multiplicative change in an angle (Figure 28). Specifically, I 

asked them to use the circle to double the angle, triple the angle, make the angle four times 

bigger, and make the angle half than what it was.  

Figure 28 

Illustrations of the Growing and Shrinking Angles Task  

 

Note. The “Growing and Shrinking” task where an angle is changed multiplicatively such as (a) 

doubled, (b) tripled, or (c) halved than what it was. 

In Task Set 3 (Numeric Angles), I aimed to examine students use of continuous 

quantitative reasoning (Castillo-Garsow, 2012) about an angle as a quantity. In this reasoning, 
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students could recognize a smooth generation of an angle as a full rotation or imagine smaller 

chunks of angles within this full rotation. Then, students could repeat the process of imagining a 

smooth generation of intermediate angles within the smaller chunks. This kind of reasoning 

could lead students to construct multiplicative relationships between an angle and its 

intermediate angles. If a circle that represents a full rotation was split into finite numbers of n-

degree angles, students could construct what Battista (2004) refers to as composite units to 

reason multiplicatively about angles.  

In the “Many Very Small Angles” task, I designed a blue ray that could be dragged in a 

full rotation while leaving traces of the rotation. The goal was for students to recognize that the 

angle they generated was composed of an infinite number of smaller angles (Figure 29). I asked 

students “What did you create?” to examine their use of smooth or chunky thinking. Then, I 

asked students “How many of these did you create?” I conjectured that student reasoning could 

illustrate their thinking about an infinite (or uncountable) number of angles within a full rotation. 

This response could show the initial step to continuous quantitative reasoning (Castillo-Garsow, 

2012). Students could use smooth thinking of change when they envision a change in progress 

until this change has been completed in the form of a full rotation, and visualize the smaller 

angles within the full rotation.  

Figure 29 

Illustration of the Many Very Small Angles Task 

    

Note. The “Many Very Small Angles” task shows a full rotation with many very small angles. 
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In “360 Angles” task, I introduced degrees as a unit of measurement of an angle. I 

designed a circle split into 360 equal parts. Each part was a small angle that measures one-

degree. This design aimed to help students discover that a full rotation is 360°. I asked students 

to drag the ray around the circle to make a full rotation. I also designed two checkboxes that 

students could use to show or hide the one-degree angles and the number of these one-degree 

angles that they could cover after dragging the blue ray (Figure 30).  

Figure 30 

Illustration of 360 Angles Task  

 

Note. The “360 Angles” task shows a full rotation has 360 one-degree angles. 

In the “Splitting a Circle” task, the goal was for students to construct composite units of 

angles. To do this, I designed a circle that could be split into four equal parts, eight equal parts, 

three equal parts, six equal parts, and 12 equal parts (Figure 31). There were also two 

checkboxes that students could use to show the one-degree angles and the “show angle measure” 

tool to show the measure of the angle they created. I first asked students to recall the number of 

one-degree angles in a full rotation. Then, I engaged them in constructing their theory about the 

number of degrees in half a turn and a quarter of a turn. Also, students were asked to determine 

the number of degrees in each fraction if a full turn was either split into four equal parts, eight 

equal parts, three equal parts, or six equal parts, respectively. This task, therefore, engaged 
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students in splitting 360° into how many equal parts was required. For instance, a student creates 

a 234-degree angle with a full rotation split into six equal parts (Figure 31). This student could 

reason that if a full rotation is composed of six 60-degree angles, then the angle created has four 

60-degree angles minus six one-degree angles, or three 60-degree angles and 54 one-degree 

angles, illustrating a coordinated measurement approach to multiplication as described by Izsák 

and Beckmann (2019).  

Figure 31 

Illustration of the Splitting a Circle Task 

 

Note. The “Splitting a Circle” task shows a circle is split into six equal parts and students could 

create a 234-degree angle. 

 In this section, I described some conjectures about the ways that students could reason 

when they engage with tasks that illustrate angles dynamically. Although students could reason 

about different aspects of the tasks, the questions that I designed guided them to focus on 

specific quantities and the relationships between the changes in these quantities. 

4.3.  Data Collection 

In this section, I discuss the data collection phase of my study. I first describe the 

research participants and research setting. Then, I describe the method of gathering data.  
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4.3.1.  Research Participants and Research Setting  

The primary goal of my study was to examine how elementary students could reason 

about dynamic angles. To achieve my goal, I conducted design experiments with elementary 

school students. According to the Common Core State Standards for Mathematics (CCSSM) 

(NGA & CCSS, 2010), second-grade students are expected to recognize and draw shapes using 

the number of angles (CCSS.M.2.G.A.1) while students in fourth grade are formally introduced 

to language such as acute, right, or obtuse to classify different groups of angle measure 

(CCSS.M.4.G.A.1). Since second grade students have developed a familiarity about angles as 

part of geometric figures and students in fourth grade already developed a formal language in 

naming angles, it is essential to work with third-grade students because they are not yet provided 

with formal instructions of angles. It is possible that third-grade students have not encountered 

common or technical terms from textbooks pertaining to angles. Students at lower-grade levels 

could develop their own reasoning about angles without being influenced by the language 

provided in textbooks. In this dissertation, I worked with four third-grade students. My 

participants were recruited via personal pleas, emails, and social media posts. I had a diverse 

group of participants of different intellectual capacities, race, gender, and economic situations.  

4.3.2.  Audio, Video, and Screen recordings  

I conducted individual design experiments with four third-grade students: Jordan, 

Angelie, Axel, and Alicia. In each design experiment, I employed a virtual interview with each 

student. The students were in their homes and their guardians were allowed to be present. The 

students already had experiences in meeting virtually with their classes and were familiar with 

using a computer, a virtual meeting application, and screen-sharing. Interviews were conducted 

outside class hours for 45 to 55 minutes each session for three to five sessions until students 
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finished all the tasks. All interviews were audio-video and screen-recorded using the Camtasia 

Studio software. The audio and video recording were used to capture students’ verbal 

interactions with my questioning and body gestures. The screen recordings were used to capture 

students’ work on the screen. My dissertation advisor, Dr. Nicole Panorkou, joined me during the 

first few sessions with Jordan and Angelie to aid me in interviewing the students since the two 

students were interviewed one after the other within the same week.  

4.4.   Data Analysis 

I conducted a series of four design experiments involving one third-grade student for 

each iteration. Each iteration of the design experiment was a macro-cycle of students’ daily 

micro-cycle interactions with the tasks, tools, and researcher questioning. The unit of analysis in 

this research was students’ qualitatively different ways of reasoning as they engage with my 

designed tasks, tools, and questioning. This analysis documented the reflexive relation between 

the ways that students reasoned and the design that supported those forms of reasoning. Table 3 

summarizes the theoretical framework that I used to analyze students’ quantitative reasoning 

about angles. 

Table 3 

Framework for Analyzing Students’ Reasoning About Angles 

Tasks Theories on Student Reasoning 

Part 1  
SET 1 tasks 
What is 
changing? 

Bridging the three angle conceptions 
• Given an angle situation, students may conceive angles as a union of 

two angle sides, as a rotation, and as a wedge.  
- “I traced the rotation of a ray and I created an angle.” 
- “I created many traces that cannot be counted.” 
- “I created a circle out of a segment.” 

Conceiving quantities 
• Identifying quantities that are changing and not changing. 
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- “The openness changes but side lengths do not change.” 
- “The side length changes, but the openness stays the same.” 
- “The space inside the two sides changes and the amount of 

rotation also changes.” 
• Construct smooth and chunky images of change. 

- “There is a large number of angles in a full rotation.” 
- “There are 360 tiny wedges in a full rotation.” 

Part 2  
SET 2-3 tasks 
How is it 
changing? 

Comparing Quantities 
• Constructing relationships between quantities. 

- “The space between sides in one angle is larger than the other 
angle.” 

- “One angle is more open than the other angle.” 
Multiplicative reasoning 

• Reasoning about the multiplicative change in an angle. 
- “The angle is doubled than what it was before.” 

• Constructing multiplicative relationships between two angles. 
- “The blue angle is three times bigger than the red angle.” 

• Reasoning about angles in relation to a circle. 
- “The cart turned half a circle.” 

• Constructing composite units of angles. 
- “A 90-degree angle is composed of three 30-degree angles, and 

it can also be composed of 90 one-degree angles.” 
 

4.4.1.  Ongoing Analysis 

Design experiments are implemented to generate data in the form of artifacts or 

interactions; then, these data are collected and analyzed (DBRC, 2003). After analyzing the data 

from the initial design experiment, researchers make refinements to the theory and designs for 

reimplementation (Anderson & Shattuck, 2012; Brown, 1992).  The approach that a design 

experiment follows in analyzing a wealthy data from multiple iterations of design experiments is 

similar to Glaser and Strauss’ (1999) constant comparison method (Cobb et al., 2001). In an 

ongoing analysis, new data are compared with the current conjectured themes which leads to 

constant refinements of the overarching theories. The theory refinement, design, implementation, 

analysis, and stages are repeated in as many iterations until satisfactory design principles are 
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achieved. In each micro-cycle of my design experiments, I conducted an ongoing analysis to 

examine emerging and reproducible patterns on students’ reasoning within and across pairs as 

they engaged with my design. I took notes in every micro-cycle of the experiments to record in-

the-moment analysis and possible modifications on the tasks, tools, and questioning for future 

iterations. Starting from the design experiment with one student, I monitored how specific 

elements of my design would support particular forms of students’ reasoning about angles in the 

next iteration. Then, I repeated the processes of theorizing and refining the design of the tasks for 

the succeeding design experiments.  

4.4.2.  Retrospective analysis 

After completing each macro-cycle of design experiment, I conducted two levels of 

retrospective analysis (Brown, 1992; Plomp, 2013) to study the data set and evaluate the 

theoretical basis and effectiveness of my design. In retrospect, I analyzed the chronological 

accounts of student reasoning and how their reasoning was influenced by my design. As for my 

data, all recordings were transcribed and chronologically analyzed using the framework I 

summarized in Table 3. First, I looked for student episodes where they bridged the three angle 

conceptions, namely, a union of ray, wedge, and rotation. I also identified student episodes of 

reasoning. For example, in Part 1 tasks, I looked for student excerpts that exhibited their 

qualitatively different ways of describing what they created when they dragged the rays and the 

quantities they may have recognized as changing. In Part 2 and 3 tasks, I looked for student 

reasoning about how the quantities they identified were related to other quantities. For instance, 

in multiplicative reasoning, I looked for student episodes when they compared angle measures as 

fractions of a circle. In similar multiplicative reasoning tasks, I looked for instances where 
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students used their language for multiplication when comparing two angles or when comparing 

angle measures with the amount of rotation.  

In the second part of the retrospective analysis, I analyzed how my tasks, tools, and 

questioning may have prompted students in constructing their reasoning. A retrospective analysis 

informs succeeding or new macrocycles of design experiments in new settings and with different 

participants (Plomp, 2013). With this principle in mind, I followed the evolution of my design 

and analyzed how the changes in the design may have supported students’ reasoning. 

4.5.  Concluding Remarks 

In this chapter, I discussed the methodology for examining students’ quantitative reasoning 

about angles. I followed the design experiment methodology to develop the initial design of my 

tasks, tools, and questioning, which I hoped could help students construct their reasoning about 

dynamic angles. I followed three phases in my design experiment, namely, the design and 

conjectures phase, the data collection phase, and the data analysis phase. In the design and 

conjectures phase, I used quantitative reasoning (Thompson, 2011) and Dynamic Measurement 

(Panorkou, 2021) to design my tasks and conjecture how students could reason about angles. In 

the next two phases, I collected data during the micro-cycles and macro-cycles of the design 

experiments and studied students’ reasoning that I presented in order to refine my task design. 
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Chapter 5: Findings – Part 1 (Cases-by-Case Analysis) 

In this chapter, I present the case-by-case analysis of four individual design experiments 

with Jordan, Angelie, Axel, and Alicia. The goal of the design experiments was to examine the 

forms of reasoning that students exhibited as they engaged in dynamic digital tasks that aimed to 

bridge the three conceptions of angles: as union of rays, as rotations, and as wedges. I also aimed 

to study the characteristics of the design (tasks, tools, and questioning) that supported the 

particular forms of students’ reasoning for angles and how the design evolved to support such 

reasoning. I analyzed my data into three phases.  

In the first phase, I conducted ongoing analyses in each design experiment studying the 

chronological accounts of students’ reasoning while engaging in the design of my tasks, tools, 

and questioning. I discuss the chronological account for each student considering their varied 

prior knowledge and how their prior knowledge might have influenced their forms of reasoning. 

After each experiment, I present the forms of reasoning of every student in a summary table 

outlining how each reasoned in four distinct categories: angle conceptions, multiplicative 

comparisons, discrete or continuous conception of an angle as a quantity, and numeric 

multiplicative reasoning about angles.  

In the second phase, I conducted the first level of retrospective analysis at the end of each 

design experiment. I reflected on student’s reasoning progression pointing to the tasks and 

questioning that potentially prompted different forms of reasoning among students. I also 

reflected on the changes on my design and conjectures in each iteration to follow the evolution of 

the design that support student reasoning. 

The third phase is the second level of retrospective analysis which I discuss in the 

Findings – Part 2 (Cross-Case Analysis) chapter. In this phase, I cross-compared students’ 
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reasoning after all the design experiments were completed and discuss the similarities and 

differences in their reasoning. I also cross-compared the characteristics of the design (tasks, 

tools, and questioning) that potentially elicited different forms of reasoning about angles.  

5.1.  Case 1: Jordan 

Jordan conceived angles as fractions of a circle, then he constructed multiplicative 

relationships between the sizes of angles by iterating the smaller angle within the bigger angle. I 

infer that he used this progression of reasoning to connect fractions of a circle with the degree 

measures of an angle. I describe this progression in detail in the succeeding paragraphs.  

In the “Three Pairs of Different Objects” tasks (Figure 32), I asked Jordan to rotate the 

traceable segments to create wedges. He reasoned about the full rotations as circles and that they 

were “4/4 covered.” When he created 3/4 of a circle, Jordan described the wedge as “3/4 

covered.” For Jordan, “3/4 mean that three parts out of four are covered,” showing that he 

probably imagined the full rotation as a circle is split into four equal parts. He also reasoned that 

the 4/4 wedge has more space “covered” than that of a 3/4 wedge.  

Figure 32 

The Three Pairs of Different Objects Task to Generate Angles  

 

Likewise, in the “Blue Wedge” task in Figure 33, he created a quarter of a wedge and 

called it a “1/4.” Then, he iteratively rotated the side to make “2/4, 3/4, and 4/4,” respectively. I 
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interpret Jordan’s reasoning to show that he could associate the quarter rotations with the quarter 

sizes of a circle. When he was asked what was changing, Jordan stated, “there is also 90 kind of 

degrees on the side [creating an imaginary corner sign on the ¼ missing part of the wedge] 

because it also has the same thing as the other side [pointing at the ¾ blue wedge].” I infer that 

he used 90° to describe the 1/4 and 3/4 wedges. At this stage, Jordan could only associate a 90-

degree angle for 1/4 and 3/4 wedges, probably because the 3/4 wedge has a 1/4 missing piece. 

Jordan’s reasoning showed his preliminary conception of a quarter wedge and connected it with 

a 90-degree angle.  

Figure 33 

The Blue Wedge Task 

 

Note. Jordan associated the quarter rotations with the quarter sizes of a circle. 

In “Comparing Angles with a Fixed Angle Object” task Jordan was asked to compare the 

sizes of wedges using an object of two connected segments with a fixed opening, and he called 

this object an angle as shown in Figure 34. For Jordan, “an angle is like a corner of a square of 

any, box thing like a square… the shape has to be closed at a corner.” He seemed to refer to 

angles as corners where a shape is enclosed and that it has to be a right angle. For him, whenever 

he sees a “tiny square” symbol at the corner of a wedge, “it is 90 degrees,” but Jordan could not 

explain what 90 degrees meant. As Jordan compared two angles of the same amount of opening 

but different side lengths and sizes of wedges, he focused on the space covered by each wedge. 

Jordan stated, “the blue one [wedge] covers more space and then, the red one covers less space.” 



DYNAMIC ANGLES 

 

74 

His reasoning showed his alternative conception of an angle as the amount of space created by 

the blue and red wedges instead of looking at the openness. To further examine how he would 

reason about angles that he could change, Jordan was asked to go back to the “Three Pairs of 

Different Objects” task (Figure 32). He began to reason about the amount of rotation in creating 

an angle. To make a wedge smaller, he had to rotate less “because if you move past that 

[pointing at the rotating side], you make more space, that every time you [rotate], it gets a little 

bit bigger.” The rotation motion seemed to offer him a constructive experience to reason about 

the size of wedge and amount of space changing dependently on the amount of rotation. I also 

infer that this task probably continued to support Jordan’s alternative conception of angle as the 

amount of space when comparing angles as wedges. I conjectured that by removing the wedges 

in the next task could help him compare angles in terms of openness. 

Figure 34 

The Comparing Angles with a Fixed Angle Object Task 

 

To examine whether Jordan could connect the amount of space between angle sides with 

the openness of an angle without a visual reference to the wedge, I designed an additional task, 

“Comparing Two Non-Wedge Angles”, that involved two angles of the same side lengths but 

different openness as shown in Figure 35. He was asked to compare the openness between the 

two angles. Jordan reasoned that the blue object was more open because it “has more blank 

space” while the red object “has less blank space.” He further explained that the blue angle was 
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“more open” because there was “more space" between the two sides. When he was asked what 

he was looking at to compare the angles, he stated, “I’m looking at the line where you move it 

like this [rotating one side of the blue angle].” Then, when he was asked how he knew the blue 

object was more open, he replied “because when I look at it, I try to imagine like from there 

[pointing at one blue segment] to there [pointing at the other blue segment], and I imagine it’s 

going to stop right there. So now I know this [blue angle] one is more open.” I infer that as his 

effort to “imagine” the rotation of one side from the other side was showing that he was creating 

a connection between the amount of rotation and the amount of openness of an angle. From 

Jordan’s exploration, he seemed to identify the space between the two angle sides and the 

amount of openness as the changing quantities while changing the amount of rotation. I also 

interpret this reasoning to show that he connected the amount and the direction of rotation with 

the openness between the two angle sides. Probably, the progression of the tasks from involving 

wedges into tasks without wedges prompted Jordan to construct his generalization about the 

amount of rotation and the openness of angles. 

Figure 35 

The Comparing Two Non-Wedge Angles Task 

 

Jordan developed this reasoning further in tasks involving angles with multiplicative and 

numeric relationships. In the “Ferris Wheel” task in Figure 36, I asked Jordan about the amount 

of angle that he had to turn the cart to reach for the jellybeans and he stated that, “You have to do 

¼.” When I asked him to show how he knew it was ¼, he reasoned about the vertical and 

horizontal lines that divided the circular Ferris wheel “by making it equal” (four equal parts). 



DYNAMIC ANGLES 

 

76 

Next, when I asked Jordan the amount of turn he needed to reach for the brownies, he stated that 

“You have to do ¾.” Then, he was asked about the amount of turn to go back to Start, Jordan 

reasoned about the rotation in four fourths to define the amount of full turn the cart had to make.  

Jordan: [Rotated the cart back to Start.] That is 4/4 because this is 1/4, 2/4, 3/4 

and then this is 4/4 [while pointing at each quarter part from the bottom right of 

the wedge, counterclockwise]. So now, it’s also split into four parts, which also 

helps. So now I know, it’s 4/4. 

Figure 36 

The Ferris Wheel Task 

 

Note. Jordan turned the cart one-fourth around the “Ferris Wheel” task. 

Jordan was also able to reason about rotations in fourths when the beginning position of 

the cart was not from the Start position. For example, he stated, “if we start from here [pointing 

at the jellybeans position], it will be 1/4 [rotating the cart from the jellybean candies to cookies].” 

When I asked him how much turn he would have to make from the jellybean candies to the 

brownies, he reasoned,  

Jordan: [Rotated the cart from cookies to brownies] I think 2/4, because when I 

counted this line here [pointing at the vertical dotted line], so it helps me split 

them up into two. And the answer is two because I just said it. And but if we start 
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the thing from here [rotating the side without the cart from jellybeans to Start], it 

will take 3/4. Because when I look at the model, there’s also a line here [pointing 

at the horizontal dotted line], so that splits the thing into 3/4.  

I infer that his visualization of splitting a circle into four parts may have supported his 

reasoning in the “Ferris Wheel” task. However, he struggled when was asked to rotate 5/4. 

Jordan reasoned, “that is going to be off this [quarter partitions in Ferris wheel] because they can 

only fit four.” This shows that Jordan has difficulty in visualizing angles bigger than a full turn. 

It is also important to note that Jordan seemed to intuitively use the amount of rotation with the 

size of wedges in a circle. 

Next, I asked him to work on the “Comparing the Openness between Two Angles” task 

(Figure 37) to examine how he would reason about one angle more open than the other angle. A 

set of black arrows was provided for Jordan to use as markers to iterate the smaller angle within 

the bigger angle. For example, in the task presented in Figure 37a, Jordan was asked to compare 

the blue and red angles’ openness. He stated that “the blue” angle is more open and reasoned, 

“because I compare every line of, that makes it more, of it more open.” Jordan probably mentally 

imagined the number of times he could iterate the smaller angle within the bigger angle as he 

experienced in the prior tasks. When I asked him to estimate the number of times the blue angle 

was more open than the red, he conjectured that the blue angle is “four times more open.” Then, 

I asked Jordan to show how the blue angle is four times more open than the red angle. Jordan 

rotated the red angle, iterating it within the blue angle showing the iterations using the black 

arrows as illustrated in Figure 37b. Then, he counted up to six iterations and explained that 

“every time when you do this, it counts as one space [rotating the red angle to show one iteration 

within the blue angle].” By counting the iterations of the red angle he was able to observe that 
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the red angle fits six times instead of four times that was his initial conjecture. His reasoning 

illustrated his decomposition of the bigger angle to compare its openness with the smaller angle 

and the actual iterative generation of space using the smaller angle to compose the bigger angle.  

Figure 37 

The Comparing the Openness between Two Angles Task 

 

Note. (a) Task for Jordan to conjecture which openness is bigger, and (b) Jordan iterated the red 

angle within the blue angle to construct a multiplicative relationship between them. 

In the “Growing and Shrinking Angles” task, my goal was to examine how Jordan would 

reason about a single angle growing and shrinking. The task involved an angle that formed a 

central angle within a circle split into twelve equal parts. I asked Jordan to double the given 2/12 

angle (Figure 38). He explained that he counted the original angle as two while pointing at the 

two 1/12 wedges, then to double the angle, “it would be two [pointing at the two adjacent 

wedges on both sides].” For Jordan, doubling is to “add two more” pieces of 1/12. Then, I asked 

Jordan to triple the original 2/12 angle. He stated, “I’d add two more [rotated by 2/12 wedge 

more than the 4/12 wedge to create a 6/12 wedge] because when I do this, there will be one 

double here, because the three big things, count them by the big things.” I infer that he was 

referring to the 2/12 wedge as “the big things” he added to the 4/12 wedge to create a triple of 

the original angle. Jordan’s reasoning illustrated his use of additive iteration of the original angle 

to construct multiplicative changes. This construction of multiplicative changes through additive 
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iterations of the original angle is similar to his iterative generation of space to compose a bigger 

angle that he exhibited in the “Ferris Wheel” and the “Comparing the Openness between Two 

Angles” tasks. 

Figure 38 

The Growing and Shrinking Angles Task 

 

Note. A task for Jordan to reason multiplicatively about an angle shrinking and growing. 

To examine how Jordan would reason about the very large number of very thin angles in 

a full rotation, I asked him to work on the “Many Very Small Angles” task with a traceable ray 

that can be rotated in a full circle (Figure 39a). Jordan rotated the traced ray in a full circle 

without being prompted, probably because he was accustomed to rotating rays or segments in the 

previous tasks. When I asked him what he was making, he stated, “I’m making a big circle,” and 

“there are spiky things on the outside.” I infer that Jordan was focusing on the rays of the very 

small angles he was creating. When I asked him how many of those he created, he said, “a lot” 

and “that would be too long” to count them. I interpret Jordan’s reasoning to show that he 

perceived a circle as having a very large number of “spiky things” or what we refer to as rays of 

the angles. His reasoning that there were “a lot” of angles illustrates a more sophisticated 

understanding of angle as a discrete quantity. The perception of a circle as being composed by 

many very thin angles may be considered to be the reversible mental action to recognizing that 

the circle can be split in any number of angles. 
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Figure 39 

The “Many Very Small Angles” and “360 Angles” Tasks 

 

Note. (a) The “Many Very Small Angles” task where Jordan reasoned about the degree measure 

in a full rotation, and (b) the “360 Angles” task where he reasoned about the angle measure as a 

fraction of 360°. 

Next, I aimed to examine whether he could use this understanding of a very large number 

of very thin angles in a circle to connect the idea of the fractions of a circle to the degree 

measure. To introduce the idea that there are 360 one-degree angles in a full rotation, I designed 

a “show angle measure” tool that shows the degree measure within the rotation and a “show one-

degree angle” that shows all the one-degree angles in a circle (“360 Angle” task, Figure 39b). 

When Jordan rotated the ray and created a ¼ wedge, half a wedge, a ¾ wedge, and a full wedge, 

I asked him to reason about the number of degrees of the angle he created. Similar to what he 

exhibited during the exploration tasks, Jordan associated 1/4 rotation with a 90-degree angle, but 

he could not explain how he knew it as 90°. However, when I asked Jordan about the number of 

degrees for two quarters of a circle, he stated that it would be 180 because “you’re supposed to 

add another 90 every 1/4 you move.” For the number of degrees in three quarters, Jordan 

immediately answered, “that would be 270 because I added another 90 to the 180, and that gave 

me 270. And 4/4 will be 360.” Jordan’s responses illustrated his use of iterative addition of 90° 
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to identify the degree measure for each quarter turn. He associated different degree measures 

with other quarter angles illustrating more complex reasoning than what he exhibited at the 

exploratory stage of the experiment. 

To examine whether Jordan could identify the degree measure for every single 

partition of splitting a circle and not just 90°, I asked Jordan to split the circle into eight equal 

parts and reason about the degrees of the angle created in one part (“Splitting a Circle” task, 

Figure 40). When I asked Jordan how many degrees 1/8 was before he checked the “show 

angle measure” tool, he estimated, “I think it is 27” degrees. To prompt Jordan to identify the 

angle measure for an eighth, I asked him how 1/8 and 1/4 are related to each other. Jordan 

pointed at the 1/8 wedge and reasoned that 1/8 was “only halfway to 1/4.” When I probed him 

again to identify the number of degrees for an eighth, he continued to reason that “it is 27” 

degrees. When I allowed Jordan to use the “show angle measure” tool to check his answer, he 

found the 45° answer to be reasonable explaining “that 45 plus 45 equals 90. Since it’s 1/8, and 

if it’s half, it has to be 45.” 

Figure 40 

The Splitting a Circle into Eighths Task 

 

Note. Jordan to split the circle into eight equal parts and reasoned about the degrees in an eighth. 
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Next, I asked Jordan to split the circle into three equal parts (Figure 41a). Jordan used 

the “show angle measure” tool to know that 1/3 is 120°. When I challenged him to uncheck 

the tool and explain how he would get the number of degrees for 2/3 of the circle, he 

responded “240” and reasoned that “120 plus 120 which would give me 240.” Jordan’s use of 

the “show angle measure” tool to find the degrees for an eighth and a third helped him argue 

about the compositions of 90° as two groups of 45° and 240 as two groups of 120°. When I 

asked Jordan to split the circle into six equal parts (Figure 41b), he estimated a sixth of a 

circle as 57° “because it is a little bit higher than eight equal parts [45°].” Using the “show 

angle measure” tool, Jordan realized that a sixth is 60°, and he reasoned that he can “add 60 

every time” to get the degrees for multiples of 1/6. From this exploration, he then recalled that 

a 1/3 wedge has 120°. So, he created a 2/6 wedge and showed that it is the same as 1/3 with 

120°. These forms of reasoning illustrated Jordan’s construction of multiplicative 

relationships between the fractional parts of splitting a full turn. This sequence of tasks also 

offered a constructive platform for Jordan to reason about equivalency between degrees and 

fractions of a circle.  

Figure 41 

The Splitting a Circle into Thirds and Sixths Tasks 

 

Note. Jordan (a) split the circle into three equal parts and reasoned about the degrees of a third, 

and (b) split the circle into six equal parts and reasoned about the degrees of a sixth. 
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At the end of the experiment, I asked Jordan what he learned. He stated, “I learned that 

all circles are supposed to be 360 [degrees]. Angles have something like for example one-fourth. 

They have to be split in a certain way.” Jordan’s reasoning shows that he expanded his initial 

understanding of an angle as a corner of a shape and as fractions of a circle to include 

conceptions of angle as composed of 360° when generated through a full rotation. Additionally, 

Jordan’s reasoning showed a conception that angles in a full rotation could be split into a number 

of partitions, similar to what he experienced from the Splitting a Circle task. 

5.1.1.  Retrospective Analysis on the First Iteration 

In Table 4, I present a summary of Jordan’s reasoning and the tasks that elicited his 

different forms of reasoning. In each form of reasoning that he exhibited, I created sub-categories 

that are important when comparing the levels of sophistication in reasoning among students in all 

design experiments. 

Table 4 

Jordan’s Forms of Reasoning 

Student Reasoning Task 
Angle Conception 
A. Angle as union of rays 
e.g., “an angle is like a corner of a square of any, box thing like a 
square… the shape has to be closed at a corner.” 
B. Angle as wedge 
e.g., “The blue one covers more space and then, the red one covers 
less space.” 
C. Angle as rotation 
e.g., “Because if you move past that [the rotating side], you make 
more space, that every time you [rotate], it gets a little bit bigger.” 

A. Comparing Angles 
with a Fixed Angle 
Object (Figure 34) 

B. Comparing Angles 
with a Fixed Angle 
Object (Figure 34) 

C. Three Pairs of 
Different Objects 
(Figure 32) 

Multiplicative Comparisons 
A. Initial splitting strategy: Associated quarter rotations with 

the quarter sizes of a circle  
e.g., Reasoned that “3/4 mean that three parts [of a circle] out of four 
are covered.” 
B. Iteration and splitting strategies in reasoning about full turn 

A. Three Pairs of 
Different Objects 
(Figure 32) 

B. Ferriswheel (Figure 
36) 
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e.g., “That is 4/4 because this is 1/4, 2/4, 3/4 and then this is 4/4 
[wedge]. So now, it’s also split into four parts, which also helps. So 
now I know, it’s 4/4.” 
C. Decomposition and composition strategies to compare angles 
e.g., the blue angle is “four times more open, every time when you do 
this [rotated one side], it [each iterated rotation] counts as one space.” 
D. Additive iteration to multiplicative changes an angle 
e.g., Doubling is to “add two more” pieces of 1/12.  

C. Comparing the 
Openness between 
Two Angles (Figure 
37) 

D. Growing and 
Shrinking Angles 
(Figure 38) 

Discrete/ Continuous Conception of Angle 
Reasoned about a circle as having a very large number of angles 
e.g., Reasoned about a discrete number of angles that there were “a 
lot” and “that would be too long” to count them. 

Many Very Small Angles 
(Figure 39a) 

Numeric Multiplicative 
A. A 90-degree benchmark to reason about quarters in a circle 
e.g., Two quarters of a circle “would be 180” because “you’re 
supposed to add another 90 every 1/4 you move.” 
B. Composition of 90° as two groups of 45° 
e.g., 1/8 was “only halfway to 1/4… that 45 plus 45 equals 90. Since 
it’s 1/8, and if it’s half, it has to be 45.” 
C. Composition of 240° as two groups of 120 
e.g., 2/3 angle is “240... 120 plus 120 which would give me 240.” 
D. Multiples of sixths and its relationship with thirds 
e.g., 1/6 is 60° and “add 60 every time” to get the degrees for 
multiples of 1/6 of a turn.  

A. 360 Angles (Figure 
39b) 

B. Splitting a Circle in 
Eighths (Figure 40) 

C. Splitting a Circle in 
Thirds (Figure 41a) 

D. Splitting a Circle in 
Sixths (Figure 41b) 

 

Jordan’s prior knowledge about angles as a corner of a shape was similar to what was 

found in the literature (e.g., Clements & Battista, 1989). Researchers interpreted student 

conception of angles as significantly attributed to the understanding of corners of a geometric 

shape that often progresses into defining angles as union of rays (Clements & Sarama, 2014). As 

Jordan engaged with tasks involving rotations of a segment that generate wedges, he reasoned 

about each quarter rotations as quarters of a circle. He needed to connect the output of his 

rotations with fractions of a circle probably because the wedges he generated potentially 

prompted him to express his prior knowledge about fractions of a circle. The wedges seemed to 

offer him a constructive space to imagine equipartitioning a full circle into quarters similar to 

what Browning et al. (2007) found that students used fractions of wedges to quantify angles. It is 
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also possible that Jordan’s prior knowledge about fractions of a circle played a vital role in 

exhibiting a form of multiplicative numeric reasoning at the beginning of the experiment. In 

reasoning further about a ¼ wedge, Jordan also brought up his prior knowledge about 90°, 

although he could not explain what 90° meant. He probably needed to connect what he 

conceived about the quarter wedges with the degrees. This progression in Jordan’s reasoning is 

similar to what Confrey et al. (2012) supported, that students need to connect their conception of 

turns with fractions of a circle, then with angle measure in degrees.  

Jordan’s multiplicative reasoning about angles when he equipartitioned a circle into 

different number of parts illustrated a combination of decomposition and composition strategies. 

This reasoning started when he engaged with the “Ferris Wheel” task where Jordan seemed to 

combine the splitting and iterating strategies when he reasoned about the wedges created by the 

rotations of the Ferris wheel cart as turning by iteration of fourths into a whole turn while he 

imagined the whole turn being split into four equal parts. His reasoning about splitting a whole 

circle resulting into reasoning multiplicatively by fourths is an initial form of what Steffe (1992) 

referred to as constructing levels of units. It would be interesting to study how his reasoning is 

similar or different from other students who also worked at the “Ferris Wheel” task.  

Jordan exhibited a similar reasoning in the “Comparing the Openness between Two 

Angles” task. He decomposed a bigger angle into equal smaller angle as his benchmarks and 

multiplicatively reasoned about the number of times he could compose a smaller angle into the 

bigger angle. Jordan’s reasoning illustrated the reflexive relationship between the two 

interiorized measurement processes by envisioning the decomposition of an angle and iterating 

back the smaller angle into the bigger angle resulting into multiplicative comparison between the 

two angles (Moore, 2012).  
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Additionally, Jordan reasoned in ways that resonated with what Izsák and Beckmann 

(2019) described as a coordinated measurement approach to multiplication. In coordinated 

measurement, a product quantity is simultaneously measured using two other units, the number 

of units that make one group and the number of groups to make the product quantity. In the 

“Growing and Shrinking” Angles task, Jordan used the 2/12 wedge as the unit (group) which he 

iterated to create an angle consisting of two groups of the 2/12 wedge.  In the analyses of the 

other students that follow, I further investigate whether this form of reasoning is also evident 

with other students at the same task. 

Jordan progressed in reasoning about the decomposition and composition of an angle 

when he worked on the “Many Very Small Angles” task where he reasoned that a full rotation is 

decomposed of a “lot” of angles and that “it would be too long” to count them. His reasoning 

illustrated a more sophisticated understanding of an angle as a discrete quantity envisioning 

smaller chunks of angles within the full rotation. It is possible that the traces left while Jordan 

was rotating a segment in circle prompted him to reason about angle as a large but discrete 

quantity. This kind of reasoning reflects a chunky thinking (Castillo-Garsow, 2012). 

Furthermore, these chunky images of small angles might have potentially prompted Jordan to 

reason multiplicatively about the decomposition and composition of a full circle.  

Similar to what Jordan exhibited at the “Three Pairs of Different Objects” task and the 

“Ferris Wheel” task, he reasoned about a full circle being split into four equal parts in the “360 

Angles” task. This repetition of reasoning about the quarters of a circle is a more sophisticated 

illustration of the right angle conception represented by a quarter wedge that is prevalent among 

third-and-fourth grade students (Devichi & Munier, 2013). My questioning then prompted him to 

connect the quarters of a circle with degrees, where he reasoned that he added 90° “every one-
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fourth” of the rotation. Another way to interpret why Jordan exhibited this reasoning more 

frequently throughout the three different tasks was because of his prior knowledge about 90° 

angle, a right angle. Jordan built on this knowledge to reason further about the two quarters of a 

circle as 180°, three quarters of a circle as 270°, and four quarters of a circle as 360°. Prior to the 

experiment, I initially conjectured that students may need to use the “show angle measure” tool 

to prompt them in talking about the full rotation as containing 360°. In Jordan’s case, we turned 

off the tool when he was reasoning about the degrees in quarter turns. It is more evident that 

Jordan used his prior knowledge about 90° to decompose the whole rotation into fourths and 

compose it back using the multiplicative iteration of 90° angle. It would be an interesting 

comparison on students’ use of the “show angle measure” tool to probe their reasoning about the 

degrees in fractions of a turn. 

In contrast to not using the “show angle measure” tool in the “360 Angles” task, Jordan 

needed the tool to make sense with the non-quarter fractions of a turn in the “Splitting a Circle in 

Eighths” task and “Splitting a Circle in Sixths” task. He exhibited loose estimations for 1/8 turn 

as 27° and 1/6 turn as 57°. Jordan probably had difficulty in identifying the degrees for these 

fractions of turns because he did not recognize their relationship to 90°. I conjectured that he 

would use his knowledge of 90° to successfully reason about the degrees of 1/8 of a turn. So, I 

prompted him to talk about the relationship between 1/8 and 1/4. Using the “show angle 

measure” tool to show the degrees for 1/8 as 45°, Jordan did not only successfully identify its 

degrees but he also exhibited a more complex form of reasoning about 90° as a composition of 

two groups of 45° because 1/8 is half of 1/4. He continued to express this composition reasoning 

with “Splitting a Circle in Thirds” and “Splitting a Circle in Sixths” tasks. Jordan exhibited these 

interiorized measurement processes of decomposition and composition of degrees to quantify 
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angles (Moore, 2012). His reasoning about fractions of a circle and multiplicative relationships 

between angles seemed to support his bridging of angles as fractions of a circle and the degrees. 

In terms of design, generating angles as wedges is seemingly important for Jordan to 

reason about the fractional partitions of a full rotation. However, these wedges often hindered 

Jordan from focusing on the openness of the angle. Throughout the experiment, Jordan’s 

reasoning showed that he significantly associated angles with a fraction of a circle probably 

because most of the tasks involved wedges or traces that when he generated angles he created 

circles. Consequently, for the next iteration, I modified the tasks to remove the traces of 

segments on angles at the exploration stage. The generation of wedges were also removed from 

the “Growing and Shrinking Angles” tasks for the next iteration. I conjectured that this 

modification would prompt the students to reason about angles as openness prior to conceiving 

them as wedges. For the “Many Very Small Angles”, “360 Angles”, and “Splitting a Circle” 

tasks, I did not remove the traces tool and the wedges to investigate how other students would 

reason while working on the tasks with these features. Also, in the design experiments that 

followed, I restricted students from using the “show angle measure” tool before they created a 

conjecture about the degree measure of an angle. 

Additionally, since Jordan defined angle as a corner of a shape, I decided that it would be 

interesting to investigate how Angelie, the next student, would reason about the corners of 

different shapes. To support students in developing an understanding of a corner as an angle that 

can change, I designed a “Triangle” task with vertices that students can drag to modify the size 

of an angle and prompted them to reason about how these angles change.  
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5.2.   Case 2: Angelie 

Angelie’s prior knowledge of angles involved perceiving angles as illustrating 

orientations of lines inclining or pointing to different directions, which was different from 

Jordan’s conception of angles as corners. After engaging in some exploratory tasks, her 

reasoning progressed into conceiving angles as the space between the lines and arguing that the 

side lengths are irrelevant when changing an angle. Similar to Jordan, the series of tasks and 

questioning also seemed to probe Angelie to reason about the multiplicative relationships 

between angles as fractions of a circle and then connect them to the respective degree measures. 

In the following paragraphs, I discuss Angelie’s progression of reasoning during the design 

experiment in detail. 

At the onset of the design experiment with Angelie, she was asked what an angle is. She 

stated that “an angle is like a way of how you see something or how it is drawn or standing… An 

angle is a way of how something looks. It could be diagonal, it could be vertical, sideways.” I 

infer that Angelie viewed angles as illustrating orientation and offered different ways an object 

can be seen at an angle. When asked to draw an angle, Angelie drew a diagonal line, a vertical 

line, and a horizontal line (Figure 42a). From her drawings, I interpret that she was aware of 

three different orientations of lines, and she associated angles with these orientations. Another 

possible interpretation of her reasoning is that Angelie probably mentally imagined a horizontal 

line as the beginning of a rotation of a single ray. In the “Triangle” task (Figure 42b), I asked 

Angelie to identify the angles. She reasoned that “each line shows a different angle” while 

pointing at the lines in a triangle. I interpret that her reasoning and illustrations are influenced by 

her prior knowledge of angles as orientations of lines. 
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Figure 42 

Angelie’s Illustration of an Angle and the “Triangle” Task 

   
 

Note. (a) Angelie’s drawings of different angles and (b) the “Triangle” task where Angelie 

identified the lines of a triangle as the angles. 

As mentioned in the reflection of Jordan’s design experiment, the “Three Pairs of 

Different Objects” task was modified in the second design experiment by removing the traces on 

the objects so that they do not form a wedge as shown in Figure 43. In this task, Angelie was 

asked to drag the red segment and describe what she was creating. Angelie responded, “a 

different angle line… if I move it around, it becomes a different way of drawing.” Similar to her 

previous reasoning about angles as different orientations, she reasoned about the rotation of the 

line segment as a “different angle line” and “different way of drawing.” When Angelie was 

asked to make a very big angle, she rotated the red segment further away from the other segment. 

To prompt Angelie to reason about the changes in an angle, she was asked to identify what she 

was looking at when making a big or a small angle, as shown in Figure 43. Angelie stated,  

Angelie: With the smaller angle, [rotated the red segment towards the other red 

segment] there’s much smaller space between each line. But the bigger angle 

[rotated the red segment away from the other segment], there’s much more space 

[pointed at the space between the two segments] between both of the line(s). 
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Figure 43 

The Modified Three Pairs of Different Objects Task 

 

The questioning above seemed to probe Angelie to illustrate reasoning about angles as 

the space between the two lines. When she was prompted to identify what was changing, she 

reasoned that “what is changing is definitely the angles, because once you move the line farther 

away from the other line, the angle becomes larger; putting it closer to the other line will make it 

much smaller.” I infer from Angelie’s statement that she conceived an angle as how far or close 

the sides are from each other. When asked if this reasoning would also work for the blue and the 

green objects, she stated that “it will do the same thing for all of the lines…it does not matter the 

length.” Angelie’s reasoning showed that rotating an object (segment, ray, or line) closer or 

farther away from the other object would change the angle regardless of the lengths of the sides.  

To explore whether Angelie could connect the size of an angle to the fractions of a circle, 

I asked her to explore the “Blue Wedge” task that she could grow or shrink a wedge to create 

different fractions of a circle (Figure 44). When asked how this task differed from the previous 

task, Angelie reasoned that “it is like making a circular space” by referring to the blue wedge 

shown on the screen. When Angelie was asked about the largest angle she could create, she 

rotated one side of the wedge and created a figure that was almost a whole circle. In this task, 
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Angelie did not reason about angles in terms of fourths of a circle as Jordan did in the same task 

(Figure 33). 

Figure 44 

The “Blue Wedge” Task where Angelie Created a Figure that was Almost a Circle 

 

Angelie only began to reason about angles as fractions of a turn in a circle while working 

on the “Ferris Wheel” task (Figure 36). When she was asked to identify how much she needed to 

turn the cart from the Start to the jellybeans, she correctly stated, “you need a quarter of it…a 

quarter of this circle.” I infer from her reasoning that she already has prior knowledge about 

fractions in fourths. However, this reasoning was not evident in the previous tasks until I 

engaged her with a task illustrating a circle split into four equal parts. When Angelie was probed 

to identify the angle she needed to turn the cart from the Start to the cookies, she responded, 

“You need half of the circle to get to the cookies.” Next, when she was asked about the amount 

of turn she needed to get to the chocolate from the Start, Angelie reasoned that “To get to the 

chocolate, you’ll need to use half of the circle and another quarter of it…or three quarters.” 

Lastly, Angelie was asked to talk about the angle when she turns the cart from the Start and then 

back to the Start. She stated that, “It takes the whole circle or you could say four quarters.” Her 

statements showed that she connected the generation of angles as fractions of a full rotation with 

the fractions of a circle.   
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Angelie constructed multiplicative relationships between two angles when she engaged 

with the “Comparing the Openness between Two Angles” task (Figure 45). When she was asked 

to compare two angles by estimating the number of times the blue angle was bigger than the red 

angle, she conjectured that the red angle was “like one-quarter of the space of the blue.” Next, 

Angelie was asked to use the black arrows to mark the number of times she could fit the red 

angle into the blue angle. She iterated the red angle within the blue angle, such as shown in 

Figure 45a. When asked to state the relationship between the blue and the red angle, she 

reasoned that “the blue is the size of three of those red spaces.” I followed the same questioning 

structure to engage Angelie in comparing a different pair of blue and red angles (Figure 45b). 

Angelie responded in a similar manner stating that “the red angle is bigger than the blue 

angle…the blue line is much closer to this (other) blue line than the red line(s),” and “the angle 

of the red lines is four times bigger than the angle for the blue lines.” The analysis of Angelie’s 

reasoning showed that she compared the closeness of the sides to reason about the sizes of the 

angles. She seemed to utilize her previous experience in iterating the smaller angle within the 

bigger angle to construct a multiplicative relationship between the two angles.  

Figure 45 

The Comparing the Openness Between Two Angles Task 

 

Note. Tasks for Angelie to compare two angles where (a) the blue angle is three times bigger 

than the red angle, and (b) the red angle is four times bigger than the blue angle. 
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In the next task, my goal was to investigate whether she could reason multiplicatively 

about the change in a single angle. Angelie was asked to double a 2/12 angle in the “Modified 

Growing and Shrinking Angles” task (Figure 46). This task was modified for students to reason 

about angles as openness prior to conceiving them as wedges. She rotated the ray to double the 

angle while explaining, “the red space can hold by itself two other pieces of the circle. So, if I am 

going to double it [rotated the ray to double the angle], it will hold four pieces of this circle.” 

Angelie recognized that the pieces “are twelfths,” and she explained that she “doubled it by 

putting two more pieces from where it was before.” When I asked Angelie to make the angle 

four times bigger than what it was before, she reasoned, “It would be 8 (8/12)… I have to add 2 

(2/12) four times” (Figure 46). I infer that Angelie used 2/12 as a unit which she multiplied by a 

number of times to make angles double or four times bigger. When I asked her to triple the 2/12 

angle, she stated “I would get six piece[s], 6/12.” I infer from her reasoning that she multiplied 

the size of 2/12 angle into two groups when doubling and multiply the same into three groups 

when tripling the angle. 

Figure 46 

The “Modified Growing and Shrinking Angles” Task  

. 

Note. Angelie made the angle four times bigger than what it was before. 

To examine whether Angelie could connect the fractions of a circle to degrees, I 

prompted Angelie to work on the “Many Very Small Angles” task (Figure 39a). When she 
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rotated the ray around, she explained that she created “one circle.” When I asked her to identify 

the number of angles she could make inside the circle, she reasoned that “it depends on the 

angle… like if I use one quarter, I would use four of those to cover the whole (circle) thing.” I 

infer that she imagined the whole circle being split into a number of equal parts. To introduce 

Angelie to reasoning about angles in terms of degrees, I asked her to use the “show angle 

measure” tool at the “360 Angles” task (Figure 39b) that shows that one full turn equals 360°. 

Using this tool, Angelie learned that “a whole circle is 360 degrees.” She struggled to recognize 

multiple angles smaller than a quarter wedge until she used the “show angle measure” tool. 

While exploring this tool, Angelie conceived that “the smallest you can make is one-degree, I’ll 

keep on adding it until I get 360.” This kind of reasoning showed that Angelie could iterate the 

“one-degree” angle multiple times to create 360° in a full turn. 

In the “Splitting a Circle” task, I aimed to examine whether Angelie could connect this 

new understanding of angles in terms of degrees to her conception of angles as fractions of a 

circle. First, I asked Angelie to explore the task. During her exploration, she made a full rotation. 

Then, I asked her to split the circle into four equal parts (Figure 47). Similar to what she 

exhibited in the “Ferris Wheel” tasks, Angelie identified “four quarters”. When I asked Angelie 

to make a conjecture about the number of degrees for one quarter, she estimated it as “271” 

degrees. After using the “show angle measure” tool, she learned that one quarter was 90° and she 

explained, “that makes sense because 90 times four equals 360.” Then I followed her up on what 

it meant to have two-quarters of an angle. Angelie reasoned, “that would be 180° because I got it 

by adding 90° plus 90°.” For three quarters, Angelie thought that she would “add 90 again to 

180. It should be 270,” and the four quarters “would be 360° because that would be all the 
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quarters together, which equals 360.” Angelie used the multiplicative iteration of 90° to identify 

the degree measure for each quarter turn.  

Figure 47 

The Splitting a Circle in Fourths Task 

  

Next, when I asked Angelie to split the circle into eight equal parts as shown in Figure 

48, Angelie conjectured that “it would be 30 degrees… because I learned that one quarter is 

90 degrees, which is 2/8. So, 90 is not an even number; I can’t really split it into two equal 

numbers.” Although she only estimated the degree measure for 1/8 angle because she could 

not split 90 into two equal numbers, she created a connection between 1/8 and 90° by stating 

that 90 was 2/8, or 1/4 in a simplified form. When I allowed Angelie to use the “show angle 

measure” tool to verify her conjecture, she exclaimed, “45 plus 45 equals 90.” Then, she 

expanded the connection she made between the eighths and the quarters by stating that “6/8 

equals three quarters because 2/8 equal one quarter.” Before I asked her to split the circle into 

three equal parts (Figure 41a), the angle measure in degrees was left open on the screen. So, 

when I asked Angelie to show me a 1/3 angle, she already knew that 1/3 was 120°. Then, I 

asked her to explain the number of degrees for 2/3 angle while hiding the degree measure. She 

responded, “240 because 1/3 equals 120 degrees… so I added 120 plus 120, which equals 240 
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degrees.” Angelie’s engagement with the “show angle measure” tool to find the degree 

measures for an eighth and a third offered her a constructive space to compose 45° and 45° 

into a 90-degree angle, and 120° and 120° into a 240-degree angle. 

Figure 48 

The Splitting a Circle in Eighths Task  

 

In splitting the circle into six equal parts (Figure 41b), I asked Angelie to make a 

conjecture about the number of degrees for 1/6. She then reasoned that “1/6 is like little more 

than a half of a quarter,” but she realized that associating 1/6 with a quarter did not help her. 

When I allowed Angelie to use the “show angle measure” tool, she learned that “1/6 is 60°, 60 

plus 60 equals 120 degrees.” Then, I asked her to identify the degree measure for 1/12 angle. 

She recalled that she knew “1/6 is 60 degrees. And since I can see that 1/12 is half of 1/6, it 

should be 30 degrees because 30 is half of 60.” Her reasoning in this series of tasks shows that 

although Angelie struggled with dividing 360 into smaller parts, when the degrees of a unit 

fraction was given (e.g., 1/3 equals to 120°, 1/6 equals to 60°), she was able to treat this as an 

angle unit that she iterated or split to find bigger and smaller angles respectively.  

At the end of the design experiment, I asked Angelie on what she learned about angles. 

She explained: 
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I learn that angles is the space between two lines. Not the way a line is shown. It's the 

space between two different lines. And if the lines get closer to each other, the angles 

become smaller, if the lines move farther away from each other the angle will become 

larger. I also learned that different fractions equal different angles… And I also learned 

that you can measure angle with degrees, like how one half is 180 degrees, and one 

quarter is 90 degrees. 

Her reasoning shows that she reconstructed her thinking from her initial conception of angle 

as an orientation to include a conception of angles as the space between angle sides. When she 

was prompted to reason about the changes in an angle, she started to exhibit the conception of 

angles as rotations and that as the rotation changes the distance between the lines and changes 

the size of an angle. Angelie also exhibited reasoning about angles as fractions of a circle and 

associated this fraction with the degrees to identify angle measure.  

5.2.1.  Retrospective Analysis on the Second Iteration 

Table 5 shows the progression of Angelie’s reasoning and the tasks that prompted her to 

express different forms of reasoning.  

Table 5 

Angelie’s Forms of Reasoning 

Student Reasoning Task 
Angle Conception 
A. Angle as union of rays 

e.g., “A different angle line… if I move it around, it becomes a 
different way of drawing.” 
B. Angle as rotation 

e.g., “What is changing is definitely the angles, because once you move 
the line farther away from the other line, the angle becomes larger; 
putting it closer to the other line will make it much smaller.” 
C. Angle as wedge 
e.g., “It is like making a circular space” 
 

A. Modified Three 
Pairs of Different 
Objects (Figure 43) 

B. Modified Three 
Pairs of Different 
Objects (Figure 43) 

C. Blue Wedge 
(Figure 44) 
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Multiplicative Comparisons 
A. Initial splitting strategy: Associated quarter rotations with the 

half or quarter sizes of a circle 
e.g., “To get to the chocolate, you’ll need to use half of the circle and 
another quarter of it…or three quarters.” 
B. Iteration and splitting strategies in reasoning about full turn 

e.g., “It takes the whole circle or you could say four quarters.” 
C. Decomposition and composition strategies to compare two 

angles 
e.g., “The blue is the size of three of those red spaces.” 
D. Additive iteration of the original angle to construct 

multiplicative changes in an angle 
e.g., “Doubled it by putting two more pieces from where it was before.” 
 

A. Ferris Wheel 
(Figure 36) 

B. Ferris Wheel 
(Figure 36) 

C. Comparing the 
Openness between 
Two Angles (Figure 
45) 

D. Modified Growing 
and Shrinking 
Angles (Figure 46) 

Discrete/ Continuous Conception of Angle 
Reasoned about a circle as having a very large number of angles 
e.g., “It depends on the angle… like if I use one quarter, I would use 
four of those to cover the whole [circle] thing.” 
 

Many Very Small 
Angles (Figure 39a) 

Numeric Multiplicative 
A. Iterations of one-degree compose 360° in a whole 

e.g., “the smallest you can make is one-degree, I’ll keep on adding it 
until I get 360.” 
B. Composition of n-quarter of a circle as multiplicative 

iterations of 90° 
e.g., One quarter of a circle is “90 degrees” using the “show angle 
measure” tool, and she reasoned “that makes sense because 90 times 
four equals 360.” 
C. Composition of 90° as two groups of 45° 

e.g., Using the “show angle measure” tool to show that an eighth is 45, 
she reasoned “45 plus 45 equals 90.” 
D. Composition of 240° as two groups of 120 

e.g., “240 because 1/3 equals 120 degrees… so I added 120 plus 120, 
which equals 240 degrees.” 
E. Composition of 120° as two groups of 60 

e.g., Using the “show angle measure” tool, “1/6 is 60 degrees, 60 plus 
60 equals 120 degrees.” 
 

A. 360 Angles (Figure 
39b) 

B. Splitting a Circle in 
Fourths (Figure 47) 

C. Splitting a Circle in 
Eighths (Figure 48) 

D. Splitting a Circle in 
Thirds (Figure 41a) 

E. Splitting a Circle in 
Sixths (Figure 41b) 

 

Angelie exhibited a prior knowledge about angles as orientations. This conception of 

orientation was found to be an essential component in recognizing an angle in terms of the initial 

and terminal positions of angle sides (Devichi & Munier, 2013). While students with a 
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conception of angle as orientation have seen to show a reliance on a horizontal side as the base of 

an angle (Browning et al., 2007), Angelie did not exhibit this form of dependence. Instead, her 

conception of angle as orientation potentially supported her construction of mental images of the 

amount of space between the lines she rotated. Her engagement with the tasks involving 

rotations also led her to reason that the lengths of sides did not affect the changes in the angle 

size. Her reasoning showed that she did not have the common alternative conception that the 

angle size depends on the length of its sides (Smith et al., 2014).   

When Angelie engaged with the “Ferris Wheel” task, she began to reason 

multiplicatively about angles as quarters of a circle, illustrating her prior knowledge about 

fractions in fourths. I infer that she only exhibited this form of reasoning because the task 

involved a circle split into four equal parts. This design of the task might have supported her to 

connect her understanding of fractions to angle size.  

Then, Angelie associated the quarter rotations with the quarter size of a circle. However, 

she did not connect the fractions of a circle with the degrees (Confrey et al., 2012) until after she 

worked at the “Splitting a Circle” tasks, probably because the “show angle measure” tool showed 

her the degrees of an angle. When prompted to identify the degree measures for an eighth, a 

third, and a sixth of a circle, Angelie used decomposition and composition of degrees to quantify 

angles (Moore, 2012). Angelie illustrated her use of the operations of decomposing an angle into 

groups of smaller identical angles and composing back the original angle by adding the smaller 

angles. This kind of reasoning also illustrated the reversibility of the decomposition and 

composition operations. In all cases, Angelie used the “show angle measure” tool to help her 

because the values are too big for Angelie to compute. It would be interesting to examine how 
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the progression of Jordan and Angelie are similar or different from the other students’ reasoning 

in the “Blue Wedge”, “Ferris Wheel”, and “Splitting a Circle” tasks. 

When working with the “Comparing the Openness between Two Angles” task, Angelie 

showed a form of reasoning that combined composition and decomposition strategies when she 

reasoned that one angle is the size of three times of the other angle or that an angle is four times 

bigger than the other. Angelie constructed an angle unit that she iterated to find the bigger angle 

or split the bigger angle to find the smaller angle. This shows that comparing the sizes of two 

angles could prompt students to express multiplicative reasoning via decomposition and 

composition of angles (Moore, 2012). 

Angelie also reasoned adding two more pieces of a unit angle to double the angle in the 

“Modified Growing and Shrinking” task. This reasoning seemed to resonate what Izsák and 

Beckmann (2019) described as coordinated measurement approach to multiplication in which the 

product quantity 4/12 angle is measured by using two groups of the 2/12 angle. I also noted that 

this task was modified for the second iteration by removing the wedges so that students could 

conceive angles as openness prior to conceiving them as wedges. However, the similarities 

between the two students’ reasoning imply that removing the wedges did not influence Angelie’s 

reasoning to differ from Jordan’s. In the design experiments that follow, I further investigated 

whether the other two students exhibit a similar reasoning. For the next two iterations, I did not 

make any significant modifications on the tasks besides fixing minor codes for aesthetic 

purposes. I conjectured that following the same sets and sequences of tasks and similar 

questioning with the iteration with Axel could potentially offer a better comparison between 

students’ forms of reasoning. 
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5.3.   Case 3: Axel 

Axel’s prior knowledge of angles included conceptualizing an angle as a composition of 

two rays and a common point. He was also familiar with some angle concepts used in the 

mathematics curriculum, such as identifying an “obtuse” angle that is larger than 90° and 

knowing that a whole circle has 360°. During the experiment, he was able to use this prior 

knowledge of a circle as consisting of 360° to reason about angles in terms of the fractions of a 

circle. I describe his progression of reasoning in detail in the following paragraphs.  

At the beginning of the design experiment, I asked Axel to define angles and he stated 

that “an angle is two rays that point in certain directions.” Axel exhibited his conception of an 

angle as a composition of two rays. He also reasoned about angles as pointing in different 

directions. To examine Axel’s prior knowledge about the size of angles, I asked him to work on 

the “Triangle Task” (Figure 49). When I asked Axel how he could make angle A bigger (Figure 

49a), he pulled vertex B downward as shown in Figure 49b and stated that he was “stretching it, 

like pulling it out.” I infer that Axel was referring to changing the angle by pulling one of the 

vertices away to stretch the opposite side of the included angle A. To further examine his 

thinking about the size of the angle he created, I asked if he could describe to someone who had 

not seen the task how angle A was bigger compared to the other angles in the triangle. Axel said 

that it was “obtuse.” Then, when I probed him to explain what he meant by obtuse, Axel stated, 

“larger than 90 degrees, basically.” Axel exhibited a prior knowledge about angle measures 

relative to 90°. When I asked him to show angle A as a 90-degree angle, he moved the vertices B 

and C to make segments AC and AB approximately perpendicular to each other (Figure 49c). 

His illustration of a 90-degree angle also shows that he was familiar with 90° where angle sides 

are perpendicular to each other. 
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Figure 49 

The Triangle Task 

 

Note. Axel dragged vertex B as shown in (a) to create an obtuse angle (b), and a right angle (c). 

When I asked Axel to explore the “Modified Three Pairs of Different Objects” task 

(Figure 50), he rotated a blue ray and stated, “You can make angles. Same thing with the red 

[segments].” When I probed Axel to explain how he created angles, he reasoned, “I’m pulling it 

away from one side.” Similar to his reasoning in the “Triangle” task, I interpret that Axel 

conceived an angle as a transformation (rotation) by pulling away one side from the other. Axel 

also showed evidence of his prior knowledge about angles as having 360° by stating that he 

could create “360” angles with a pair of segments because he learned that in his “class.” As he 

argued, “when you do tricks on, for example, bicycles, you can also twist yourself around in a 

circle making 360 degrees.”  

Figure 50 

The Modified Three Pairs of Different Objects Task 

 

Next, I asked Axel to work on the “Modified Comparing Angles with a Fixed Angle 

Object” task (Figure 51a). When I asked him to compare the openness between each angle, Axel 
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estimated the measure of the blue angle, “like a 90-degree angle and maybe about 45 more 

degrees… actually maybe 15, 105 [degrees in total].” He also argued that the red and the green 

angles measure 105° and “they’re all the same angle.” I then asked Axel to use the fixed angle 

tool to verify his claims and he confirmed that the angles were “the same.”  Axel’s reasoning 

shows that he did not associate the angle size with the lengths of the segments. Similarly, in the 

“Comparing Three Pairs of Segments with Different Lengths” task (Figure 51b), Axel reasoned 

an angle larger than 180° as 195° “because if this is 180 degrees [creating a straight line using 

the two red segments], because it gets larger…the farther you point it out here.” He knew that 

“180 degrees is a straight line” and “that a straight line is half of 360 degrees.” When he 

explored the rotation of the other pairs of segments, the student described the blue pairs as it 

“only folds out to at least smaller than 90 degrees” while the green “you can fold it out all the 

way, the whole 360 degrees.” I interpret his reasoning to show that his prior knowledge included 

being able to imagine the size of an angle in terms of degrees and being able to reason about 

angles relative to 90°, 180°, and 360° angles.  

Figure 51 

The Modified Comparing Angles with a Fixed Angle Object and Comparing Three Pairs of 

Segments with Different Lengths Tasks 

 
 

Note. (a) Axel reasoned that the three angles have 105° each, and (b) angle with the red pair of 

segments has 180°. 
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Next, I asked him to rotate a pair of segments and he created a wedge in the “Blue 

Wedge” task (Figure 52). Then, I asked him to explain how this task was different than the 

previous tasks. He stated, “this one has the angle measure… it doesn’t only have these two 

lines.” I then probed him to talk about the part that he was calling angle measure and he 

explained, “this would be a part, that measuring, like right here [pointing at the blue wedge], it 

fills in the space between the two angles [referring to the angle sides], so you know this is in 

degrees.” I infer that Axel was referring to the amount of “space between” referring to the blue 

wedge as the “angle measure” and that he thought of this measure “in degrees.”  

Figure 52 

The Blue Wedge Task with Axel 

 

Note. Axel reasoned about the wedge as being measured in an angle. 

In the “Ferris Wheel” task that followed (Figure 53) Axel stated,  

Axel: “I can change the angle. Also, there are marks here that this, I think this one 

is 90 degrees [turned the cart from Start to the jellybeans to create a quarter 

wedge], 180 degrees [turned the cart to the cookies to create two-quarters wedge], 

and 270 degrees [turned the cart to the chocolates to create three-quarters wedge], 

and 360 [turned the cart back to Start to create a full wedge].” 

When I asked him how he knew that turning from Start to the jellybeans was 90°, he 

reasoned, “it is a quarter of a whole circle, 360 degrees.” I then probed him to explain his 

reasoning further about the 180° and 270° and stated, “It is 1/2 [rotated the cart to create ½ 
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wedge]. And this is 2/4, 3/4 [rotated the cart to create 3/4 wedge] of 360 degrees.” When I asked 

Axel how much of a turn he had to make from Start to return to Start as illustrated in Figure 53a, 

he stated, “360 degrees,” and it is a “full turn.” His reasoning in this task shows that Axel was 

able to associate a fraction of a full rotation to a fraction of a circle and also to fractions of 360°. 

I infer from this association that he was able to find the degrees for each quarter turn by splitting 

360° into four equal parts. 

Figure 53 

The Ferris Wheel Task Where Axel Reasoned about Quarter Turns 

 

Note. Axel reasoned about (a) each quarter turn and (b) 7/4 turn around the Ferris wheel.  

I was intrigued by the sophisticated reasoning that Axel had about fractions that 

supported his understanding of angles. To prompt his reasoning even further, I asked him where 

the cart would go if he made five quarters of a turn from the Start. Axel reasoned, “there’s a full 

turn [turned the cart from Start back to Start], and then also 90 degrees [turned the cart to 

jellybeans], five quarters.” Then, I asked him how he knew it was five quarters. Axel explained, 

“because four quarters as a whole, which means this is 360 degrees and also you added another 

quarter… you go around another 90 degrees.” When I asked Axel to turn the cart by 7/4 of a 

turn, he stated, “one full turn [turned the cart from the Start back to Start], and then up to here 
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[turned the cart from the Start to chocolates] (Figure 53b).” Then, I asked Axel how he knew that 

he should stop at the chocolates. He reasoned, “there are four (quarters) for full (turn)… and then 

four plus three equals seven… one full turn and three quarters.” Axel accurately represented the 

amount of turn bigger than a full turn. For instance, he explained that 5/4 is equivalent to “a full 

turn” and “another quarter,” and 7/4 is “one full turn and three quarters.” Axel seemed to have a 

deep understanding of fractions of a circle and was able to leverage this knowledge to construct 

1/4 as an angle unit which he iterated to find angles larger than 360°. 

In the “Comparing the Openness between Two Angles” task (Figure 54a), I asked Axel 

which of the two angles is bigger than the other. He identified the blue angle as “more open” and 

that “the two rays are farther apart” than the red angle. When I asked Axel how many times 

bigger was the blue angle than the red angle, he conjectured, “maybe about two times bigger… I 

don’t know, two or three.” I asked Axel to verify his conjecture. Axel iterated the red angle 

within the blue angle using the black arrows as his markers, he reasoned that the blue angle was 

“three times bigger” than the red angle.  

Figure 54 

The Comparing the Openness between Two Angles Task 

 

Note. Tasks for Axel to compare two angles where (a) the blue angle is three times bigger than 

the red angle, and (b) the blue angle is six times bigger than the red angle. 
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Next, I asked Axel to compare another pair of angles, as shown in Figure 54b. He stated 

that “the angle on the 180 is bigger” by referring to the blue angle. When I asked Axel to 

conjecture how many times bigger was the blue angle compared to the red angle, he claimed that 

it would be “four times bigger,” reasoning about the decomposition of the blue angle. Then, I 

asked Axel to show how the blue angle was four times more open than the red angle. As he 

iterated the red angle within the blue angle, Axel counted each iteration and stated, “six times 

bigger.” Although Axel’s conjecture was incorrect, I interpret his actions as exhibiting the 

composition of the blue angle using six iterations of the red angle to correctly reason that the 

blue angle was “six times bigger” than the red angle. 

In the “Modified Growing and Shrinking Angles” task (Figure 55a), Axel grouped 2/12 

as an angle unit (one group) and multiplied this unit two or three times (groups) to make it two or 

three times bigger respectively. For instance, when I asked him to double the red angle he 

reasoned, “you would have 4/12,” and rotated both rays by 1/12 each to create a 4/12 angle 

(Figure 55b). When I asked him why it was 4/12, he explained, “it was 2/12 before and now, four 

times, two times two equals four.” Similarly, when I asked him to make the angle three times 

bigger, as illustrated in Figure 55c, he rotated one ray of the 4/12 angle by another 2/12 to create 

a 6/12 angle and reasoned, “like this, and then also add another two, that that would be half, 6/12 

because three times two is six. So, 6/12.” Axel was also able to name one partition (1/12) as 30 

degrees because he already knew that the circle is 360°. Specifically, he reasoned, “So, 36 

divided by 12 is 3. So, thirty-six hundred would be thirtieth.” I followed up Axel’s thinking by 

asking what the “thirtieth” was and he explained, “the angle is a thirtieth like, there’s 12, a 

twelfth.” I infer that Axel referred to the 30th as 30° for a twelfth of a full turn.  
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Figure 55 

The Modified Growing and Shrinking Angles Task 

 

Note. (a) The original 2/12 angle, (b) Axel’s illustration of doubling the angle, and (c) Axel’s 

illustration of making the angle three times bigger. 

Next, I asked Axel to work on the “Many Very Small Angles” task shown in Figure 56 to 

examine how he would reason about angle as a quantity. When I asked him to rotate the blue ray 

and describe what he created, he said, “I don’t think I’m creating angles, just lots of rays.” Next, 

when I asked him how many of the rays he created, he stated, “a lot, it’s a lot.” I interpret from 

Axel’s reasoning that he initially conceived a discrete number of rays. However, it was not clear 

from his reasoning how he conceived the angles as quantities.  

Figure 56 

The Many Very Small Angles Task 

 

Note. A task where Axel conceived of creating many rays. 

To connect his conception of “a lot” of rays to angles, I presented the “360 Angles” task 

in Figure 57a. As he rotated the blue ray, the “show angle measure” tool showed that one full 

turn equals 360°. When I asked Axel how the task was related to the other tasks he had explored, 

he stated, “360 degrees…it is showing all the angles from 1 to 360 [degrees].” When I probed 
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Axel to talk about the smallest angle he could make, he responded, “one-degree [rotated the ray 

to create a one-degree angle] (Figure 57b).” Subsequently, I asked him if there is a smaller angle 

than a one-degree angle and he said, “half a degree.” When I asked him if he could make a half-

degree angle, he explained, “it won’t show on here [“show angle measure” tool], but probably 

yes.” I infer from his reasoning that he could mentally split a one-degree angle into two equal 

parts to create a half-degree angle. He then continued by saying “that’s why the other one 

[“Many Very Small Angles” task in Figure 56] was titled unlimited.” When I asked him if he 

could imagine unlimited angles on the previous task, he responded, “yeah, because there’s 

always an angle in. You can always cut a fraction [of a turn] in half. So, yeah, you can make 

unlimited angles.” Axel’s reasoning progressed from conceiving the discrete number of rays in 

the “Many Very Small Angles” task into conceiving angle as a continuous quantity in the “360 

Angles” task as he explained that “there is always an angle in” between two rays. I infer that his 

mental action involved a continuous splitting of an angle into halves to “make unlimited angles.”  

Figure 57 

The 360 Angles Task Where Axel Reasoned about an Angle as a Continuous Quantity 

   
          (a)      (b)  

Note. A task where Axel (a) recognized one-degree to 360 degrees angles in a circle, and (b) 

created a one-degree angle as his initial smallest angle. 

In the “Splitting a Circle” tasks, Axel used his knowledge about fraction operations to 

reason about various angles he created by splitting a circle into parts and dragging a ray around 
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in circle. For instance, he argued that an eighth of a turn (Figure 58a) is “45 degrees because it is 

half of 90 degrees.” Then, he reasoned about the 4/8 of a turn by stating “4/8 is 180 degrees… 

because it is 2/4, which is 180 degrees.” His responses illustrated a flexible understanding of 

associating the amount of turn, with the fraction of a circle, and the number of degrees. 

Figure 58 

The Splitting a Circle in Eighths, in Thirds, and in Sixths Task 

 
      (a)         (b)             (c) 

Note. Axel split a circle (a) in eighths to reason about the degrees of an eighth of a turn, (b) in 

thirds to reason about the degrees of two-thirds of a turn, and (c) in sixths to reason about five-

sixths of a turn. 

Axel also illustrated a flexible understanding of using different fraction operations 

interchangeably to find the same amount of turn. For instance, when I asked Axel about finding 

7/8 of a turn, he explained, “315, because 360 minus 45.” I probed him to talk about why he 

subtracted 45. He reasoned, “because it would be easier to just subtract 45 from the whole than 

to add 45 seven times.” Axel constructed 45° as an angle unit that he could multiply seven times. 

He also knew that he could subtract that angle unit from the total number of degrees and find the 

same result.  

In a similar way he estimated the degrees of a 2/3 of a full turn as shown in Figure 58b 

stating “2/3 would be [rotating the ray to create 1/3 and then 2/3]. So, 360 minus 120 is 36 minus 

12. So, 240.” Although he used an iterative action to generate the angle, he used subtraction to 
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estimate the degrees showing that he understands the two processes of iteration and subtraction 

of multiplicative parts to be reversible. When I asked him to find another way to get 240°, he 

stated, “multiply 120 times 2.” Another example of his use of the two strategies was when he 

was asked to determine the degrees for 5/6 of a turn (Figure 58c) and he stated, “that would be 

300 degrees, because 360 minus 60 is 300.” When I asked him if there is another way to do it, he 

explained that he would multiply “five times 60.”  

At the end of the experiment, I asked Axel about what new things he learned. He stated 

that “if you have 60-degree angles in a half of a full turn, there would be six 30-degree angles in 

a half turn.” Axel’s response showed his new understanding about angles as a composition of a 

bigger angle. 

5.3.1.  Retrospective Analysis on the Third Iteration 

Table 6 shows the progression of Axel’s reasoning and the tasks that prompted him to 

express different forms of reasoning.  

Table 6 

Axel’s Forms of Reasoning 

Student Reasoning Task 
Angle Conception 
A. Angle as union of rays 
e.g., “An angle is two rays that point in certain directions.”  
B. Angle as transformation 
e.g., Make an angle bigger by “stretching it, like pulling it out.” 
C. Angle as wedge 
e.g., “This would be a part, that measuring, like right here [pointing at 

the blue wedge], it fills in the space between the two angles 
[referring to the angle sides], so you know this is in degrees.” 

A. Question: What is 
an angle? 

B. Triangle (Figure 
49) 

C. Blue Wedge 
(Figure 52) 

Multiplicative Comparison 
A. Fraction bigger than a whole 
e.g., “A full turn” and “another quarter,” and 7/4 is “one full turn and 

three quarters.” 

A. Ferris Wheel 
(Figure 53) 

B. Modified 
Comparing the 
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B. Decomposition and composition strategies to compare two 
angles 

e.g., “maybe about two times bigger…, two or three.” And he found 
that the blue angle was “three times bigger” than the red angle. 

C. Additive iteration of the original angle to construct 
multiplicative changes in an angle 

e.g., Double 2/12 angle, rotate two rays by 1/12 to make “4/12.” 

Openness between 
Two Angles 
(Figure 54) 

C. Modified Growing 
and Shrinking 
Angles (Figure 55) 

 
Discrete/ Continuous Conception of Angle 
Conceived a circle as having a very large number of angles 
e.g., “because there’s always an angle in. You can always cut a 

fraction in half. So, yeah, you can make unlimited angles.” 

Many Very Small 
Angles (Figure 56) 

Numeric Multiplicative 
A. Composition of a full turn as 360° and decomposition into 

three hundred sixty groups of one-degree angles 
e.g., “360 degrees…it is showing all the angles…all the angles from 1 

to 360 (degrees).” 
B. Composition of 7/8 of a turn: compensation strategy or seven 

groups of 45 
e.g., 7/8 of a turn is “315, because 360 minus 45…because it would be 

easier to just subtract 45 from the whole than to add 45 seven 
times.” 

C. Composition of 2/3 of a turn: compensation strategy or two 
Groups of 120 

e.g., “2/3 would be [rotating the ray to create 1/3 and then 2/3]. So, 
360 minus 120 is 36 minus 12. So, 240.” 

D. Composition of 5/6 of a turn: compensation strategy or two 
groups of 60 

e.g., 5/6 “that would be 300 degrees, because 360 minus 60 is 300.” 

A. 360 Angles (Figure 
57) 

B. Splitting a Circle 
in Eighths (Figure 
58a) 

C. Splitting a Circle 
in Thirds (Figure 
58b) 

D. Splitting a Circle 
in Sixths (Figure 
58c) 

 

Axel conceived an angle as a composition of two rays and a common point and that the 

rays point to different directions. I interpret that his reasoning showed two different conceptions 

of an angle that can be classified as angles as union of rays while at the same time incorporating 

the idea of angles as orientations. Students with this understanding are not limited to imagining 

typical examples of angles as described in the literature (e.g., Browning et al., 2007; Devichi & 

Munier, 2013). He was also familiar with some angle concepts such as the term “obtuse” being 

used to describe an angle that is larger than 90°, 90° is a quarter of a turn, 180° with a straight 

line or half a turn and that a whole circle has 360°. 
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Throughout the experiment, he was able to leverage his prior knowledge about degrees to 

reason about the size of angles and connect the degrees with fractions of a turn. It was also 

interesting to find that his reasoning was not dependent on the “show angle measure” tool. For 

instance, in the “Ferris Wheel” task, the perpendicular partitions and rotation motion of angle 

side probably prompted Axel to construct the connections between the quarters of a turn with the 

quarters of a whole, then with the equivalent degrees. In this task, Axel did not have access to the 

“show angle measure” tool that could show the degrees for every turn.  

In the “Comparing the Openness Between Two Angles” task, Axel reasoned about one 

angle as “three times bigger” showing that he composed the bigger angle using the number of 

times he could estimate the iteration of the smaller angle and acted out this iteration to verify his 

estimate. He exhibited a multiplicative reasoning via the reversible processes of decomposition 

and composition of angles (Moore, 2012). When changing the size of an angle in the “Modified 

Growing and Shrinking Angles” task, Axel treated the original angle 2/12 as the angle unit (one 

group) to be multiplied two or three times (number of groups) when doubling or tripling the 

angle. His reasoning implied a coordinated measurement approach of Izsák and Beckmann 

(2019). In some interesting instances, Axel exhibited his prior knowledge about degrees by 

assigning 30° in every twelfth of a turn by dividing 360 by 12. However, he did not use this 

argument to reason about changing the 2/12 of a turn three times bigger. 

In the “360 Angles” task, Axel initially reasoned about angles as a discrete quantity by 

describing that the task showed angles from one-degree to 360 degrees. However, my 

questioning about the angle smaller than a one-degree angle potentially prompted Axel to reason 

about half of one-degree angle and subsequently reason that he could “always cut a fraction [of a 

turn] in half” and there are “unlimited angles” because there is always an angle between an 



DYNAMIC ANGLES 

 

115 

angle. His reasoning exemplifies the conception of an angle as a continuous quantity, illustrating 

continuous quantitative reasoning (Castillo-Garsow, 2012).  

In the “Splitting a Circle” tasks, Axel’s prior knowledge about the degrees of angles 

potentially served as his springboard to connect the fractions of a turn with the fractions of a 

circle, and then with the degrees. He also exhibited a flexible understanding of operations on 

fractions of a turn by using the two processes of multiplicative iteration and subtraction of 

multiplicative parts from a whole to determine the degrees of a fraction of a turn. His reasoning 

showed that he could use these two operations interchangeably to find the same degrees for a 

fraction of a turn. 

For the next iteration, I did not modify the tasks, tools, and their sequences. However, the 

researcher questioning was expected to be modified to follow student’s reasoning and prior 

knowledge. It seemed that Axel’s prior knowledge played a significant role in his reasoning 

given the same tasks with the other students but he was less dependent on the tools that show the 

angle measure in degrees. In the design experiment that followed, I further investigated the effect 

that student’s prior conceptions of angles have on her constructions of new knowledge.  

5.4.  Case 4: Alicia 

Alicia’s reasoning showed her prior knowledge about angles as corners of a shape. Then, 

her reasoning progressed to include two sides when creating an angle. This inclusion of the two 

sides to compose an angle illustrates a conception of an angle as a union of rays. Next, she 

reasoned about angles as the space between the two sides, the width, and the space within the arc 

closer to the vertex. Although Alicia initially expressed a prior knowledge that circles do not 

have angles, during the design experiment she exhibited multiplicative reasoning about angles as 

fractions of a full turn as illustrated by wedges. Then, she connected the fractions of a full turn to 
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the fractions of a circle, then with degrees. I describe the progression of her reasoning in more 

detail in the following paragraphs. 

At the beginning of the design experiment, I presented to Alicia the “Angles in Shapes” 

task (Figure 59) and asked her what an angle was for her. She explained, “an angle to me is a 

point at a shape. So, here is a triangle has three points, and it is, each corner of a shape.” I 

interpret Alicia’s initial definition of an angle as “a point at a shape” as referring to the corners 

where the sides meet. To further understand Alicia’s conception of an angle, I asked her what she 

needed to know to make an angle. She replied, “you need to know what shape you got, you want 

to make. But you can’t make a circle. Because circles don’t have angles or sides.” I infer from 

her response that she also considered the sides of a shape in creating an angle, although she 

argued that the corners of each shape were the angles. When I asked her whether the sides of a 

shape matter when we look at the angles, she explained, “yes, it matters because on each end of 

each line, it creates a corner, and it also creates an angle.” Her reasoning about angles as corners 

of a shape potentially influenced her to reason that circles do not have angles because circles do 

not have corners. 

Figure 59 

The Angles in Shapes Task 

 

Note. Alicia referred to the corners of the shapes as angles in the Angles in Shapes task. 

In the “Modified Three Pairs of Segments with Different Lengths” task, Alicia was asked 

how she could make an angle bigger (Figure 60a). She first rotated one segment closer to the 

other segment as shown in Figure 60b and explained, “because when it is like this, it is smaller. 
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And this is an angle itself. But if you move it [rotated the segment away from the other segment 

(Figure 60c)], I make more space in between and then makes the angle bigger.” From Alicia’s 

reasoning and action of rotating the segment closer or farther away from the other segment, I 

interpret that she conceived an angle as a space between the two sides. 

Figure 60 

The Modified Three Pairs of Segments with Different Lengths Task 

  

Note. Alicia modified angle (a) to create a smaller angle as shown in (b), and a bigger angle as 

shown in (c). 

During this task, I asked her if the length of the sides also changed as she was making the 

angle bigger or smaller and she reasoned, “no, it does not get longer, or it does not get shorter. 

So, if I move it here [rotated the segment to make the angle bigger], it is the same height 

[length].” Alicia’s reasoning and actions showed that she did not have the alternative conception 

of angle size as dependent on side lengths.  

In the “Modified Comparing Angles with a Fixed Angle Object” task (Figure 61a), I 

asked Alicia to create angles using each pair of segments and then use the fixed angle object to 

compare their sizes. Alicia rotated the blue segment to the maximum size I set for each pair. 

Then, she dragged the fixed angle object and aligned its sides along the sides of the blue angle 

(Figure 61b). To follow up her understanding about the sizes of the angles, I probed her to talk 

about their openness. She explained, “they open the same, but the lines are shorter for the ‘move 

me’ line [the fixed angle object], instead of the blue [angle].” With my prompting, Alicia showed 
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that she was able to talk about angle size in terms of openness. Similar to the “Three Pairs of 

Segments with Different Lengths” task, she did not consider side lengths to affect the openness 

of an angle in this task. 

Figure 61 

Modified Comparing Angles with a Fixed Angle Task 

 

Note. (a) Alicia was asked to compare the openness between the three angles (a) and (b) she used 

a fixed angle object to verify their openness. 

In the “Blue Wedge” task, Alicia was asked to rotate a pair of segments and discuss what 

she created (wedge) (Figure 62a). She rotated one side and created a circle arguing that there 

were “no” angles in circles. She later recognized an angle when I asked her to rotate a side that 

did not create a full circle. She called this shape a “fortune cookie.” Then, I asked Alicia to draw 

the angle she could find on the “fortune cookie.” She drew an arc in the empty space between the 

two segments as shown in Figure 62b. Later in the experiment, she argued, “The thing is, when 

you just have one plain circle, it would not be an angle because you don’t have anything 

separated.” Her reasoning showed that she considered the empty space as the angle and not the 

traced wedge. To prompt her thinking, I asked her to find another angle. She then created uneven 

partitions within the blue wedge and counted eight spaces, including the space with an arc 

(Figure 62c). Alicia explained, “it is like fractions of a fortune cookie” and that there were “eight 

spaces, and they can make, I’m just going to make a circle [drew red arcs within the blue 

wedge]. So, this is all an angle.” I asked her the size of each angle she created, and she stated, 
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“it’s 1/8.” Her thinking shows that she was able to define two angles in a wedge and also to talk 

about the size of an angle as a fraction of a circle.  

Figure 62 

The Blue Wedge Task 

 

Note. (a) Alicia dragged the blue segment to create a wedge, (b) she identified the empty space 

of a wedge as an angle, and (c) she identified the wedge as a second angle and partitioned it to 

reason about size as a fraction of a whole circle.  

In the “Ferris Wheel” task, I examined Alicia’s reasoning about angles as fractions of a 

circle in more depth (Figure 63). While Alicia turned the Ferris wheel cart to the chocolates and 

created a 3/4 wedge, she stated that “this kind of looks like fractions.” When I asked her what 

fraction she created with the cart at the chocolates, she replied, “It is 1/4. But if I took away these 

pieces [red wedges], it would be 3/4.” I infer that Alicia was reasoning about both sides of the 

wedges with the missing 1/4 piece and the 3/4 shaded piece. Subsequently, I asked her to turn the 

cart from the Start to the cookies, she replied, “I’m making 2/4 of a turn.” Then, I asked her the 

number of 1/4 turns she made from Start and go back to Start. Alicia reasoned that “I did four 

turns to go back to Start.” When I asked Alicia on the size of the angle that she created, she 

stated that she had “four parts of an angle,” exhibiting her understanding of fourths in a whole 

circle. Her statements show that she associated the fraction of a turn with the fraction of a circle. 

However, when I asked her if she could make 5/4 of a turn, she reasoned, “I don’t know how.”  
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Figure 63 

The Ferris Wheel Task 

 

Note. The “Ferris Wheel” task where Alicia reasoned about the fractions of a whole turn and 

fractions of a circle. 

When I asked Alicia to work on the “Comparing the Openness between Two Angles” 

task (Figure 64), she used a decomposition and composition strategy to reason about the 

multiplicative relationships between the two angles. For example, when I asked her to compare 

the pair of blue and red angles as shown in Figure 64a, she conjectured that the blue was “two 

fractions bigger” than the red angle. When she iteratively rotated the red angle into the blue 

angle, she reasoned that “the blue angle is three times bigger than the red” angle. Then, when I 

asked her to compare a different pair of blue and red angles as shown in Figure 64b, she 

conjectured that “the blue is three times bigger than the red angle.” After she iterated the red 

angle within the blue angle and used the black arrows to mark her iterations, she reasoned that 

“the blue is six times bigger than the red, and then the red can fit six times into the blue.” 

Although she incorrectly estimated the multiplicative comparisons between the two pairs of 
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angles in Figure 64b, she seemed to envision the multiplicative decomposition of the bigger 

angle using the smaller angle. At the end of this task, she exhibited an example of a composition 

strategy by iterating the smaller angle within the bigger angle and stating the number of times 

she could fit the smaller angle into the bigger angle. 

Figure 64 

The Comparing the Openness Between Angles Task 

 

Note. Alicia compared two pairs of angles where (a) in a pair of angles, the blue angle is three 

times bigger than the red, and (b) in a different pair, the blue angle is six times bigger than the 

other red angle. 

In the “Modified Growing and Shrinking Angles” task (Figure 65a), Alicia determined 

the size of the red angle as “2/12.” Then, when I asked her to double the red angle, she stated that 

“it would be 4/12…two times bigger” as shown in Figure 65b. I interpreted that she constructed 

the 2/12 angle as an angle unit that she grouped into two to double the original angle. However, 

when I asked her to triple the original angle, she added three 1/12 to the original angle 2/12 and 

created 5/12 (Figure 65c). I followed up her thinking by asking how she knew it was three times 

bigger. She reasoned, “because it was at these two lines, and I moved this one [referring to the 

left side], and I moved this one [referring to the right side] two times.” Her reasoning shows that 

she did not group 2/12 as the unit angle to be tripled as opposed to my initial interpretation when 
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she doubled the original angle. Instead, she considered 1/12 angle as the unit angle and added 

three 1/12 angles to be tripled. I decided to examine her construction of a unit more in the 

subsequent tasks. 

Figure 65 

The Modified Growing and Shrinking Task 

 

Note. Alicia changed 2/12 angle in (a) by doubling 2/12 into 4/12 in (b), and tripling 2/12 into 

5/12 in (c).  

Next, in the “Many Very Small Angles” task (Figure 66), I asked Alicia to drag the ray 

and describe what she was creating. She reasoned, “this looks like the fractions that we were 

talking about […] they’re cut off.” I followed by asking her how many “cut-off” pieces were 

there and she replied, “that is a lot, but I’m going to count it.” She counted the lines up to “52” 

while at the same time skipping some lines. Then, she reasoned that there would be “more 

because I didn’t count the lighter, the purplish, and the other parts.” She then added that “this 

looks like there’s angles [drew tiny arcs in between the gaps], there’s a lot of angles.” I infer that 

Alicia recognized that there were many very small angles in the circle because she intended to 

count the smaller angles when it was feasible for her. Her statement about “a lot of angles” 

illustrated an understanding of angle as a discrete quantity.  
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Figure 66 

The Many Very Small Angles Task 

 

Note. Alicia reasoned about a lot of angles and drew tiny arcs in between the gaps. 

Then, I asked Alicia to work on the “360 Angles” task (Figure 67a). At first, Alicia did 

not recognize any angles because the task looked like a solid circle. When I asked her to zoom 

into the center of the circle as shown in Figure 67b, she reasoned, “that’s really hard to count.” 

Her reasoning shows that she identified that there was a very large number of very small angles 

within a circle. This form of reasoning is consistent with what she illustrated in the “Many Very 

Small Angles” task. Subsequently, I decided to introduce the concept of measuring angles in 

degrees and 360° in a full circle. During our discussions about degrees, she raised a question “if 

we did a half-circle [she rotated one ray to create half a circle], how many degrees would it be?” 

I guided her to answer the question by asking her how many degrees the full rotation had. She 

replied that it was “360,” but she could not determine the degrees for the half rotation because 

“you can’t split the numbers. Three is an odd number. So that would be hard.” I interpret from 

her statement that she struggled to split 360 into two equal parts because she probably intended 

to split the 3 in the hundreds place which was an odd number. Later, Alicia clicked on the 

“show/hide the number of 1-degree angles” and exclaimed that half of the circle was “180 

degrees.” She then became curious about the 1/4 of a turn and rotated the ray to create a quarter 
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wedge. She stated, “I was thinking how many is 1/4… It is 90 degrees.” Although Alicia 

exhibited a numerical difficulty in dividing big numbers such as 360, her reasoning showed that 

she connected the degrees of an angle with the fractions of a circle.  

Figure 67 

The 360 Angles Task 

    

(a)       (b) 

Note. (a) The 360 Angles task, and (b) viewing the 360 1-degree angles by zooming in. 

In the “Splitting a Circle in Fourths” task (Figure 68a), Alicia stated that the number of 

degrees for 2/4 is “180” because “I remember when we did it in the last one [the half of 360 in 

the “360 Angles” task], it was 180 degrees.” Her reasoning shows that she considers 1/2 and 2/4 

to be equivalent. In finding the angle of 3/4 of a turn, she stated that “it is hard to do 180 plus 

90.” So she used the “show angle measure” tool to determine that 3/4 of a turn was “270” 

degrees. When I asked Alicia why she thought it was 270°, she reasoned, “because when you add 

90 plus 90 to get 180, and 90 plus 180… would equal 270.” Although she had difficulty in 

adding “180 plus 90” at the beginning of the conversation, her reasoning shows that she 

associated the 90° to 1/4 of a turn as an angle unit. Then, she iterated 90° three times to get 270° 

for 3/4 of a turn. She exhibited a similar form of reasoning when I asked her about the degrees 

for 4/4. She replied, “it’s 360” because “180 plus 180 would equal 360.” In this case, her 
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reasoning shows that she was able to associate the 180° of 1/2 of a turn as an angle unit which 

she doubled to make 360°. One may also interpret that she reasoned in three levels of units by 

reasoning about a quarter of a turn as 90°, then reasoning for a half turn as 180° in terms of two 

90-degree units, and then reasoning for a full turn as two 180-degree units.  

Figure 68 

The Splitting a Circle into Eighths Task 

 

Note. When splitting a circle (a) in fourths, Alicia reasoned about the degrees for 2/4 of a 

turn, and (b) in eighths, Alicia reasoned about the degrees for 1/8 of a turn using the 1/4 

of turn. 

Next, I asked Alicia to determine the size of each part in the “Splitting a Circle in 

Eighths” task. She rotated the ray and created a 1/4 wedge as shown in Figure 68. Then, she 

stated that “this is 1/4.” I asked her to focus on the first partition, and she responded that each 

part was “1/8.” When I asked how many degrees was 1/8, she replied, “it is 45…because I 

separated the 90 into two equal parts, it is 45.” I infer that Alicia utilized the 1/4 wedge that she 

first created, then she used what she learned about 1/4 as equal to 90° to decompose “90 into two 

equal parts.” This form of reasoning was similar to what Axel did at the same task in the 

previous iteration.  
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To further examine whether Alicia would use a similar strategy, I asked her to determine 

the number of degrees for 3/8 of a turn. She stated, “I’m thinking that 90 plus 45…it is 135.” 

When I asked her about 4/8, she answered “180” degrees “because 4/8 is equivalent to 2/4.” I 

infer that Alicia also had prior knowledge about equivalent fractions, and she utilized this 

knowledge to reason about the degrees for 4/8 of a rotation.  

When I asked Alicia what she learned from our session, she explained, “I learned that 

angles can be very small and that angles can sometimes be in a circle… that 1/8 is equal to 45 

degrees, and 1/4 is equal to 90 degrees. The whole circle is 360 degrees.” I interpret Alicia’s 

reasoning as illustrating her construction of the connection between the amount of rotations with 

fractions of a circle and their equivalent degrees. This form of reasoning must have been 

significantly shaped during her work with the “Splitting a Circle” tasks. 

5.4.1.  Retrospective Analysis on the Fourth Iteration 

Table 7 shows the progression of Alicia’s reasoning and the tasks that prompted her to 

express different forms of reasoning.  

Table 7 

Alicia’s Forms of Reasoning 

Student Reasoning Task 
Angle Conception 
A. Angle as union of rays 
e.g., “An angle to me is a point at a shape…, each corner of a shape.”  
B. Angle as rotation 
e.g., Rotating a segment closer angle “is smaller” while rotating away 

“makes more space in between and then makes the angle bigger.” 
C. Angle as wedge prompted her to reason about angles in a 

circle 
e.g., “The thing is, when you just have one plane circle, it would not 

be an angle because you don’t have anything separated.” 

A. Angles in Shapes 
task (Figure 59) 

B. Modified Three 
Pairs of Segments 
with Different 
Lengths task 
(Figure 60) 

C. Blue Wedge task 
(Figure 62) 

Multiplicative Comparisons 
A. Splitting a circle into four parts A. Ferris Wheel task 

(Figure 63) 
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e.g., Three-fourth of a circle “this kind of looks like fractions.” “It is 
1/4. But if I took away these pieces [red wedges], it would be 3/4.” 

B. Decomposition and composition strategies to compare two 
angles 

e.g., Conjectured that “the blue is three times bigger than the red 
angle.” But she found that “the blue is six times bigger than the red, 
and then the red can fit six times into the blue.” 
C. Additive iteration of the original angle to construct 

multiplicative changes in an angle 
e.g., The original angle is “2/12” and to double, “it would be 

4/12…two times bigger.” 

B. Comparing the 
Openness between 
Two Angles task 
(Figure 64) 

C. Growing and 
Shrinking Angles 
task (Figure 65) 

Discrete/ Continuous Conception of Angle 
Conceived a circle as having a discrete number of angles 
e.g., “There’s a lot of angles.” 

Many Very Small 
Angles (Figure 66) 

Numeric Multiplicative 
A. Decomposition of 360° in a circle using quarters of a circle 
e.g., The degrees in a circle is “really hard to count.” 
B. Composition of 3/4 as three groups of 90 degrees and the 

composition of 360 as two groups of 180 degrees. 
e.g., For 3/4, “it is hard to do 180 plus 90” so she used the “show 
angle measure” tool to find “270.” She explained, “because when you 
add 90 plus 90 to get 180, and 90 plus 180 would equal 270.” 
C. Decomposition of 90 degrees as two groups of 45 degrees to 

find the degrees of an eighth. 
e.g., The degrees of 1/8 of a turn “it is 45…because I separated the 90 

into two equal parts, it is 45.” 

A. 360 Angles task 
(Figure 67) 

B. Splitting a Circle in 
Fourths (Figure 
68a) 

C. Splitting a Circle in 
Eighths (Figure 
68b) 

 

Following the progression of reasoning exhibited by Jordan, Angelie, and Axel about 

their conceptions of angles as union of rays, rotations, and wedge, I anticipated that Alicia could 

exhibit a similar development of reasoning. Alicia initially defined angle as a corner of a shape, 

but her statements did not include consideration of angles with different orientations. As Alicia 

experienced the dynamic rotation of rays, she progressed into reasoning about angles involving a 

corner and two sides. Alicia also reasoned about the angle size as the space between the two 

sides when prompted to change the angle bigger or smaller in the “Modified Three Pairs of 

Segments with Different Lengths” task. 
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When Alicia engaged with tasks involving angles as fractions in a circle generating a 

traced wedge, she developed the understanding of angles in a circle. The feature of a wedge that 

can be created into a full circle probably prompted Alicia to reorganize her thinking that a circle 

has angles. This was in contrast to her initial conception that there are no angles in a circle 

probably because she only conceived angles as corners of a shape and that circles do not have 

corners. This reorganization of her reasoning seemed to prepare Alicia in reasoning about angles 

as fractions of a circle in the “Ferris Wheel” task. While engaging in the task, she recognized the 

3/4 wedge as a fraction of a circle. This reasoning showed her prior knowledge about quarters of 

a circle. She also showed in her reasoning that she understood the whole turn is decomposed into 

four equal parts. 

When she worked with the “Comparing the Openness between Two Angles” task, Alicia 

reasoned multiplicatively about angle size. Her reasoning showed that she probably envisioned 

the multiplicative iterations of the smaller angle into the bigger angle to compare the sizes of the 

two angles. Her reasoning on the number of times she could decompose the bigger angle using 

the smaller angle and composing it back by a number of times that she could fit the smaller angle 

into the bigger angle illustrated the reversibility of the interiorized measurement processes 

(Moore, 2012).  

In the “Modified Growing and Shrinking Angles” task, Alicia seemed to treat the 2/12 

angle as the unit angle and added another 2/12 to double the original angle illustrating a 

coordinated measurement approach (Izsák & Beckmann, 2019). When tripling the original angle, 

Alicia did not use 2/12 as the unit. Instead, she used 1/12 angle. Then, she added three pieces of 

1/12 to the original 2/12 angle to make it triple to create a 5/12 angle. Although I convinced 

Alicia to restart with the task and treat 2/12 as the angle being tripled, she was certain that she 
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was tripling it the right way. I looked for further evidence about her thinking of the 

multiplicative relationships between angles in the succeeding tasks.  

In the “Many Very Small Angles” task, Alicia exhibited an understanding of angle as a 

discrete quantity as described by Castillo-Garsow et al. (2013). When reasoning about the 

multiplicative relationship between angles in the “Splitting a Circle” task, Alicia relied on the 

“show angle measure” tool to determine the degrees of an angle. Although she heavily relied on 

the tool, she meaningfully decomposed the degrees of a fraction of a turn into smaller equal 

degrees. Then, she iteratively added the degrees of the smaller equal angles to justify the degrees 

of the bigger angle.  

5.5.   Concluding Remarks 

In conclusion, students’ prior knowledge about angles influences the construction of a 

variety of angle definitions that they bring with them prior to formal instruction. Their angle 

definitions reflect one of the three angle conceptions: an angle as a union of rays, as a rotation, 

and as a wedge. Connecting the conception of angles as involving a common point and two sides 

and that angle size is the space between the two sides supports the bridging of Euclidean and 

topological relationships in the meaning-making about angles (Piaget & Inhelder, 1956). 

Bridging the two relationships offered a broader understanding of angles which has been useful 

for students in quantifying angles. For instance, conceiving angles at the center of a circle was 

found to be important for students to construct a connection between the fractions of a turn and 

fractions of a circle, then connect these fractions with degrees (Confrey et al., 2012).  

The chronological accounts of each student presented my ongoing analysis of their 

reasoning about angles while they engage with the design of tasks, tools, and questioning. The 

findings suggest that the design prompted students to exhibit four distinct categories of reasoning 
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about angles: angle conceptions, multiplicative comparisons, discrete or continuous conception 

of an angle, and numeric multiplicative reasoning. I summarized these categories in each design 

experiment as shown in Table 4, Table 5, Table 6, and Table 7, respectively. 

The first level of retrospective analysis suggests that the design of the tasks, tools, and 

questioning may have led the progression of students’ reasoning. However, students’ prior 

knowledge about fractions and degrees significantly differentiated the reasoning in each task. 

The ways in which students responded or acted in each experiment characterize the 

modifications of the design for the succeeding design experiment. Specifically, students 

reasoning informed the exclusion of wedge in the exploratory tasks, the use of “show angle 

measure” tool, and questioning structures that potentially supported student reasoning in the 

subsequent design experiments. 

In the next chapter, I will discuss the second level of retrospective analysis where I cross-

compared students’ reasoning after the four design experiments were completed. In response to 

Research Question 1, I will present the levels of sophistication of reasoning that the students 

made in each category of reasoning. In response to Research Question 2, I will discuss how the 

design of the tasks, tools, and researcher questioning might have supported students’ different 

forms of reasoning about angles. 
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Chapter 6: Findings – Part 2 (Cross-Case Analysis) 

In Chapter 5, I presented the ongoing analyses during each design experiment in the form 

of chronological accounts of students’ reasoning while engaging in the design. I also presented a 

first level of retrospective analysis which I conducted at the end of every design experiment, 

where I reflected on each student’s reasoning and the design that supported their reasoning. The 

reflection on how the design was changed after every design experiment responds to research 

question (3). In this chapter, I present the second level of retrospective analysis in which I cross-

compared students’ reasoning after all the design experiments were completed. To respond to 

research question (1), I compared their forms of reasoning and discuss the four categories arising 

from their similarities and differences, namely forms of reasoning about angle conceptions, 

multiplicative comparisons between angles, discrete or continuous conceptions of angles, and 

numeric multiplicative relationships between angles. Within each category, I present students’ 

forms of reasoning in subcategories that illustrate their qualitative differences and similarities. 

To respond to research question (2), after the discussion of in each category, I discuss how 

particular features of the design prompted and supported those forms of reasoning.  

6.1.   Angle Conceptions 

Table 8 shows the subcategories of reasoning that students exhibited about angles as 

union of rays, wedges, and rotations. At the beginning of the design experiment all students 

illustrated a prior knowledge of an angle as a union of rays. By engaging with the dynamic 

rotational tasks, they then constructed a conception of angles as rotations. Students reasoned 

about angles as rotations in a similar way showing the impact of the task design on the formation 

of their reasoning. When they engaged with tasks that illustrated angles as wedges, they showed 

that they reorganized this reasoning to reflect both their prior knowledge and their experience 
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with rotations as well as a conception of an angle as a wedge. The following paragraphs describe 

the cross-comparison of their reasoning in more depth. 

Table 8 

Students’ Forms of Angle Conceptions 

Angles as 
Wedges 

Reasoning about a wedge as the amount of space between two angle sides, while 
incorporating degrees to describe the amount of space (Axel). 
Reasoning about a wedge as the amount of space covered as a fraction of a circle 
and that a quarter rotation has 90 degrees (Jordan). 
Reasoning about a wedge as a circular space created by rotations (Angelie). 
Reasoning about an angle as a wedge part of a circle (Alicia). 

Angles as 
Rotations 

Reasoning that rotating one angle side farther away from the other side makes the 
angle larger; otherwise, the angle gets smaller (Angelie). 
Reasoning that rotations of a segment away from the other segment create more 
space between angle sides without reasoning about the reversible relationship 
when the rotation is done at the opposite direction (Jordan and Alicia). 
Reasoning about creating an angle by pulling one side away from the other side 
but the reasoning did not imply reversibility of the result when the pulling is done 
at the opposite direction (Axel). 

Angles as 
Union of 
Rays 

Defining an angle as composed of two rays with a common end point and those 
rays can take different orientations (Axel). 
Defining an angle as an orientation of a line (Angelie). 
Defining an angle as a corner or vertex (point) of a shape (Jordan and Alicia). 

 

To begin with, students exhibited a conception of an angle as a union of rays in three 

different ways: angle as a corner of a shape, as an orientation, and as a combination of these two. 

At the beginning of the design experiment, Jordan and Alicia reasoned about an angle as a corner 

of a shape. For instance, Jordan reasoned about an angle as a corner and Alicia reasoned that an 

angle is a point of a shape. This form of reasoning is the prevalent response among third-grade 

students (Clements & Battista, 1989). Therefore, I consider their reasoning to be a result of their 

prior learning of static angles as described in the literature (e.g., Devichi & Munier, 2013; 

Keiser, 2004; Smith et al., 2014). On the other hand, Angelie showed a conception of an angle as 
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an orientation by referring to an angle as a single line with different orientations. For Angelie, 

the angle side could have different inclinations. Browning et al. (2007) found that students often 

experience difficulties in recognizing angles without a second side that lies horizontally. Angelie 

shows that she did not have this difficulty. Her reasoning also showed that she did not have a 

conception of the right-angle prevalence as described by Devichi and Munier (2013) where both 

angle sides should be perpendicular. Therefore, I considered her conception to be different from 

Jordan’s and Alicia’s. In contrast to these three students, Axel’s reasoning showed a combination 

of conception of angles as composed of two rays with a common end point and that the angle 

sides can point to different directions. I interpreted his reasoning of pointing to different 

directions as involving orientations. I regarded Axel’s reasoning as more sophisticated than the 

other three students because he showed a more complex prior knowledge about an angle.  

 As they engaged in tasks generating angles, students exhibited a conception of an angle 

as a rotation in three ways. First, Axel’s reasoning about pulling of an angle side showed a 

partial conception of the relationship between the proximity of the two angle sides and the size of 

the angle. This kind of reasoning reflects a conception of angle size using the linear distance 

between the two connected sides (Keiser, 2004; Thompson, 2013). I refer to his reasoning as 

illustrating a “partial” conception because he did show that he understands the change in the 

proximity of the two sides when the rotation was done at the opposite direction. Jordan and 

Alicia reasoned that rotations of one side away from the other side create more space between 

angles sides, thus making the angle bigger. I consider their reasoning to be a bit different than 

Axel’s because their reasoning illustrates the relationship between the amount of rotation and the 

amount of space between the sides. However, similar to Axel, their reasoning show a partial 

conception because they did not show how the rotation at the opposite direction could influence 
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the change in the amount of space between the two sides and the angle size. Unlike the three 

students, Angelie showed that she constructed this reversible relationship between the change in 

direction and amount of rotation with the change in angle size.  

While engaging with the tasks involving wedges, students reorganized their reasoning to 

include different ways of expressing an angle as a wedge. For example, Alicia’s prior 

understanding that there were no angles in a circular wedge was reorganized to recognize angles 

as wedges. Angelie’s prior reasoning about making an angle bigger or smaller through a rotation 

was also reorganized to include the size of the wedge created during the rotation. Jordan showed 

a more complex reasoning when he associated angles with quarters of a circle and that a quarter 

has 90°. However, when he was asked to explain, he could not describe what 90° meant. On the 

contrary, Axel connected the size of a wedge with the amount of space between the angle sides, 

and that this space can be measured in degrees. Unlike Jordan, Axel’s reasoning about degrees 

was not limited to 90° for a quarter of a circle. Instead, he successfully associated respective 

degrees with each quarter turns in a circle similar to what was described by Confrey et al. (2012). 

6.1.1.  Design that Potentially Elicited Students’ Different Angle Conceptions 

I observed that students’ angle conceptions (Table 8) were elicited as they interacted with 

specific tasks, tools, and questioning. Angelie and Axel expressed their prior knowledge when 

they were asked “What is an angle?” before working on any task. For instance, when Angelie 

was asked “What is an angle?”, she drew lines with different orientations. On the contrary, 

Jordan and Alicia expressed their prior knowledge about angles as corners as they were working 

with specific tasks. Tasks that illustrate angles as union of two segments or rays seemed to 

prompt these students to illustrate their prior knowledge about angles as corners of a shape. For 

instance, Jordan reasoned about an angle as a corner as he worked on the “Comparing Angles 
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with a Fixed Object” task which involves a fixed angle tool with two line segments connected at 

a point (Figure 69a). Likewise, Alicia reasoned about an angle as a corner as she engaged with 

the “Angles in Shapes” task that showed shapes with different number of corners (Figure 69b).  

Figure 69 

Different Tasks that Potentially Elicited Conception of Angles as Union of Rays 

 

Note. The (a) Comparing Angles with a Fixed Angle Object and (b) Angles in Shapes tasks.  

All the tasks in the design have the dynamic rotation feature and this supported students 

to rotate the angle sides and develop a conception of angles as rotations. For instance, the tasks 

in which students first reasoned about angles as rotations were the “Three Pairs of Different 

Objects” task (Figure 70a) for Jordan, the “Modified Three Pairs of Different Objects” task 

(Figure 70b) for Angelie and Alicia, and the “Triangle” (Figure 70c) task for Axel. In addition to 

the features of the tasks, my questions “What is changing?” and “How do you make an angle 

bigger/smaller?” probed them to focus on the quantities of the situation and reason about the 

change in rotations and the change in angle size. These dynamic explorations showed to elicit 

varied forms of conceptions of angles as rotations. For instance, when I asked students how they 

could make the angle bigger, Jordan and Alicia reasoned that they could create more space as 

they rotate one side away from the other side.  
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Figure 70 

Different Tasks that Potentially Elicited Conception of Angles as Rotations 

 

Note. The (a) Three Pairs of Different Objects, (b) Modified Three Pairs of Different Objects, 

and (c) Triangle tasks. 

Additionally, I observed that the tasks involving wedges encouraged reasoning about 

angles as wedges. For example, while engaging with these tasks, Jordan reasoned about angles as 

fractions of a circle rather than conceiving angles in terms of openness. An example of tasks that 

have this wedge feature was the “Blue Wedge” task (Figure 71a) with a preconstructed wedge 

that students increase or decrease in size when they rotate at least one side. Another example was 

the “Comparing Angles with a Fixed Angle Object” task (Figure 71b) with the tracing tool that 

left traces of rotations when generating angles. Although the two tasks behave differently when a 

segment is rotated, they both involve generating wedges.  

Figure 71 

Different Tasks that Potentially Elicited Student Conception of Angles as Wedges 

 

Note. The (a) Blue Wedge and the (b) Comparing Angles with a Fixed Angle Object tasks.  
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It is worth mentioning here that in the early tasks with Jordan, the wedge tasks seemed to 

hinder him from focusing on the openness of the angle. Instead, he kept associating the size of an 

angle with the space within a wedge as described by Browning et al. (2007). Therefore, I 

modified these tasks to avoid showing a wedge during those early explorations. This 

modification showed to have worked for the students to not show this alternative conception. In 

the subsequent design experiments, when students were asked to explain what they were looking 

at to make judgements about the angle size, they stated that they looked at the amount of space 

between the angle sides, reflecting what (Moore, 2012) and Hardison (2019) studies reported. I 

interpret this reasoning to possibly illustrate their conception of an angle in terms of openness.  

6.2.   Multiplicative Comparisons Between Angles 

In comparing students’ reasoning about multiplicative comparisons between angles, I 

placed them in three distinct subcategories (Table 9): using their initial splitting strategy, using 

decomposition and composition when comparing angles, and reasoning about the multiplicative 

change in an angle. Each subcategory shows how students’ reasoning qualitatively differed from 

one another. Similar to the previous form of reasoning, students’ prior knowledge continued to 

play a significant role in their reasoning. The following paragraphs describe the cross-

comparison of their reasoning in more depth. 

Table 9 

Students’ Forms of Reasoning about Multiplicative Comparisons Between Angles  

Multiplicative 
Change in an 
Angle  

Doubling or tripling an angle by treating the original angle (2/12 of a circle) 
as a single group or angle unit and adding this angle unit two or three times 
(Jordan, Angelie, and Axel). 
Doubling or tripling an angle by treating the half (1/12 of a circle) of the 
original angle as the angle unit and adding this angle unit two or three times 
to the original angle (Alicia). 
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Decomposition 
and 
Composition 
When 
Comparing 
Angles 

Estimating and imagining the number of times he could rotate the smaller 
angle within the bigger angle, then actually composing the bigger angle by 
iterating the smaller angle within the bigger angle (Jordan). 
Estimating the fractional part of the bigger angle where the smaller angle 
could fit without a clear illustration on how they split the bigger angle, then 
actually composing the bigger angle by iterating the smaller angle, while 
incorporating the closeness of the lines (Angelie and Alex). 
Estimating that the bigger angle was “two fractions bigger” than the smaller 
angle without a clear illustration on how the bigger angle was split, then 
actually composing the bigger angle by iterating the smaller angle within the 
bigger angle (Alicia). 

Initial Splitting 
Strategy 

Splitting a full rotation into quarters and associated the quarter turns with the 
quarters of a circle, then associated the number of degrees with each fraction 
of a turn (Axel). 
Splitting a full rotation into quarters and associated a quarter of a turn with 
each quarter of a circle, then only associated 90° with a quarter of a turn 
(Jordan).  
Splitting a full rotation into quarters and associated the split with each 
quarter of a circle (Angelie, and Alicia).  

 

Students exhibited two forms of reasoning about the multiplicative comparisons between 

angles using the splitting strategy. Jordan, Angelie, and Alicia exhibited similar forms of 

reasoning when splitting a full rotation into quarters of a circle. Angelie, Alicia, and Jordan 

showed the connections between the quarters of a turn with the quarters of a circle, but only 

Jordan connected a quarter of a circle with 90°. However, his reasoning was only limited to 

angles in 90° resulting to not being able to connect between the other quarters of a turn and their 

degrees. This is not surprising as the conception of right angle is prevalent among elementary 

students (Devichi & Munier, 2013). Only Axel exhibited an understanding about the degrees for 

each quarter turn. His reasoning showed that he was able to measure rotations as fractions of a 

turn and then create a connection with the degrees (Clements & Sarama, 2014). I consider his 

reasoning as more sophisticated than the three students because Axel illustrated his prior 

knowledge about degrees without being prompted by my questioning.  
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The design also prompted the students to reason multiplicatively by decomposing and 

composing angles (Moore, 2012). In comparing the openness of two angles, students exhibited 

three qualitatively different ways of reasoning about angles using the decomposition of the 

bigger angle and its composition using the iteration of the smaller angle. Alicia conjectured that 

the bigger angle is “two fractions bigger” than the smaller angle, which I infer that she was 

estimating the bigger angle as being double the size of the smaller angle. Angelie and Axel 

illustrated similar reasoning when they conjectured that a smaller angle is a fraction of the bigger 

angle. While Alicia did not explain how she reached that conclusion, Angelie and Axel talked 

about the closeness between each pair of angle sides which potentially helped them to argue how 

one angle was bigger than the other. Among the four students, only Jordan reasoned that he 

imagined the number of times he could rotate the smaller angle within the bigger angle by 

comparing the lines that make the angles more open. Although all students did not always make 

accurate estimations about the openness of each pair of angles, they were able to reorganize their 

meanings to talk about the relationship between two pairs of angles by iterating the smaller angle 

to compose the bigger angle. Their reorganizations show the potential of the design to stimulate 

students in envisioning the decomposition of an angle and iterating back the smaller angle into 

the bigger angle resulting to multiplicative comparison between the two angles. Envisioning the 

composition and decomposition of angles are interiorized measurement processes as described 

by (Moore, 2012). 

When students multiplicatively changed an angle, they showed two distinct forms of 

reasoning. These forms of reasoning differed on the ways they treated the original angle as a unit 

angle to be iterated. Alicia treated the 1/12 wedge as her unit angle instead of the given angle 

represented by the 2/12 wedge, showing that she only perceives unit fractions to be original 
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angles. Conversely, Jordan, Angelie, and Axel treated the original angle 2/12 wedge as the angle 

unit, then multiplied this angle unit with a number of iterations (groups) to create the required 

multiplicative changes such as double or triple. Their strategy illustrates a coordinated 

measurement approach (Izsák & Beckmann, 2019) because they considered the product quantity 

(e.g., 4/12 wedge) as being simultaneously measured using two units, the angle unit that 

composed a single group (2/12 wedge) and the number of groups (2 groups) of the angle unit to 

make the product quantity.  

6.2.1.  Design that Potentially Elicited Students’ Reasoning about Multiplicative Comparisons  

The tasks that involved the equipartitioning of a full turn potentially elicited students to 

reason about the multiplicative comparisons between angles as shown in Table 9. These tasks 

were the “Ferris Wheel” task (Figure 72a), the “Comparing the Openness between Two Angles” 

task (Figure 72b), and the “Growing and Shrinking Angles” task (Figure 72c).  

Figure 72 

The Tasks that Prompted Reasoning about Multiplicative Comparisons Between Angles 

 

Note. The (a) Ferris Wheel, (b) Comparing the Openness between Two Angles, and (c) Growing 

and Shrinking Angles tasks. 

To elaborate, in the “Ferris Wheel” task (Figure 72a), the perpendicular diameters that 

split the circle into four equal parts potentially supported students’ reasoning when splitting a full 

rotation. My questioning here focused on the amount of turn the cart made in reaching different 
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objects around the Ferris wheel. This task prompted Angelie and Alicia to exhibit a prior 

knowledge about fractions of a circle and a lack of knowledge about degrees. Alicia’s reasoning 

about the absence of angles in circles informed the modification of my questioning to prompt her 

to conceive angles in a full rotation, consequently, led her to reason multiplicatively about angles 

in a circle. This task might have also supported Axel to focus on the visual partitions that split 

the circle into four equal parts and utilize this prior knowledge with degrees to describe each 

quarter turn with 90°. This may imply that when the design of the tasks prompted students to 

quantify angles, reasoning about the multiplicative relationships was more intuitive, particularly 

for students who had prior knowledge about fractions of a circle and degrees. 

In the “Comparing the Openness between Two Angles” task (Figure 72b), my 

questioning focused on comparing the bigger angle to the smaller one. Students’ conjectures 

varied based on their prior knowledge about fractions and their attention to the closeness 

between angle sides. However, the design of the task with benchmark arrows that students could 

use to mark their iteration of the smaller angle within the bigger angle potentially supported 

Jordan to exhibit a sophisticated form of decomposition and composition of angles. The same 

design prompted the other three students to reorganize their thinking after they inaccurately 

conjectured about the openness of each pair of angles.  

The “Growing and Shrinking Angles” (Figure 72c) task was the third task given to 

students at this stage. My questioning focused on how they could double or triple an angle. 

Jordan worked on the initial version of the task, while Angelie, Axel, and Alicia worked on the 

modified version that did not have a wedge. This was the task that Alicia iterated the half of the 

original angle, 1/12 as the unit angle. This might have been the result of showing the 2/12 angle 

as being split into two parts. A modified version that does not show this split may help her to 
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consider the 2/12 as a unit angle (Figure 73). In a future iteration, it might be useful to explore 

this possibility. 

Figure 73 

A Modified Version of the Growing and Shrinking Angles Without Splitting the Original Angle 

 

Note. A potential task modification that shows the angle inside the red wedge measures 2/12 

which could be multiplicatively changed.  

6.3.   Discrete or Continuous Conception of Angles 

Table 10 shows students’ different subcategories of reasoning about angles as a discrete 

or continuous quantity. Conceiving a quantity as discrete involved thinking about discrete 

chunks while conceiving a quantity as continuous involves envisioning intermediate and infinite 

amounts (Castillo-Garsow, 2012). While most students conceived angles as a discrete quantity, 

Axel illustrated evidence of conceiving an angle as both a discrete and a continuous quantity.  

Table 10 

Discrete or Continuous Conception of Angles 

Discrete or 
Continuous 
Conception of 
Angle 

Reasoning about an angle as a continuous quantity by stating that there is 
always an angle in between and that you can make unlimited angles 
(Axel). 
Reasoning about angles in a circle as a discrete quantity by stating that 
there is a very large number of small angles but they are countable (Jordan 
and Alicia). 
Reasoning about angles in a circle as a discrete quantity by stating that it 
depends on the size of the wedge that could fit a number of times in a 
circle (Angelie). 
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I classified students’ reasoning about an angle as either a discrete or a continuous 

quantity in three subcategories showing different levels of sophistication. Angelie illustrated only 

a conception of an angle as a discrete quantity by referring to angles in chunks only. For 

instance, she reasoned that she would need four quarter wedges to cover the whole circle. Jordan 

and Alicia showed a more sophisticated form of conceiving angles as a discrete quantity by 

considering a very large number of very small angles. Although Jordan and Alicia explained that 

it would take too long to count the angles in a circle, their reasoning showed that they could 

count them when given the opportunity to do so. Similarly, in the “Many Very Small Angles” 

task, Axel reasoned that the multiple traces of a rotation show “a lot of” angles illustrating a 

reasoning about an angle as a discrete quantity. However, he then reasoned about unlimited 

angles and that there were smaller intermediate angles in between angles. His reasoning about 

unlimited angles and intermediate angles exemplifies a continuous and smooth thinking about a 

quantity (Castillo-Garsow, 2012).  

6.3.1.  Design that Potentially Elicited Discrete or Continuous Conception of Angles 

There is evidence to show that the design of the tasks, tools, and questioning influenced 

students’ reasoning about an angle as either a continuous or a discrete quantity. The “Many Very 

Small Angles” task (Figure 74a) was designed to show the continuous change in an angle during 

a rotation that could potentially elicit conceptions of an angle as a continuous quantity. However, 

students reasoned about an angle as a discrete quantity as they tried to count the discrete number 

of angles. My questioning which focused on how many angles there are may have also reinforced 

this kind of discrete reasoning. Meanwhile, the one-degree wedge in the “360 Angles” task 

(Figure 74b) and my questioning of whether there are angles smaller than one-degree prompted 

Axel to reason that there were intermediate angles in between angles. His reasoning about the 
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number of one-degrees in a circle offered an opportunity for me to modify my questioning to 

examine his understanding of angles smaller than a one-degree angle. Specifically, he reasoned 

that he could always cut an angle into halves and make unlimited angles, illustrating his 

conception of an angle as a continuous quantity.  

Figure 74 

Different Tasks that Elicited Discrete or Continuous Conception of Angles 

 

Note. The (a) Many Very Small Angles task and the (b) 360 Angles task.  

Interestingly, the differences in students’ conception of angles as either a continuous or 

discrete quantity did not seem to offer a significant contrasting conception of angles in any of the 

students’ other forms of reasoning. In a future iteration, it might be important to explore further 

how students would reason about angles smaller than one-degree and if Axel’s reasoning can be 

a form of a generalization for other students.  

6.4.   Numeric Multiplicative Relationships Between Angles 

I classified students’ reasoning about the numeric multiplicative relationships between 

angles in two subcategories as presented in Table 11. The first subcategory involves reasoning 

about the composition of a 360-degree angle and the second is about reasoning about the angles 

when a circle is split into a number of equal parts. In the following paragraphs, I present the 

different forms of reasoning that students exhibited in each category.  
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Table 11 

Numeric Multiplicative Relationships Between Angles 

Splitting a Circle 

Decomposed and composed multiplicative groups of smaller identical 
angles to create an angle, while incorporating the knowledge about 
equivalent fractions and using a compensation strategy when finding the 
degrees of an angle (Axel). 
Decomposed and composed multiplicative groups of smaller identical 
angles to create an angle, while incorporating the knowledge about 
equivalent fractions when finding the degrees of an angle (Jordan). 
Decomposed an angle into multiplicative number of identical smaller 
angles and composition of multiplicative groups of smaller identical angles 
to create an angle and finding the degrees of an angle (Alicia). 
Composed multiplicative groups of smaller identical angles to create an 
angle and finding the degrees of an angle (Angelie). 

Composition of a 
360 Degree 
Angle 

Reasoned about one-degree as the smallest angle and adding one-degree 
360 times to create a 360-degree angle (Angelie). 
Reasoned that a quarter rotation or 90° as a benchmark angle to reason 
about the multiplicative composition of 360° by the number of quarters of 
a circle (Jordan) 
Reasoned about 360° as showing all the angles from one-degree to 360 
degrees (Axel). 
Reasoned that degrees in a circle is difficult to count but understands that a 
full rotation has 360° (Alicia). 

 

Students exhibited four different forms of reasoning when discussing the composition of 

a 360-degree angle. Alicia reasoned that the degrees in a circle would take her a long time to 

count. On the other hand, Axel showed that he conceived 360° as being composed of one-degree 

angles. It was not clear whether he perceived this composition additively or multiplicatively. 

Jordan illustrated a more sophisticated form of reasoning by considering a quarter rotation or 90° 

as a benchmark angle that can be multiplicatively transformed into four 90-degree angles. 

Similarly, Angelie conceived the smallest angle as one-degree and that she could add one-degree 

angles three hundred sixty times to create a 360-degree angle. Both the reasoning exhibited by 

Jordan and Angelie showed the coordinated measurement approach to multiplication (Izsák & 
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Beckmann, 2019). To elaborate, Angelie coordinated three hundred sixty groups of one-degree 

angle to create 360°. Jordan coordinated four groups of 90° to form the new angle of 360°. 

Students also exhibited coordinated measurements (Izsák & Beckmann, 2019) when 

splitting a circle into fractional parts and finding the degrees of each part. To illustrate, Angelie 

coordinated multiplicative groups of smaller identical angles to compose an angle. She reasoned 

that an eighth of a full turn is 45°, so 45 plus 45 equals 90°. Alicia reasoned in a more 

sophisticated way by decomposing an angle multiplicatively into identical smaller angles in 

degrees. Then, she composed the multiplicative groups of smaller identical angles to recreate the 

decomposed angle. Jordan also expressed this reversibility by decomposing and composing 

angles using his knowledge about equivalent fractions to identify the degrees of the angle being 

asked. For instance, in splitting a circle into thirds and into sixths tasks, Jordan reasoned that he 

could “add 60 every time” for every multiple of 1/6 wedge. Later, he showed and reasoned that 

the 2/6 wedge is the same as 1/3 wedge each has 120°.  

In contrast to the other students, Axel exhibited a variety of strategies in finding the 

degrees of an angle. His strategies included the decomposition and composition of multiplicative 

groups of smaller identical angles to create an angle, finding the degrees using equivalent 

fractions of a circle, and using a compensation strategy where he only subtracted the degrees of a 

unit angle from the whole instead of adding the degrees of the unit angle multiple times. For 

example, in splitting a circle into eighths task, Axel deductively explained that an eighth was “45 

degrees because it is half of 90 degrees (1/4).” Then, he used this reasoning to explain that the 

7/8 of a turn was “315 because 360 minus 45.” For Axel, the compensation strategy was easier 

than to “add 45 degrees seven times.” Axel’s reasoning showed that he had these three forms of 

strategies as conceptual tools in finding the degrees of an angle in a circle. Among the reasoning 
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of the four students, the decomposition and composition strategy and the coordinated 

measurement approach were the most prevalent forms of reasoning when finding the degrees of 

an angle in a circle. These forms of reasoning were also illustrated by the students when 

constructing multiplicative comparisons between angles as shown in Table 9 above.  

6.4.1.  The Design that Elicited Reasoning About Numeric Multiplicative Relationships 

Between Angles 

The design of the “360 Angles” task (Figure 75a) illustrating the 360 one-degree angles 

in a full rotation and the “show angle measure” tool that shows the number of degrees potentially 

prompted students to exhibit different forms of reasoning about the composition of a 360-degree 

angle as presented in Table 11. Additionally, the splitting tools in the “Splitting a Circle” tasks 

(Figure 75b) and questioning about the degrees of a fraction of a full turn potentially prompted 

students to reason about numeric multiplicative relationships between angles.  

Figure 75 

The Splitting a Circle Task that Elicited Reasoning about Numeric Multiplicative Relationships 

Between Angles 

 

Note. The (a) “360 Angles” and the “Splitting a Circle” (b) in thirds and (c) in eighths that 

potentially elicited reasoning about numeric multiplicative relationships between angles. 

To elaborate, in the “360 Angles,” Angelie and Alicia seemed to rely on the “show angle 

measure” tool to reason about the number of degrees composed in a full rotation. The tool may 
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have helped Angelie to reason that she could add one-degree angles 360 times to compose the 

360-degree angle. Meanwhile, Axel already had prior knowledge about 360° that he did not need 

to use the “show angle measure” tool. His reasoning offered an opportunity for me to modify my 

questioning to examine his understanding of angles smaller than a one-degree angle. Jordan also 

did not use the tool to reason about the number of degrees in a full rotation. Instead, he leveraged 

his prior knowledge that 1/4 rotation has 90° and added 90° for every 1/4 rotation. 

Similarly, the splitting tools in the “Splitting a Circle” tasks (Figure 75b) helped students 

to envision the splitting of the circle into four, eight, three, six, or twelve equal parts, 

respectively. The “show angle measure” tool also potentially helped students to verify their 

conjectures about the degrees for each fraction of a turn. For example, Jordan, Angelie, and 

Alicia relied on the “show angle measure” tool to determine the degrees in an angle and this 

helped them to construct their reasoning about the decomposition and composition of an angle. 

The line segments that split the circle may have offered the students a constructive space to 

reason about the multiplicative groups of identical angles to compose or decompose an angle. In 

contrast, Axel did not use the “show angle measure” tool to determine the degrees of an angle. 

Instead, he used his prior knowledge about 360° in a circle and the equivalent fractions to exhibit 

a flexible understanding of using different fraction operations to find the degrees for the same 

amount of turn.  

6.5.   Concluding Remarks 

In conclusion, in this chapter I classified students’ forms of reasoning into four main 

categories: reasoning about the three conceptions of an angle (Table 8), reasoning about the 

multiplicative comparisons between angles (Table 9), conceiving of an angle as either a discrete 

or a continuous quantity (Table 10), and reasoning about the numeric multiplicative relationships 
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between angles (Table 11). Each category was described based on the similarities and differences 

in students’ reasoning that were presented in terms of subcategories within the main categories. 

I found that the data offered empirical evidence that supports how the tasks, tools, and 

questioning could potentially elicit different forms of reasoning as they support a variety of prior 

knowledge that students bring in when engaging with the design. The framing of my questioning 

also played a vital role in stimulating students’ prior knowledge and supporting them in 

reorganizing their reasoning. Furthermore, students’ prior knowledge and reasoning influenced 

the evolution of my design. The next chapter discusses the implications that these findings might 

have for research and practice. 
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Chapter 7: Conclusions 

In this concluding chapter, I first summarize the findings presented in Findings – Part 1 

(Cases-by-Case Analysis) and Findings – Part 2 (Cross-Case Analysis). Next, I discuss the 

contributions of this study to mathematics research and practice. I then, outline the limitations of 

this study, and suggest directions for future research. 

7.1.   Summary of the Dissertation 

This dissertation was an exploratory study to investigate how elementary school students 

may reason about angles as they engage in digital tasks that present angles dynamically. 

Specifically, this study focused on examining the following three research questions: 

1. What forms of reasoning do students exhibit as they engage in dynamic digital tasks that 

aim to bridge the three conceptions of angles? 

2. What characteristics of the design (e.g., characteristics of tasks, tools, and questioning) 

support the particular forms of students’ reasoning for angles? 

3.  How did the design evolve to support students’ reasoning for angles? 

I followed a design experiment (Cobb et al., 2003) methodology to engineer particular 

forms of student reasoning about angles and to study these forms of reasoning as students engage 

with the design. The initial conjectures and design of the tasks were influenced by the existing 

research literature on angles, measurement, and multiplicative reasoning. To begin with, the 

exploration of the literature shows that static models of angles illustrating the union of two rays 

often encourage alternative conceptions of angles (e.g., Devichi & Munier, 2013; Smith et al., 

2014). Research also suggests that a dynamic representation of angles through rotations could 

help students construct mathematical meanings of angles such as the amount of turn (Confrey et 

al., 2012; Moore, 2012). However, multiple rotations are difficult to measure. Research supports 
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the use of wedges (Browning & Garza-Kling, 2009; Thompson, 2013) to help students quantify 

angles. Wedges allow the change in an angle size to be visible to students. Consequently, the 

research literature suggests that a combination of all three conceptions of an angle – as a union of 

rays, as a rotation, and as a wedge – may offer better opportunities for students to develop a 

robust understanding of an angle (e.g., Freudenthal, 1973).  

To bridge these three conceptions, I followed the dynamic measurement (DYME) 

(Panorkou, 2021) approach to design digital tasks that illustrate how angles are generated and 

changed dynamically. Using a quantitative reasoning lens (Thompson, 2011), I conjectured that 

students could conceive the changing quantities during the generation of dynamic angles and 

reason about how the quantities were changing in relation to each other. By reasoning 

quantitatively about angles, students could unify the geometric and multiplicative nature of 

angles in their reasoning. To test my conjectures, I collected qualitative data from individual 

virtual interviews with four third-grade students as they engaged with the tasks, tools, and my 

questioning. I conducted two phases of data analysis. First, I conducted an ongoing analysis 

during each design experiment. Second, a retrospective analysis was conducted at the end of 

each design experiment to plan for the next design experiment (first level of retrospective 

analysis) and at the end of all design experiments, I cross-compared the students’ reasoning 

(second level of retrospective analysis).  

7.1.1.  Students’ reasoning about angles (Research Question 1) 

In the Findings – Part 2 (Cross-Case Analysis) chapter of this study, I identified four 

categories of student reasoning about angles as students engaged in dynamic digital tasks that 

aimed to support students to bridge the three conceptions of angles (Research Question 1). In 

each category, I classified student reasoning into different subcategories. I found that by 
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engaging with the task design, students were able to reason about all three conceptions of an 

angle – as a union of rays, as a rotation, and as a wedge – showing that they bridged the three 

conceptions of angles (Category 1).  Students also constructed multiplicative comparisons 

between angles (Category 2). Specifically, students reasoned about the multiplicative change in 

an angle, decomposition and composition of angles, and the splitting of a full rotation to an 

angle. Students also reasoned about an angle as a discrete or a continuous quantity (Category 3). 

Particularly, students either reasoned that there was a very large number of angles illustrating a 

discrete conception or that there were unlimited angles showing a continuous conception of an 

angle as a quantity. I also found that students constructed numeric multiplicative relationships 

between angles (Category 4). In this category, students reasoned about the splitting of a circle 

into a number of equal parts and the composition of a 360-degree angle.  

The findings of this study also showed that students’ prior knowledge influenced the 

progression of their reasoning. For example, Angelie showed her prior understanding of an angle 

by sketching line segments with different orientations. In her succeeding reasoning on a task 

where she rotated a line segment, she described the result of the rotation as a “different angle 

line” illustrating again her definition of an angle as an orientation. Meanwhile, Jordan’s 

reasoning showed his prior knowledge about an angle as a “corner” of a square. At the end of the 

experiment, he reasoned again about an angle as a corner of a shape and as a fraction of a 

rotation. Similar to Angelie and Jordan, each student constructed an understanding of angles by 

building on their prior knowledge. Even though each student reasoned about angles in 

sophisticated ways, traces of their prior knowledge was still evident in their reasoning through 

the end of the design experiment. This shows that students’ prior knowledge is broadly 

important. 
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In addition to students’ prior knowledge, the design of tasks, tools, and questioning also 

influenced the variations in students’ reasoning. Examples of variations in their reasoning 

include their strategies of composing and decomposing angles and the nature of the connections 

they created with the amount of turn, fractions of a circle, and degrees. I describe the influence of 

the design in the next section. 

7.1.2.  Design that supported students’ reasoning (Research Question 2) 

The findings presented in Chapter 5 illustrated the characteristics of the design of tasks, 

tools, and questioning that supported students’ reasoning about angles (Research Question 2). 

Specifically, a combination of tasks that illustrated angles as union of two rays, rotations, and 

wedges to explore the generation of angles supported students to bridge the three angle 

conceptions (Category 1). To elaborate, students showed their prior knowledge about angles in 

their response to my question “What is an angle?” For instance, Jordan reasoned about angles as 

corners of a shape. This reasoning was similar to what Clements and Battista (1989) found by 

asking the same question to their participants. The dynamic rotation feature of all tasks allowed 

students to rotate angle sides and this experience supported them to develop a conception of 

angles as rotations. For example, Jordan, who had the prior conception of angles as corners, 

reasoned that the rotation of one side farther away from the other made more space between the 

angle sides. The design of tasks with varying lengths of angle sides but the same size of an angle 

elicited this kind of reasoning among students and supported them to avoid the typical alternative 

conception of angle size as dependent on side lengths (Smith et al., 2014). Instead, students 

connected the angle size with the direction and amount of rotation. Tasks involving wedges, on 

the other hand, supported students to reason about angles as wedges. For instance, Jordan 

reasoned about a wedge as the amount of space covered between two angle sides, similar to what 
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Browning and Garza-Kling (2009) found. This study offers evidence to support the suggestion 

made in the research literature that a combination of the three angle conceptions can be powerful 

in eliciting a more robust understanding of angles (e.g., Freudenthal, 1973; Mitchelmore & 

White, 2000). 

 The overall design also prompted students to multiplicatively compare angles (Category 

2). The rotation feature of tasks and the equipartitioning of a turn offered opportunities for 

students to iterate a smaller angle within a bigger angle and explore the relationships between the 

two angles. For example, Axel equipartitioned a full rotation into four quarters and associated 

each quarter turns with the quarters of a circle. Then he used his prior knowledge about degrees 

to reason about the degrees of a turn, a form of reasoning that was suggested by Confrey et al. 

(2012). The findings in this study also showed that tasks involving the iteration of an angle into 

the bigger angle together with my questioning about “How many times bigger or smaller was an 

angle compared to the other angle?” elicited students’ reasoning about the decomposition and 

composition of an angle. For instance, Jordan first conjectured that a bigger angle was “four 

times more open” than a smaller angle. After iterating the smaller angle within the bigger angle 

and counting six iterations, he reorganized his thinking. Jordan’s actions and reasoning showed 

that he could mentally decompose the bigger angle by estimating the number of times he could 

fit the smaller angle in (his initial conjecture), then he composed the bigger angle using the 

iterations of the smaller angle. Similar to Jordan, students were able to use decomposition and 

composition strategies as measurement processes (Castillo-Garsow et al., 2013) to quantify 

angles multiplicatively without the need to assign any numerical values to these angles.  

Tasks that illustrated the traces of the rotations together with my questioning opened up 

opportunities for students to construct a conception of an angle as a discrete or a continuous 
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quantity (Category 3). To elaborate, asking students to quantify the angles as they worked on 

tasks that left multiple traces of rotations prompted them to reason about an angle as a discrete 

quantity. For example, Axel reasoned that the multiple traces of a rotation showed “a lot” of 

angles illustrating a discrete conception of a very large number of angles. In contrast, asking 

whether there are angles that are smaller than the one-degree angle led Axel to reason about 

unlimited angles and intermediate angles in between one-degree angles. This kind of reasoning 

showed his continuous conception of an angle similar to what Castillo-Garsow (2012) referred to 

as continuous and smooth thinking.  

Tasks asking students to split a circle and the use of the “show angle measure” tool 

prompted students to construct numeric multiplicative relationships about angles (Category 4). 

The design of the splitting tools supported the students to imagine the equipartitioning of a full 

turn into quarters, eighths, thirds, sixths, and twelfths. Students decomposed an angle and 

composed the smaller identical angles to compose the given angle. For instance, in the “Splitting 

a Circle” task, Axel decomposed a quarter of a turn into two eighths and composed the two 

groups of eighths to reason that an eighth was 45° because it was half of 90°. Axel who had prior 

knowledge about degrees illustrated a flexible understanding of the connections between the 

amount of turn, fractions of a circle, and degrees. While Axel had prior knowledge about degrees 

and division of large whole numbers such as 90 and 360 that supported his reasoning, the “show 

angle measure” tool aided students who did not have prior knowledge about degrees to reason 

about angles in degrees. For instance, Alicia relied on the “show angle measure” tool to reason 

about the degrees for one-quarter of a full turn. After learning that a quarter of a full turn has 90°, 

she stated that this time four quarters as 360° made sense to her. The findings in this study 

showed that students exhibited a coordinated measurement approach to multiplication (Izsák & 
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Beckmann, 2019) by coordinating the number of equal parts a circle has been split and finding 

the degrees of each part. 

7.1.3.  Evolution of design (Research Question 3) 

In the Findings – Part 1 (Cases-by-Case Analysis) chapter, I presented the chronological 

accounts of students’ reasoning and actions to illustrate how the multiple iterations of design 

experiments allowed me to refine both my theories about students’ learning of angles and the 

design that elicited such reasoning. In other words, the findings showed how my conjectures and 

design co-evolved to support students’ reasoning (Research Question 3). In this section, I discuss 

two levels of design modifications: at the micro-cycle level within each design experiment and at 

the macro-cycle level after each design experiment. 

At the micro-cycle level, the findings showed that students’ prior knowledge and in-the-

moment reasoning about angles influenced the modification of the design to support student 

reasoning and amplify the construction of their meanings about angles. For example, the traces 

of rotations in the exploratory tasks created wedges which led Jordan in the first design 

experiment to reason about angles as the area of the wedge. This conception prevented him from 

reasoning about angles in terms of openness. Therefore, I removed the wedges in the exploratory 

tasks that followed. This modification helped Jordan reorganize his reasoning into angles as the 

amount of openness between the two angle sides. Another example was Axel who had prior 

knowledge that a full rotation has angles from one-degree to 360 degrees illustrating a discrete 

conception of an angle. His reasoning about the one-degree angles prompted me to modify my 

questioning to ask about angles smaller than the one-degree angle. This modification prompted 

Axel to reason about unlimited angles within angles, illustrating a conception of angles as a 

continuous quantity.  
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At the macro-cycle level of the design experiments, the findings show that modifications 

to the design after each design experiment elicited different ways of reasoning among students in 

the succeeding experiments. For example, the modifications of the exploratory tasks to remove 

the wedges in the first design experiment supported students in the later experiments to conceive 

the size of angles in terms of openness. Students in the succeeding experiments reasoned about 

angles as openness before they developed the conception of angles as wedges. Additionally, in 

the first design experiment, Jordan’s definition of an angle as a corner of a shape prompted me to 

design the “Triangle” task to support other students who may have similar prior knowledge. This 

task showed angles as corners but it also allowed students to drag the vertices of the shapes, 

modify the size of an angle, and observe that the size of these “corners” could change.   

Collectively, the ways in which the design prompted students to exhibit particular 

categories of reasoning and how the design also evolved to support such reasoning showed the 

reflexive relationship (Cobb et al., 2001) between the design and student reasoning.  

7.2.  Contributions to Knowledge 

In this section, I discuss contributions to mathematics education research and teaching 

practice considering the key findings of the study. 

7.2.1.  Contributions for Research  

By engaging with this study’s design, students did not exhibit the typical alternative 

conceptions of angles reported in the literature. For instance, the “Three Pairs of Segments with 

Different Lengths” task that consisted of three angles of the same size but different side lengths 

might have supported students to avoid the common alternative conception that the angle size is 

dependent on side lengths (Smith et al., 2014). Additionally, in the current study, the tasks 

presented angles in different orientations and this might have supported students to develop a 
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conception of angles not limited to right angles. Although students often used right angles to 

discuss the degrees of an angle or the fractions of a circle, they also did not show the alternative 

conception that all angles are right angles (Devichi & Munier, 2013). This study contributes to 

research by suggesting a design that supports students to avoid these alternative conceptions that 

they commonly exhibit when working with tasks involving static angles (e.g., Devichi & Munier, 

2013; Smith et al., 2014). This is important because previous research has shown that students 

carry these alternative conceptions at higher grade levels of schooling and impede students from 

learning content from mathematical areas, such as trigonometry and geometry (Lehrer et al., 

1998; Smith et al., 2014). 

This study also illustrates the design of tasks that could prompt students to bridge the 

three common angle conceptions. As aforementioned, prior research has shown that students 

either reason about an angle as a union of rays, as a rotation, or as a wedge (e.g., Browning & 

Garza-Kling, 2009; Devichi & Munier, 2013; Smith et al., 2014). The literature also shows that 

individual conceptions of angles limit students into procedural thinking and memorizing terms 

rather than offering them opportunities for meaningful reasoning (Boston & Candela, 2018). On 

the contrary, this study shows that when students engaged with tasks that illustrate all three angle 

conceptions, they exhibited sophisticated reasoning about angles as shown in Table 12. Not only 

did students reason about the three angle conceptions, but they also constructed multiplicative 

comparisons, developed discrete and continuous conceptions of an angle as a quantity, and 

exhibited numeric multiplicative reasoning about angles. In other words, the findings of this 

study show the power of targeted design and questioning for achieving what Freudenthal (1973) 

suggested, that engineering tasks involving multiple angle conceptions could support students’ 

construction of meanings of angles. Understanding these categories of reasoning in Table 12 is 
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important for future studies to investigate how students’ connection of the angle concept with 

other mathematical ideas could be supported. Further research can also examine other forms of 

reasoning about angles that might be possible when the three angles conceptions were bridged as 

a single construct. 

Table 12 

A Summary of Students’ Categories of Reasoning 

Student Reasoning 
Category 1: Angle Conception 
A. Angle as a union of rays 
B. Angle as a rotation  
C. Angle as a wedge 
Category 2: Multiplicative Comparisons 
A. Multiplicative change in an angle 
B. Decomposition and composition strategies when comparing angles 
C. Initial splitting strategy 
Category 3: Discrete/Continuous Conception of Angle 
A. Discrete conception of an angle 
B. Continuous conception of an angle 
Category 4: Numeric Multiplicative Relationships Between Angles 
A. Splitting a circle  
B. Composition of a 360-degree angle 

 

Furthermore, this dissertation illustrates the interplay between students’ geometric and 

multiplicative reasoning through the exploration of dynamic angles. This study offers empirical 

evidence of students’ reasoning about dynamic angles by bridging the geometric nature of angles 

(e.g., union of two rays) and the idea of dynamic rotations with wedges that elicited students’ 

multiplicative reasoning. Prior to this study, little was known about how students may reason 

about angles that are generated dynamically (e.g., Clements & Burns, 2000; Hardison, 2018; 

Smith et al., 2014). By exploring dynamic angles, this study illustrates two different ways of 

generating an angle: by iteration and splitting, and by rotations that relate to a full circle. Prior 

studies illustrate that students used these strategies separately showing one way to create angle 
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over the other (e.g., Mitchelmore & White, 2000; Smith et al., 2014). The findings of the current 

study show that students could use both iteration and splitting, and rotation as a single construct. 

For example, in the “Splitting a Circle” task, Axel used the tool that split a circle into thirds to 

reason about the degrees of 2/3 of a full turn. The tool for splitting a circle prompted him to see 

the three partitions of a circle. He then used these partitions to guide his iteration of a 1/3 wedge 

as his unit angle. He exhibited this iteration via rotation of a ray with a goal to first create 1/3 of 

a full turn to explain 1/3 of 360°, and he showed a further rotation to create 2/3 of a full turn to 

explain the degrees of 2/3 of 360°. Axel’s actions and reasoning exemplified the use of both 

strategies to reason multiplicatively about angles. The findings in this study show that bridging 

the two strategies of generating an angle dynamically could support students’ multiplicative 

reasoning about angles. Future research could further examine this idea of bridging geometric 

and multiplicative thinking to describe angles in more advanced mathematical concepts, such as 

the angles of elevation and depression in trigonometry or solid angles in advanced calculus. 

Students in the study exhibited the coordination of three levels of units (Steffe, 1992) 

when reasoning about angles. For instance, when reasoning about the degrees for fractions of 

turns, Alicia coordinated three levels of units by reasoning about a quarter of a turn as 90° [first 

level], then reasoning for a half turn as 180° in terms of two 90-degree units [second level], and 

then reasoning for a full turn as two 180-degree units [third level]. Students’ construction of a 

connection between the amount of turn with the fraction of a circle, and the degrees (Confrey et 

al., 2012) can be foundational for them to coordinate the three levels of units. Although Alicia 

had problems with dividing a very large number (e.g., 360 divided by 2), she exhibited this 

coordination of levels of units without reference to numerical division. Similar to Alicia, students 

exhibited this form of reasoning because the design of splitting a circle showed how a full turn 
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was split and guided the students to connect the amount of rotation with the fraction of a full 

turn. Then, the “show angle measure” tool helped students to recognize the degrees of an angle, 

which they further connected with each fraction of a turn. The design of tasks and tools 

supported students to coordinate three levels of units without the need to operate numerical 

division. This example showed that an angle can be a meaningful context in bridging the learning 

of geometry and rational numbers prior to students’ mastery of numerical operations. Clements 

and Sarama (2014) suggested that students must connect the idea of an angle as a geometric 

figure with its measurement. Future studies may find more evidence to support or contrast these 

claims on students’ coordination of levels of units in the context of angles.  

Furthermore, the categories of reasoning that students exhibited in this study can be a 

starting point for creating a learning trajectory for dynamic angles. Research has shown that 

learning trajectories are important in teaching to support students in moving through levels of 

thinking by selecting appropriate instructional tasks for such levels (Clements & Sarama, 2004). 

Additionally, Clements and Sarama (2004) suggested that learning trajectories helped teachers in 

connecting learning goals, curriculum components, assessment, and teaching strategies. While 

Clements and Sarama (2014) presented a learning trajectory for angles and turn measures, the 

instructional tasks used were primarily involving static angles. Recall that static angles elicited 

alternative conceptions as discussed in the literature. Even when tasks included the measurement 

of dynamic turns in the existing learning trajectory (Clements & Sarama, 2014), there were no 

levels of students’ reasoning about dynamic angles similar to the categories and subcategories 

found in this dissertation. When dynamic tasks on angles were suggested to prompt the highest 

level of learning in that trajectory, students were expected to measure angles only in degrees. 

This level in the existing learning trajectory for angles did not aim for students to reason about 
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how the degrees relate to fractions of a full turn and fractions of a circle. The categories and 

subcategories of reasoning in this dissertation can be an entry point for revising the existing 

learning trajectory by Clements and Sarama (2014) or even building a more fine-grained learning 

trajectory focusing only on dynamic angles. A learning trajectory for dynamic angles may offer 

research in mathematics education a platform to examine further the reasoning that students 

exhibited in this study and inform the development of instructional tasks to further support these 

forms of reasoning.  

7.2.2.  Contributions for Practice 

The findings from this dissertation illustrated how teachers could use the design of tasks, 

tools, and questioning to guide students in exploring dynamic angles. Clements and Sarama 

(2014) argued that teaching angles while connecting the ideas of turns and their measure is a 

difficult task. This difficulty arises mainly because angles are presented statically throughout 

schooling. Teachers often use static illustrations to introduce angles as components of shapes 

starting from kindergarten and this continues when presenting static illustrations of angles as 

union of rays in higher grades. The design in this study could offer opportunities for teachers to 

explore angles dynamically and learn how to support students’ conception of angles beyond the 

static definition.  

While the literature has shown that there is no proper definition that can describe angles 

from all areas of personal experiences (Taimina & Henderson, 2005), introducing fragments of 

categories of angles in the curriculum may have resulted into confusion about what an angle is. 

Scholars like Freudenthal (1973) and Proclus (1970) suggested to consider all three angle 

categories for students to create a meaningful understanding of angles. This dissertation suggests 
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potential curricular contributions to teaching and learning angles by bridging the three 

conceptions of angles as union of rays, as rotations, and as wedges.  

The potential of the four categories of reasoning about dynamic angles in the 

development of a learning trajectory could also be useful for teachers for assessing and 

supporting student learning. Teachers could select the appropriate instructional task for students 

based on their prior knowledge. For instance, for students like Alicia who are not prepared to 

work with numerical operations involving bigger numbers, teachers could choose tasks that do 

not require numerical operations yet support students to compare angles multiplicatively. 

The findings also showed that students coordinated the changes in rotation with the 

changes in the size of angles. This is an example of coordinating two quantities changing 

simultaneously – what research refers to as covariational reasoning (Confrey & Smith, 1995). 

The study of change such as covariation and multivariation has been a significant topic in 

research in mathematics education (e.g., Confrey & Smith, 1995; Panorkou & Germia, 2020; 

Thompson & Carlson, 2017). Most concepts that focus on the mathematics of change are often 

only in Calculus at higher education levels. This dissertation showed that angles can be used for 

teaching the mathematics of change which can be foundational for teaching higher mathematics 

levels. Future research could explore the connections between angle reasoning and covariational 

reasoning in more depth. Additionally, the teaching of geometry where angles are introduced is 

often left at the end of school year if time allows it. Teachers could use the study of change in 

angles while teaching multiplication and fractions and connect geometry to other concepts of 

mathematics taught in each grade level.  
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7.3.   Limitations and More Suggestions for Future Research 

Although this dissertation contributes to research on student reasoning about angles and 

other mathematical ideas, it has several limitations that offer suggestions for future research. 

First, this study was limited to a small sample size of four third-grade students. While this small 

sample allowed me to study in depth the students’ reasoning and the design that supported it, the 

findings only showed a snapshot of how third-grade students could reason about dynamic angles. 

The small number of study participants could not offer significant and generalizable findings to 

represent third-grade students as a whole. Therefore, future studies need to validate and 

contribute to the findings by examining the reasoning of more research participants.  

A second limitation was that the students worked individually and did not have 

opportunities for social interactions with other students to (re)construct their reasoning as it 

usually occurs in a real classroom setting. Research shows that students learning in dyads are 

more successful than individual students in working on tasks involving abstractions (Schwartz et 

al., 1991). In this study, I could not place students in dyads because of the COVID-19 pandemic. 

Further research with students working in pairs could create an environment for social learning 

where students have the confidence and freedom to work with someone of their age and build on 

each other’s reasoning. This setting could also encourage a dynamic discourse between 

participants in every macro-cycle of the experiments enriching the limited interaction between 

the researcher and a participant. In other words, design experiments with small groups of 

students could “create a small-scale version of a learning ecology so that it can be studied in 

depth and detail” (Cobb et al., 2003, p. 9). 

Additionally, design experiments are usually scaled up to whole classroom settings to 

examine whether the design is applicable in real classroom situations. In such studies, the design 
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of tasks, tools, and questioning could elicit different conceptions and structures of reasoning 

which would have been interesting to explore. The design could also be refined to encourage 

collaboration between students and co-construction of knowledge. 

A third limitation of this study was that the design experiments were conducted virtually 

because of the pandemic. This kind of setting did not allow the researcher to be physically 

present for the participants when digital or technological troubleshooting required an immediate 

attention. These included troubles with the spontaneity of the audio and video recordings and 

difficulties when some students required assistance in using digital tools on their computers. For 

example, most students were not able to use the annotation tool of Zoom to show the part of the 

task or tools they were focusing on or draw images to support their reasoning. There were also 

instances that I had to take turns in sharing the screen with the student to show them how to use 

the digital tools. 

Additionally, interviewing students virtually from their homes resulted in multiple 

distractions during the experiments. For example, students seemed conscious of what they shared 

with me when their family members were next to them (Recall that guardians were allowed to be 

present in the interview). To help them become more comfortable, I encouraged them to share 

what they were thinking and emphasized that there were no right or wrong answers in our 

interview. Other distractions that halted their interactions from the tasks and questioning during 

the experiments were when students looked for their computer chargers or dealt with 

unnecessary background noise. Most of the distractions partly impeded students’ attention and 

the spontaneity of their thinking. It would be more convenient and efficient in future studies to 

interview the participants in person to immediately respond to digital or technological issues, 

minimize distractions involved in virtual interviews, and immediately observe their in-the-
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moment gestures or illustrations that could have been used as evidence of their understanding 

about angles. 

A fourth limitation of this study was the delay in modifying the design of tasks and tools 

when a student faced a difficulty. To elaborate, while students’ prior knowledge, in-the-moment 

responses, and actions informed the modifications of the design, these modifications occurred an 

hour or a day later and may have not authentically prompted students to reorganize their 

reasoning at the moment. For instance, it took me a day to remove the wedges in the exploratory 

tasks after Jordan reasoned about angles as the space of the wedge. During this delay, the design 

experiment continued and other tasks, tools, and questioning might have already influenced 

Jordan to reorganize his reasoning about angles in terms of openness. A future iteration can have 

shorter and more spaced-out sessions to allow time for modifications. Additionally, a future 

iteration can test these new modifications on the task design. It can also test new task 

modifications such as a new version of the “Growing and Shrinking Angles” task without 

showing the split in twelfths to examine if it will support students like Alicia to consider 2/12 as 

the angle unit. Future research could further develop the design and examine student reasoning 

about angles. It could also explore further the reciprocal relationship between the forms of 

reasoning and the design. 

A fifth limitation of the study was my lack of control over students’ use of the “show 

angle measure” tool in the “360 Angles” and “Splitting a Circle” tasks. In some instances, 

students activated the tool before they made conjectures about the angle size in degrees. 

Although I designed the tool to hide the degrees by default, students were quick to unhide it and 

view the degrees before I asked them to create their conjectures. These instances of opening the 

tool prior to my instructions impeded students from creating their conjectures and reasoning 
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about the size of angles in degrees by themselves. For instance, when I asked how they knew the 

degrees for two-quarter turns, some of them responded that they saw the degrees using the “show 

angle measure” tool. On the other hand, the availability of the tool was significantly helpful 

when students were not prepared to work with fractions or division of large numbers such as 

360. Only one of the four participants did not rely on the “show angle measure” tool. In a future 

iteration of the design, it might be useful to have one version of the task without the “show angle 

measure” tool. 

The sixth limitation of the study was the nature of my questioning in the micro-cycles 

and macro-cycles of the experiments. Before I conducted the experiments, I designed sets of 

questions and instructions for every task. Although the interview questions were intended to be 

semi-structured and open-ended, I utilized most of the questions and instructions I prepared. In 

many instances during the retrospective analysis, I noticed that students’ responses required 

follow-up questions to further unpack their thinking that I did not ask. I noted these instances and 

in future iterations I would be more prepared to prompt the students when I encounter similar 

forms of reasoning.  

Additionally, I made some modifications while working with students at the later design 

experiments that the students I interviewed earlier did not have the chance to explore. For 

example, when I asked Axel about angles smaller than the one-degree angle, he reasoned about 

angles as fractions of one-degree illustrating continuous reasoning. Axel was the third student I 

interviewed so I did not ask this question to the students I interviewed before him to examine if 

they could reason in a similar way. In a future iteration, I plan to ask students about the angles 

smaller than the one-degree angle to examine whether they could reorganize their reasoning from 
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discrete into continuous. Also, I plan to revisit student interactions with prior tasks to examine 

other opportunities in the task design where this kind of continuous reasoning could be elicited.  

7.4.  Concluding Remarks 

Research and mathematics curriculum standards have shown that a conceptual 

understanding of angles is important for students’ mathematics learning. The review of the 

literature shows that presenting angles statically is primarily counter-productive to constructing 

meanings about angles by eliciting a variety of alternative conceptions. To offer a solution to this 

problem, I utilized the power of digital technology to represent the generation of angles 

dynamically and illustrate the change in the quantities involved in this generation. This 

dissertation illustrates how this dynamic design (tasks, tools, and questioning) supported students 

to avoid alternative conceptions and actively construct sophisticated forms of reasoning about 

angles. Findings from this study also provide evidence of students’ reasoning bridging the three 

common angle conceptions and illustrate the interplay between geometric and multiplicative 

thinking. This interplay shows the reciprocal relationship between students’ geometric and 

multiplicative reasoning in understanding the angle concept. The dynamic generation of angles 

and their composition and decomposition strategies support students’ construction of 

sophisticated multiplicative reasoning. At the same time, by reasoning multiplicatively about 

angles, students developed a sophisticated understanding about the geometric nature of an angle 

as a union of two rays, as a rotation, and as a wedge. This reciprocal relationship together with 

the four categories of students’ reasoning offer an entry point for further research on the 

development of theories on students’ reasoning about dynamic angles and the construction of 

connections between angle reasoning and other mathematical concepts.  
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Appendix 
 

Letter to parents of student participants 

April 20, 2021 
 
Dear Parent/Guardian: 
 
I am writing to let you know about an opportunity to participate in a research study about 
Investigating Elementary School Students’ Reasoning about Dynamic Angle. The purpose of this 
study is to explore how elementary school students reason about angles as they work on digital 
tasks I designed.  
 
If your child or dependent is a third-grade elementary student, your child or dependent may be 
eligible to participate.  
 
Third-grade is the grade level when students begin to explore angles as an attribute of shapes, 
and this is the time to offer younger students opportunities to explore angles in ways that are 
meaningful to them. Understanding angles is essential in many areas of the mathematics 
curriculum. All activities related to the study will add to your child or dependent’s usual 
learning. 
 
If you agree to participate your child or dependent, I will observe and interview your child or 
dependent along with another third-grade student while they both work with my designed tasks 
in exploring angles.  
 
This study will involve recording of video, audio, and screen sharing interactions with the 
participants. It will take about 5-8 sessions, 25-30 minutes each session, of their time. These 
sessions will take place in a virtual meeting platform (e.g., Google Meets, Zoom) during the time 
convenient to your child and another student. This time can be during break or after-school 
activity. 
 
If you have any questions, please contact me at (201) 912-5304 or my email address 
germiae1@montclair.edu.  
 
Thank you for considering your child or dependent’s participation in this study. This study has 
been approved by the Montclair State University Institutional Review Board, Study no. FY20-
21-2202. 
 
Sincerely, 
 
ERELL GERMIA 
Doctoral Student 
Department of Mathematical Sciences 
Montclair State University 

mailto:germiae1@montclair.edu
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