
Montclair State University Montclair State University

Montclair State University Digital Montclair State University Digital

Commons Commons

Theses, Dissertations and Culminating Projects

1-2023

A Functioning Code May Not Be a Secure Code : A Preliminary A Functioning Code May Not Be a Secure Code : A Preliminary

Study on the Students' Complacency with Secure Coding Study on the Students' Complacency with Secure Coding

Jeremiah Niiquaye Kotey

Follow this and additional works at: https://digitalcommons.montclair.edu/etd

 Part of the Computer Sciences Commons

https://digitalcommons.montclair.edu/
https://digitalcommons.montclair.edu/
https://digitalcommons.montclair.edu/etd
https://digitalcommons.montclair.edu/etd?utm_source=digitalcommons.montclair.edu%2Fetd%2F1215&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.montclair.edu%2Fetd%2F1215&utm_medium=PDF&utm_campaign=PDFCoverPages

SECURE CODING COMPLACENCY 1

Abstract

Eleanor Roosevelt once said: "Learn from the mistakes of others. You can’t live long enough to

make them all yourself". Mistakes are almost inevitable while coding or designing a system.

Therefore, patches are created to fix the issues in the code either by a manual review, or through

a static analysis tool. Oftentimes, mistakes in programming emanate from lack of skills thus,

competence with a particular programming language but negligence also plays a role in other

instances. A functioning code that solves a particular problem does not guarantee that the code is

secure, hence the code should be structured to meet secure programming guidelines and

principles. Most students tend to stop at a functioning code, paying less attention to the security

aspects of programming. This has an ultimate impact on the industries where software security

gets the priority. Therefore, students should be motivated for practicing secure programming in

their academic levels. It will grow their interests in writing professional code from the beginning

and raise their values as novel developers to the competing world. How do we bridge the gap

between common mistakes made by new developers and professional developers? Strict coding

practices must be enforced in academia and an updated database of common errors in

programming must be kept as a guide to enrich rookie programmers for the software

development industry. New developers also tend to make light of security when writing

programs and this becomes a habit that negatively affect software industries. The primary

objective of this study is to determine how negligent students are in writing secure code, analyze

their complacency and understand the effect it has on new developers in the software

development industry. To achieve this objective, two surveys were created. The first survey was

to understand students’ views about secure coding and collected code samples from students.

The second survey was structured to collect senior managers' view about new developers

SECURE CODING COMPLACENCY 2

programmers when they first get started in the programming industry. Codes samples were then

analyzed to find frequently occurring common mistakes and then compared students’ common

mistakes to Common Vulnerabilities and Exposures database (CWE). Professional developers

were also asked about the common mistakes these new developers make to understand what the

industry expects from them. The results suggest that students rarely care about security while

programming. 60 participants out of 98 focused more on the proper functioning of code as

compared to the security aspects of code. About 30% of the participants have never considered

the security of a program they developed and 93% of the participants among them intend to

pursue a career in a software programming field in the future. Based on these findings, it is

essential to strengthen security education at the academic levels so that the students can be

conscientious programming professionals. The results of the second survey shows that most

managers are concerned about security and expect entry-level programmers to know a thing or

two about software security. Close to 90% of managers suggest it will be a good idea for

programming students to be knowledgeable about secure programming before they enter the

industry.

Keywords: vulnerability, secure code, software security, functioning code, programming

SECURE CODING COMPLACENCY

MONTCLAIR STATE UNIVERSITY

A functioning code may not be a secure code: A Preliminary study on the

students' complacency with secure coding

by

Jeremiah Niiquaye Kotey

A Master's Thesis Submitted to the Faculty of

Montclair State University

In Partial Fulfillment of the Requirements

For the Degree of

College of Science and Mathematics

Department of Computer Science

Master of Science

January 2023

Thesis Committee:

Dr. Kazi Zakia Sultana

Thesis Sponsor

3

12/16/22

Dr. Bharath Samanthula

Committee Member

Dr. Vaibhav Anu

Committee Member

12/18/22

12/16/22

SECURE CODING COMPLACENCY 4

A FUNCTIONING CODE MAY NOT BE A SECURE CODE: A PRELIMINARY STUDY ON
THE STUDENTS’ COMPLACENCY WITH SECURE CODING

A THESIS

Submitted in partial fulfillment of the requirements

For the degree of Master of Science

by

Jeremiah Niiquaye Kotey

Montclair State University

Montclair, NJ

2023

SECURE CODING COMPLACENCY 5

Copyright@2022 by Jeremiah Niiquaye Kotey. All rights reserved.

SECURE CODING COMPLACENCY 6

Acknowledgements

First and foremost, I want to thank The Lord Jesus Christ, for the inspiration I got to do my

master’s and making this possible. Glory to God! Secondly, I am extremely grateful to my

supervisor, Dr. Kazi Zakia Sultana for her invaluable advice, continuous support, and patience

during my master’s study. Her immense knowledge and plentiful experience encouraged me in all

the time of my academic research. I want to express my gratitude to Dr. Bharath

Samanthula for his advice and support from day one, when I started my master’s program at

Montclair State University, not forgetting Dr Vaibhav Anu for his support during my final parts in

the program. I would like to thank the management at R.Seelaus and Co. for their financial support

and the opportunity to learn from them. It is their kind help and support that has made my study

successful. Finally, I would like to express my gratitude to my parents, my wife, and my child.

Without their tremendous understanding and encouragement in the past few years, it would be

impossible for me to complete my study.

SECURE CODING COMPLACENCY 7

Contents

Introduction……………………………………………………………………………….10

Related Work……………………………………………………………………………...13

Methodology……………………………………………………………………………….14

Research Questions………………………………………………………………..15

Data Collection…………………………………………………………………….18

Tools………………………………………………………………………..18

Survey Participants………………………………………………………...19

Survey Questions…………………………………………………………..21

Data Analysis………………………………………………………………22

Results and Discussions…………………………………………………………………...24

Threats to Validity………………………………………………………………………...35

Conclusion…………………………………………………………………………………37

References………………………………………………………………………………….39

SECURE CODING COMPLACENCY 8

List of Tables

Table 1: Growth in Software Developers by Year……………………………………..20

Table 2: Project Demographics: Level of education…………………………………..20

Table 3: Project Demographics: Rating of programming skill ..……………………..20

Table 4: Project Demographics: Country of college ……………….………………....20

 Table 5: Project Demographics: Number of students that know a specific language 20

Table 6: Table 2: Survey (S1) Questions …………...……………….………………....21

Table 7: Table 2: Survey (S2) Questions …………...……………….………………....21

Table 8: Table 2: Survey (S2) Questions …………...……………….………………....21

Table 9: Table of CVEs & CWEs………………………………………………..……..33

SECURE CODING COMPLACENCY 9

List of Figures

Figure 1: Sample Code………... ………………………………………………………..16

 Figure 2: Determining factor for programming mistakes by students…..…………..23

 Figure 3: Determining factor for programming mistakes by new developers…..…..23

 Figure 4: Responses for S1.2………………………..……………………………..…....25

 Figure 5: Responses for S1.4………………………..……………………………..…....26

 Figure 6: Responses for S2.2………………………..……………………………..…....26

 Figure 7: Responses for S2.3………………………..……………………………..…....27

 Figure 8: Responses for S2.4………………………..……………………………..…....27

 Figure 9: Improper Initialization ………………………..…………………...…..…....28

 Figure 10: Improper use of functions………………………………………….....…....29

 Figure 11: Responses for S2.5…………………..………………………………....…....30

 Figure 12: Error Handling…………………..………………………………....…….....32

 Figure 13: Knowledge in application domain…………………………………....…....33

SECURE CODING COMPLACENCY 10

I. INTRODUCTION

The concept of software security must be tackled at early stage, preferably when students

begin the journey of learning a programming language. It aims to enforce a set of practices that

makes systems more secure and preventive from the cyber-attacks. In today’s technological world,

programming secure systems has become a top priority for developers. The encouraging thing is

that many potential exploits and attacks can be averted through secure and attentive coding

practices. Therefore, writing secure code should be the first line of defense for every application. If

students become professionals, why shouldn't software security be a priority at the most

fundamental level? Learning a particular programming language and knowing what it takes to write

secure codes in that programming language must be closely associated. Even though many

potential exploits and attacks can be averted through different code review processes, the goal is to

avoid making mistakes. Vulnerability in a program is almost inescapable, but a system that follows

good programming conventions is more defensive and harder to break for the attackers. According

to the National Vulnerability Database (NVD), a repository of Common Vulnerabilities and

Exposures (CVEs), there’s an average of more than 50 different kinds of vulnerabilities, ranging

from critical to low, logged each day which takes the vulnerability count to at least 1800 in a month

and 20,000 in a year (NVD Dashboard). These figures represent reported vulnerabilities yet, there

are some others that are not reported owing to “zero days”. Students do not care about secure

programming yet; these students are the same professionals who graduate in computer science and

still struggle with the security aspects of their code. Vulnerability education tackles the realization

that things can go wrong. A user might enter a string when the program expects an integer. A

function that opens a file might fail. The program must check for these possibilities and handle

them correctly. If these students are educated on secure programming guidelines and conventions,

SECURE CODING COMPLACENCY 11

there will be less time between software development phase, testing phase and deployment

phase of a software development life cycle.

Vulnerabilities in code usually result from unmitigated oversight or lack of skills of the

programmers in properly using logic functions, arithmetic calculations, and variable assignment

(Kotey et al, 2021). Wrong variable declaration is another fundamental cause of most

programming vulnerabilities (Kotey et al, 2021). There are many static analysis tools which can

locate specific vulnerabilities in the source code. These tools often suffer from high false

positive rates and fail to detect all the vulnerable files (Nadeem et al, 2012). This might occur if

a new vulnerability is discovered in a system or if the analysis tool has no understanding of the

run-time environment (Dewhurst, 2022). The aim of this study is to observe common students’

mistakes that lead to vulnerabilities so that future tools can curtail these mistakes in a form of

vulnerability education. This study will assist to improve these static analysis tools to better

understand human behavior pertaining to secure programming and thus ensure effective

vulnerability education.

When vulnerabilities are exploited, the impact can be insignificant or detrimental,

depending on the attack’s nature. New developers make mistakes that experienced programmers

might have come across before. In the survey, some managers claim new programmers rush into

coding without creating a plan. And also, new programmers do not modify modules and

functions which might contain bugs or skip to observe how modules will affect their programs.

Some technology organizations take new developers employees through rigorous on-the-job

training before they are allowed to work on live programs but is that enough?

Negligence is one human behavior that contributes to vulnerabilities in programs.

Negligence relating to ignorance or negligence pertaining to disregarding security. The point is,

SECURE CODING COMPLACENCY 12

if software security is not prioritized at fundamental stages of programming education, most

students, hence new developers will not regard security with utmost importance. Before a

program is considered secure, it must follow secure programming guidelines and conventions.

Most programs go through several review processes before being considered secure given that

programmers fail to follow the right guidelines and conventions and attackers are always getting

creative thus finding ways to exploit vulnerabilities. During software testing, testers mostly

ensure that the program functions correctly. They do not tackle security to the core. A program

needs to be tested thoroughly in order to reduce any hangs or lags in processing, as majority of

coding errors occur in data processing with out-of-bounds read and out-of-bounds write being

top of the list (Hladun, 2022). These mistakes cause buffer overflow which makes up to more

than 35 percent of vulnerabilities (Hladun, 2022). Research found that buffer overflow is one of

the most widespread and frequently reported vulnerabilities that result in system crashes (Kotey

et al, 2021). Therefore, vulnerability education should not be limited to organizational practices

in software production environments. If students are educated on secure programming guidelines

during their academic years, they will become good developers and testers in the future.

Organizations will need to spend less effort and time during software testing.

This research study will contribute to the software security and training in the following

ways:

 It will help understand the need for software security education at the academic levels.

 It will make students professionally prepared for industry and help them to write secure

code as a professional developer.

 It will motivate software security education and thereby will contribute to lessening the

need for training resources, cost, and effort for new developers in the industry.

SECURE CODING COMPLACENCY 13

II. RELATED WORK

This section will focus on some related works on vulnerability education and software

security. Earlier studies focused on creating awareness on the frequent causes of vulnerabilities

in code. Kotey et al (2021) found that lack of input sanitization, improper checking of array

bounds and parameters, and the lack of value and range checks on variables are the most

common programming issues that lead to a buffer overflow. They also reported that improper

use of “If” and “While” loop conditions frequently contribute to the errors in bounds and

variable checks. Taeb & Chi (2021) proposed a model by preparing a set of hands-on labs that

will introduce students to secure programming practices. They used source code and log file

analysis tools to predict, identify, and mitigate vulnerabilities. There are some other research on

developing curriculum for theory and hands-on security education for the students. These

courses were developed to train students as skilled users so that they do not become the victims

of cyber-attacks. According to a study Pothamsetty (2005), disseminating knowledge in security

technologies, attack techniques and tools, cryptographic mechanisms cannot contribute to

demolishing vulnerability, rather students need to be trained on mitigating vulnerabilities through

secure programming in the undergrad level courses. When it comes to cyber security, prevention

is better than control thus solutions or fixes, because the least of vulnerabilities, when exploited

by an attacker can cause massive damages to an organization.

Imtiaz et al, (2021) also proposed a model based on association rule mining to discover

the relationship between a security flaw and a corresponding fix, by deploying the classical

Apriori algorithm. Their proposed model will work on the basis of X implies Y. In the context of

secure software engineering, X could be an attack type in which case Y would denote the

relevant security flaw. More commonly, X could be a flaw in which case Y would be a fix. The

SECURE CODING COMPLACENCY 14

model is based on a logic that, attack type leads to flaw and flaw leads to a fix.

Online vulnerability databases and awareness creation also plays a role. CVE (Common

Vulnerabilities and Exposures) and CWE (Common Weakness Enumeration) are both publicly

useful online databases that aid vulnerability education by sharing information and resources.

The database records act as vulnerability dictionary and helps programmers to make proactive

cautions and remediation to avoid these vulnerabilities. It also standardizes weakness across

different programming languages and makes programming conventions easy to understand.

Before CVE was created in 1999, there was no centralized list of common identifiers that made it

possible to share information across multiple information sources, databases, tools, and services

(Jelen, 2019). These security databases have helped programmers and organizations in general to

avoid weaknesses in their systems. Both CWE and CVE use a score rating system to help

programmers understand the significance of a reported vulnerability. Also, both CVE and CWE

are recognized using identifiers or entries, usually CVE or CWE followed by “year added” and

unique number. For example, CVE-2022-26809 - "Remote Procedure Call Run-time Remote

Code Execution Vulnerability".

This study is different from past studies because it seeks to analyze students’ programs to

find and understand the common mistakes that students make that lead to a vulnerability. Other

studies generalized this assertion. Also, this study will aim to find the differences and similarities

having to do with the common mistakes that lead to vulnerabilities between students (new

developers) and professional developers.

III. METHODOLOGY

In this section, the research questions, survey questions, mode of data collection and data

analysis will be discussed.

SECURE CODING COMPLACENCY 15

1. Research Questions

The goal of this study is to determine whether students care about security in programming

and if software security education at the academic levels is related to the professional

development of the software programmers? The objective of this study is to analyze students’

code in addition to some secure programming questions and to ask professional developers about

their views of new developers with regards to secure programming. To better develop research

questions, these hypotheses were formed:

H.1: Students do not care about the security in their code, they only care whether the

code solves the problem it is designed for.

H.2: Entry level students lack the standard software security education required to be

successful in the software programming industry.

The subsections briefly describe the questions that were asked to get the goal of this study.

A. Importance of software security education at academic levels and benefits in
programming industry

The software industry is a rigorous and fast-paced environment that expects accuracy,

efficiency and effectiveness from professionals but are entry-level programmers ready when

hired? Most managers expect new developers to have a fundamental idea about security. Most

new developers tend to focus more on the functions of the program rather than its security. Also,

they tend to try and beat timelines of projects, thereby ignoring or being eluded by all security

measures and guidelines. Generally, students work to write a functioning code which may or

may not be secure. But do students pay attention to the security of their code too? Students tend

to stop at a functioning code without reviewing to see if it meets proper secure coding

conventions. The SQL code below shows a submission from a student during the survey.

SECURE CODING COMPLACENCY 16

Figure 1: Sample Code

For the code above, when “--" is added to the username, it becomes nhinkson “--". This will

comment out the last part of the authentication process, giving an attacker privileges to the

system. Double hyphen when used in a SQL statement or PL/SQL block, adds trailing comments

to a line. In this common case of SQL Injection, the double hyphen will comment out the last

line of code, there skipping that code during the authentication process. This was evident in the

NoseRub protocol attack in 2007 (Groebert, 2007). To understand how important security

education is to the programming industry, this first question was asked:

RQ.1: To what extent is software security education at the academic levels related to the
professional development of the software programmers?

B. Most frequent programming mistakes made by students that lead to a vulnerability

Software developers make some mistakes in their code that can lead to vulnerable code

resulting in security breaches. For example: a wrong logic, unchecked array bounds, incorrect

and non-descriptive variable definition, or an arithmetic calculation done incorrectly can occur

frequently in code due to an oversight or lack of knowledge. Every programming language has

its own conventions and practices for ensuring secure code and ignoring them can end up with

developing a vulnerable system. It is contingent upon the programmer to have the knowledge

required to make a program secure. If students are enforced to follow security conventions while

coding, they can build the practice of writing secure code from the earlier stages which will

make a significant impact on secure software development in the industry. Therefore, in order to

SELECT k.studentId, k.firstName, k.Lastname, k.dob
FROM StudentData k
WHERE k.hashValue = ‘’
AND k.student = ‘nhinkson’
AND k.passWordx = ‘HoldidayDet4’

SECURE CODING COMPLACENCY 17

better understand common coding mistakes made by the new developers, the second question

was:

RQ.2: What are the most frequent programming mistakes by the students that lead to a
vulnerability?

C. Most frequent programming mistakes made by new developers that lead to a

vulnerability

Software companies expect new developers to be equipped with the fundamental

knowledge to make a program functional while regarding security. Just like students, new

developers have lapses when it comes to secure programming. With this in mind, the third

question was asked:

RQ.3: What are the most frequent programming mistakes (irrespective of Programming
Languages) made by new developers that lead to a vulnerability?

D. Programming mistakes of students and new developers vs. professional programmers

Every software developer is bound to make mistakes at some point, but experience is key

regardless of a programming language. Experienced programmers are used to programming

conventions and good programming habits which new developers are not used to. This could be

because professional developers have firsthand experience of what a programming mistake

cause. Also, professional developers tend to pay close attention to security when programming

because security is a widely used concept in the programming industry. Yet, there are some

similarities in programming mistakes made by new developers and professional developers. This

subsection aims to compare students' mistakes vs. professional programmers' mistakes that lead

to vulnerable code. A comparative study of the students' programming mistakes with those by

the professional developers will help us to better design vulnerability education courses in the

academic levels. This leads to the next research question:

RQ.4: Are there any similarities and variations between programming mistakes by the
students(new developers) and those by the professional developers as recorded in CVEs?

SECURE CODING COMPLACENCY 18

E. Skills, experience, and educational requirements for good developers

Every programmer needs some form of programming education whether informal or

formal. Formal in the sense of being taught and informal in the form of self-taught. Formal

education guides a programmer through the basics of programming. Beyond the applied

knowledge a person acquires from learning to code, a degree in computer science related field

will give a programmer a near-complete background and affiliation to a community in computer

science to use as a foundation for your knowledge and this involves principles of secure

programming which self-taught programmers lack. Owing to lack of community, most self-

taught programmers lack the use of industry-wide conventions and principles of secure coding.

This brought us to the final question which is:

RQ.5: What kinds of professional skills could overcome common programming mistakes,
leading to software vulnerability, made by new developers?

2. Data Collection

A. Tools

Survey planet, an open-source online survey solution tool that provides an easy-to-use

interface for data collection and analysis was used for the surveys. Two surveys were developed

for this study. For the first survey, data was collected from ninety-eight (98) students from seven

(7) different countries and for the second survey, data was collected from thirty-seven (37)

Professional developers from eighteen (18) companies in the United States, India, and Ghana.

Survey planet provides a sharing tool that made it easy to share survey with participants all over

the world via a secure link and results are already segmented making it easy for analysis and

drawing results. Data was then imported into an online graph representation platform called

VISME to make the data more readable and presentable.

SECURE CODING COMPLACENCY 19

B. Survey Participants

For the first survey, participants were chosen from seven different countries as shown in

table 4. The project population was not just limited to one country to help understand how

students perceive secure programming in different countries around the world. According to a

google report, Africa now has 716,000 software developers, a 3.8 percent rise in 2022 and a

figure that will rise even more in the coming years (David et al, 2021). This stresses the fact that

more people are taking on programming and also stresses the need for secure programming. The

participants are either enrolled in regular classes or self-taught students and they have knowledge

about programming at different levels (Beginner or Intermediate or Pro as shown in table 3). In

this project, a Beginner was defined as a student who has started writing programs or learning

how to write programs. An Intermediate level student can write a functional program that will

somehow serve the purpose; a Semi-pro student can write a fully functional program and also

can find out any problem happened inside it through debugging; a Professional student can write

a fully functional and secure program and can also teach other students about different aspects of

programming. An expert is a student who is capable of being a part of an organization and

writing live programs. A participant could be knowledgeable in more than one programming

language as specified in table 5.

Thirty-seven (37) Professional developers for survey from eighteen (18) different

companies in the survey process. The project population was not just limited to one country to

help us understand how other nationalities perceive secure programming. For the criteria for

selection, participants were expected to be all managers or supervisors with some knowledge

about entry-level developers and be an expert in at least one (1) modern programming language.

The software industry is fast growing with more than 4 million professional developers in

SECURE CODING COMPLACENCY 20

the United States, a number which is expected to double by 2030 according to Statista.com and

there are more than 27 million professional developers currently in the world, a number that's

expected to grow to 45 million by 2030 (Team, 2021).

Table 1: Growth in Software Developers by Year

Year Number of Software Developers
2018 23.9 million
2019 26.4 million
2021 26.9 million
2023 27.7 million
2024 28.9 million
2030 45.0 million

Table 2: Project Demographics: Level of education.
Bachelor’s Degree 62
Master’s Degree 19

Diploma 12
Self-taught 5

Table 3: Project Demographics: Rating of programming skill
Beginner 18

Intermediate 26
Semi Pro 39

Professional 12
Expert 3

Table 4: Project Demographics: Country of college
United States 33

Ghana 52
India 2

Nigeria 2
Tanzania 1
Liberia 1

Netherlands 1
Ivory Coast 1
South Africa 1

United Kingdom 4

Table 5: Project Demographics: Number of students that know a specific language
Python 59

C++ 24
Java 31

SECURE CODING COMPLACENCY 21

SQL 58
Perl 4
PHP 27
Other 18

C. Survey Questions

For survey one (S1), demographics of the students were collected while designing the

survey. The core questions were based on identifying their concerns about secure programming.

In this study, a secure code was defined as a functioning code that follows security guiding

principles and written with security in consideration. Secure code can defend against cyber-

attack. On the other hand, a functioning code just solves the problem. Therefore, a functioning

code may or may not be concerned with security. It focuses more on “if the program works”.

Below are examples of some survey questions:

Table 6: Survey (S1) Questions

S1.1: How would you rate your programming skill?

S1.2: What is more important to you when completing assignments or projects?

S1.3: Have you ever considered the security of a program/code you wrote?

S1.4: Do you intend to pursue a career in a software programming field in the future?

 S1.5: Which programming languages are you knowledgeable about?

S1.6: If you had rules to guide you when completing school programming
assignments/projects to avoid little mistakes that could cause a vulnerability, would you
consider these rules?
S1.7: Have you ever used a static analysis tool?

For Survey two (S2), while designing the survey questions, the location and name of

organization of the participants to get an understanding of nation-specific or organization-

specific perspective pertaining to secure programming was collected. Below are the examples of

some survey questions:

Table 7: Survey (S12) Questions

S2.1: Which programming languages does your company work with?

S2.2: How would you rate the importance of security education at the academic levels for

SECURE CODING COMPLACENCY 22

professional success?

S2.3: How is a computer program reviewed for ensuring security during development in
software industry?

S2.4: Will it be useful if new developers are trained for using the automated review tools
before they join the industry?

S2.5: Which of the following are the most frequent vulnerabilities you observe in the new
developer’s code?

S2.6: Which of the following common weaknesses related to security are frequently observed
in new developer’s code?

S2.7: Which of the following vulnerabilities are common both in the code of new developer
and code of the professional developers?

S2.8: Which of the following vulnerabilities are found only in the code of new developers?

S2.9: New programmers from which of these education levels make the fewest coding errors?

S2.10: Which of these academic majors/minors can provide good training to mitigate potential
programming errors?

S2.11: What is the correlation between a given programming language proficiency and the
skills needed to overcome common mistakes? (e.g., C, Python, Java etc.)
S2.12: Is a good knowledge of the application domains useful to reduce programming errors?
(e.g., Real Estate, Banking, Medical Robots, Patent Law, Stock Markets etc.)

D. Data Analysis

Both quantitative (for numerical data) and qualitative (logical data) methods were used to

analyze the survey data. By process of cross tabulation, data was broken into subgroups to obtain

variables. ANOVA (Analysis of Variables), an analysis tool used in statistics that splits an

observed aggregate variability found inside a data set was used to divide data into parts (Kenton,

2022). This helped to statistically model the relationship between all variables and analyzed the

relationship between all variables using the level of education as key.

For the first survey (S1) thus survey of students, the level of education is the

deterministic factor for the level of skill and the level of skill determines the kind of error that the

student is likely to make. These three (3) variables were formed, and the model below was

adopted as shown in figure 2.

V.1: Level of education

SECURE CODING COMPLACENCY 23

V.2: Type of skill

V.3: Type of programming mistake

Figure 2: Determining factor for programming mistakes by students

For the second survey (S2) thus survey of professional developers, the idea was to find

the relationship between new developers and the common mistakes they make that lead to a

vulnerability. To understand this, a relationship had to be created between these variables

according to the data in the survey. For this to be effective, these five (5) variables were formed.

Also, having proven knowledge in the application domain determines if a new developer has

what it takes to mitigate programming mistakes. This model was adopted as shown in figure 3.

V2.1: Level of education

V2.2: Type of degree(major)

V2.3: Knowledge in application domain

V2.4: Skill level

V2.5: Fewer programming errors

Figure 3: Determining factor for programming mistakes by new developers

SECURE CODING COMPLACENCY 24

Sample codes were collected from students for analysis to determine some common

mistakes they make when programming. The sample codes were compiled using another tool

named as “SonarQube”, an open-source static analysis tool to better understand and make the

code review easier. SonarQube is a web-based platform in Java and can analyze and manage

code of more than 20 programming languages including C/C++, PL/SQL, Cobol etc. through

plugins (Vizteck, 2016). In order to avoid the false positives, which most static analysis tools

tend to report, a manually review was done to verify the results of the tool.

IV. RESULTS AND DISCUSSIONS

In this section, results from both surveys will be discussed. Secure programming is

strictly enforced in the software programming industry so, security in programming must be

valued analogous to the manner in which program is designed to function to help equip students

and new developers with the skills they need to be successful in the software industry because

students grow to become professionals. This survey-based analysis corroborates the hypotheses

that students do not focus on security when coding and new developers lack the security skills to

program secure and industry-standard applications. In this section, the findings for each of the

research questions designed for this study will be discussed.

RQ.1: To what extent is software security education at the academic levels related to the
professional development of the software programmers?

The responses of five (5) survey questions(S1.2, S1.4) and (S2.2, S2.3, and S2.4) from S1

and S2 respectively, tackles this research question. Responses have been displayed in figures 4,

5, 6, 7, and 8 respectively. Out of 98 students, 62% claimed a functioning code is more important

to them than a secure code. Of the 38% that cared about security, after analyzing their sample

codes, it was clear that most of them made basic mistakes in programming especially variable

assignment. Out of the 98 students, 93%intended to pursue a career in a software programming

SECURE CODING COMPLACENCY 25

field in the future as shown in figure 5. Secure programming practices and conventions must be

enforced in the basic programming courses to build the skills among the students. Most students,

(60%) find the vulnerability education as helpful because they feel the need for secure

programming guidelines.

More than 90% of professional developers deem security education at academia level

very important as it equips new developers with everything they need to be successful the

industry. Having knowledge in security when programming means developing secure systems

which is the number one issue currently in the industry. Also, students have to be exposed to

static analysis tools and different automated code review tools and techniques to help detect

vulnerable codes. This will also help students to develop good analytical skills, which every

programmer needs.

Figure 4: Responses for S1.2

62%

38%

Functioning Code

Secure Code

SECURE CODING COMPLACENCY 26

Figure 5: Responses for S1.4

Figure 6: Responses for S2.2

93%

7%

Yes

No

60%

34%

6%

Very Important

Important

Average

Rather Unimportant

Totally Unimportant

SECURE CODING COMPLACENCY 27

Figure 7: Responses for S2.3

Figure 8: Responses for S2.4

22%

46%

14%
16%

2%

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

STATIC ANALYSIS
TOOLS

MANUAL CODE
REVIEW

PEER REVIEW UNIT TESTS SPECIFY

90%

10%

Yes

No

SECURE CODING COMPLACENCY 28

RQ.2: What are the most frequent programming mistakes by the students that lead to a
vulnerability?

RQ.2 focused on four (4) survey questions (S1.1, S1.3, S1.5, and S1.7). and sample codes

collected from the students. There were a couple of mistakes pertaining to students' code.

Although some of the mistakes may not be directly causes for vulnerabilities, they can indirectly

make the code prone to vulnerabilities. Most students' codes were copied from open-source code

libraries. These codes are not peer reviewed and thus do not follow security policies. Attackers

are usually familiar with open-source code and know how to exploit these codes. Some of the

most frequent mistakes made by students are as follows:

 Students do not initialize their variables which presents an unexpected behavior of their

programs when certain conditions are not met. A variable that is not initialized does not

have a defined value, hence it cannot be used. Improper Initialization has security

implications when the associated resource is expected to have certain properties or

values, such as a variable that determines whether a user has been authenticated or not

(CWE-665). An attacker can manipulate an uninitialized value which can cause denial of

service vulnerability. An example can be seen in figure 9; the string “city” needs to be

initialized.

Figure 9: Improper Initialization

SECURE CODING COMPLACENCY 29

 Students struggle in using functions properly. They do not take care when using functions

like gets() and strncpy(), which is one of the most frequent causes for buffer overflow

attack(Owasp). One sample code as shown in figure 10 presents a student's authentication

system that can cause buffer overflow. The gets() function does not check the array

bounds and can even write string of length greater than the size of the buffer which will

cause a buffer overflow. For example, if "xxxxxxxaaabbbxxxxxxxxx" is entered as the

password, root privileges will be granted because the input length is greater than what the

memory can hold so, the value of "correct" does not become zero. Another common

mistake that evident in students' code is writing logic for "If" loops.

Figure 10: Improper use of functions

RQ.3: What are the most frequent programming mistakes (irrespective of Programming
Languages) made by new developers that lead to a vulnerability?

For RQ.3 focused on three (3) survey questions (S2.1, S2.5, and S2.6). Professional

developers reported that, new developers make lots of mistakes that lead to buffer overflow as

shown in figure 11. Some of the common mistakes were, unchecked return value, out of bounds

RW, integer overflow, weak password management, improper validation of array index,

SECURE CODING COMPLACENCY 30

improper/missing initialization, as represented. All these mistakes especially out of bounds RW

and integer overflow can lead to buffer overflow which can in turn lead to a "Denial of Service".

Unintended integer overflows can cause memory corruption or information disclosure

vulnerabilities in variables associated with memory accesses or memory allocations (Hamilton,

2016). Also, new developers tend to extract codes from open-source code libraries which might

contain a vulnerability. New developers are not familiar with or knowledgeable about input

validation and code sanitization which deals with deciding what input to accept, and filtering and

modifying data to meet certain criteria. Input validation and code sanitization helps mitigate

cross-site scripting which the second frequent mistake made by new developers in figure 11,

according to the second survey.

Some managers reported that, new developers lack analytical skills and fail to plan the

structure of their code thereby making code review very difficult. It will be difficult to detect

vulnerabilities with Static analysis tools when the code is unstructured and even more difficult

for peer and manual reviews. It also takes experience to be used to industry-wide programming

conventions which most new developers lack.

Figure 11: Responses for S2.5

19%

16%

35%

0%
SQL Injection

Denial of Service

Buffer Overflow

Cross Site Scripting

Remote Code Execution

Others (Specify)

SECURE CODING COMPLACENCY 31

RQ.4: Are there any similarities and variations between programming mistakes by the new
developers and those by the professional developers?

For RQ.4 focused on two (2) survey questions (S2.7, and S2.8) and analysis of the

sample codes collected from the students and also analyzed data on “Common Vulnerabilities

and Exposures” (CVE) databases. Whether an individual is a student or professional developer,

all programmers must follow the same conventions to enhance security and all-round good

programming. Programming is like a language and a common language has to be spoken by all

programmers of the same language. For the first survey (S1), observations showed that, there are

some similarities and differences between professional programmers' and students' codes. For

example, CVE-2003-0968 (Stack-based buffer overflow in SMB-Logon-Server of the rlmsmb

experimental module for FreeRADIUS 0.9.3 and earlier allows remote attackers to execute

arbitrary code via a long User-Password attribute) can be compared to the buffer overflow as

shown in figure 10. In this vulnerability, there exists a stack buffer overflow in rlm-smb module

which can be triggered by a long User-Password attribute (greater than 128 bytes)(S-Quadra

Advisory, 2003).

 Another difference between professional developers and students is error handling.

Professional developers handle errors in code properly by throwing exceptions as shown in

figure 12. Throwing exceptions promotes complex error handling code that is more likely to

contain security vulnerabilities (CWE-397). Improper handling of errors can cause denial of

service by causing the system to crash or use important resources, ultimately denying or reducing

service to authorized users. Figure 12 shows an example of error handling by student verses error

handling by professional developer in CVE-2022-28463 (ImageMagick 7.1.0-27 is vulnerable to

Buffer Overflow)~CWE-252: Unchecked Return Value. In this case, the developer inserted a

"ThrowReaderException" to check any issue of a crash that could lead to a denial of service.

SECURE CODING COMPLACENCY 32

Also, professional programmers maintain the habit of inserting a return value in method

of function which students do not. Failing to insert a return statement could leave the program in

an unexpected state. CWE-252: Unchecked return value confirms this assertion. Kotey et al

(2021) found that unchecked value is one of the common cause of buffer overflow.

Figure 12: Error Handling

Table 9: Table of CVEs & CWEs.

TABLE OF CVEs and CWEs

CVE or CWE Vulnerability Title Reference

CVE-2003-0968 Stack-based buffer overflow https://nvd.nist.gov/vuln/detail/C
VE-2003-0968

CWE-665 Improper Initialization https://cwe.mitre.org/data/definiti
ons/665.html

CWE-397 Declaration of Throws for
Generic Exception

https://cwe.mitre.org/data/definiti
ons/397.html

CVE-2022-28463 ImageMagick - Buffer
Overflow

https://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-

2022-28463

CWE-252 Unchecked return value https://cwe.mitre.org/data/definiti
ons/252.html

SECURE CODING COMPLACENCY 33

RQ.5: What kinds of professional skills could overcome common programming mistakes, leading
to software vulnerability, made by new developers?

For RQ.5 focused on two (2) survey questions (S2.10, and S2.12) as well as verbal

comments. Results were broken into subsections based on data collected and professional

developers' view about reasons why new developers make mistakes. Professional skills that new

developers require to overcome common mistakes that lead to software vulnerabilities include:

A. Good analytical skills

Good analytical skills involves critical thinking, in-depth analysis, creativity, problem

solving and communication. Every software developer needs these qualities to be a good

software developer.

B. Knowledge in application domain

Survey showed that developers need to have a background knowledge in the domain they

program for. More 80% of the managers claimed that a good knowledge in application domain is

good for reducing errors in programming as shown in figure 13.

Figure 13: Knowledge in application domain

82%

11%
7%

Useful for all domains

Not useful for any domains

Useful for certain domains only

SECURE CODING COMPLACENCY 34

C. Not being Negligent; Role of Negligence (The major difference between students \&

professional developers)

Students code for fun while professional developers write code for live and standard

industry applications with no room for error or negligence. After observations in this study, it

was clear that negligence was the number one factor that cause vulnerability in students' code.

Negligence of secure coding in this study was defined as when students or programmers in

general fail to follow programming conventions. With negligence of secure coding, a student

may or may not care about the security of the program but cares about the functionality of the

program. Software vulnerabilities have great variation among them, but in the end, nearly all

come from preventable human error. Whether due to laziness, negligence, or a simple lack of

knowledge, small errors in writing systems can have major problems when exploited (Hamilton,

2015). Negligence was broken down into primarily two parts thus, negligence pertaining to

disregarding security and negligence pertaining to lack of knowledge and skill.

i. Negligence pertaining to disregarding security

Most students write programs with the aim to make it functional there by foregoing all

security conventions and rules. The following are examples of negligence pertaining to

disregarding security and programming conventions:

 Bad variable naming: it is helpful to be clear and concise when naming variables. Most

students tend to choose unnatural variables that doesn't clearly define the code. For

example, using "nad" to represent a names and addresses variable or using "let rates =

0.20" instead of "let interestRates = 0.20".

 Using strings to code mathematical calculations instead of basic integers. This issue is

significantly supported by (Kotey et al, 2021) findings. Lack of input sanitization,

SECURE CODING COMPLACENCY 35

improper checking of array bounds and parameters, and the lack of value and range

checks on variables are the most common programming issues that lead to a buffer

overflow in these systems.

 Not planning the structure of the code. Students tend to start coding without proper

planning thus, fixing things as they go. Writing an effective and secure code must start

with good planning and design, knowing what to achieve with a single line of code and

also consequences.

ii. Negligence due to lack of knowledge and skill

This is the most common form negligence. Most student programmers lack the

knowledge and skill to be able to detect a vulnerable code. This was evident in question ten of

the first survey. 90% of the participants could not detect buffer overflow in a short code.

Students cannot write a secure code unless they understand the need for a secure code. At the

most basic level, this means they need to understand the rules of their programming language

well. Also, owing to the fact that most students consider themselves to be self-taught

programmers, thus learning a programming language outside the school environment by

themselves, and at their own pace, they tend to lack conventional and secure coding updates that

are usually common in programming community. However, building relationships in a

programming community is crucial in numerous aspects such that it helps programmers to keep

up with the latest secure coding trends while sharing learning resources and building knowledge.

V. THREATS TO VALIDITY

In the following subsections, the three common threats to this study will be addressed.

A. Internal Validity

Internal validity is the concept of how much credible the results of research are. If there is

SECURE CODING COMPLACENCY 36

a possibility of any confounding factors, the results suffer from the threats of internal validity. In

the experiments, code samples were collected from the students irrespective of their proficiency

in respective programming language. That means the programming language used in a collected

code sample has not been mapped to the language the student is skilled at. Therefore, if the

student makes any programming mistake from security perspective in his/her code, there is a

possibility that it was due to the lack of proficiency in that particular language, not due to the

lack of security concerns. Also, new developers could study a particular programming language

for a long time and not have to use it when they first start in the industry. They could be

introduced to a new programming language they are not skilled at thereby making mistakes with

security concerns.

B. External Validity

Threats to external validity are any factors within a study that reduce the generality of the

results. In other words, it is the extent to which the results of a study can be generalized to and

across other contexts. The study only included 98 students from less than 20 schools in 10

different countries, hence, the population size is not representative of the entire STEM student

population in the world. To have a strong case of students' complacency with secure

programming, a larger population has to be sampled from different schools and likely from

different countries and also interview a lot more students to understand their perspective about

secure programming. As this is a preliminary study of the importance of vulnerability education

in the academic levels, the participants targeted were the ones reachable in the time constraints.

With more time, a larger population could have been reached to make this study a lot more

definitive. This study gave us a perception about the need of this type of education and common

mistakes by the students which will help in the next endeavor of broad range study.

SECURE CODING COMPLACENCY 37

C. Construct Validity

 Construct Validity defines the correctness of all observations and analysis made. Not

every student submitted a code for analysis. Only about 60% of students willingly submitted a

code. This reduced the success rate of determining if students really cared about securing coding

practices. Also, one assignment or project from a student does not fully define the student’s view

about secure programming. Having at least 5-10 assignments or projects from a student will

clearly create a pattern, thus giving you a signature of how that particular student writes codes.

VI. CONCLUSION

In this study, the complacence level in secure coding among 98 students explored and the

views of 37 professional developers about the common mistakes that new developers make

pertaining to programming were analyzed. Results found showed that there is complacency

among students pertaining to secure programming. The results suggest that the lack of security

proficiency in programming among students is an ongoing issue that must be paid close attention

to as more that 60% of students did not care about security or have the knowledge to make their

code secure. The major cause vulnerability in students' program is due to negligence, thus either

negligence due to lack of skill or negligence due to laziness or disregarding security. Most

students were honest and claimed that they have never considered the security of a program they

developed, and that security is not a consideration when writing programming assignments or

developing a system. The problem with this is that most of these students will eventually become

professionals and not considering security when programming at that level could be drastic for

developers.

In secure programming, the goal is to create a system that can withstand cyber-attacks.

Preventing cybersecurity incidents, which can cause leaks of sensitive data and other personal

SECURE CODING COMPLACENCY 38

information, starts at the very beginning of the software development process with the source

code itself (Morrow, 2022). Even though this is inevitable, following secure programming rules,

practices and conventions could put developers on the bad side of attackers.

In a follow-up study, a larger population size will be the target and objective and reaching

out to students in a lot more schools in different countries. This is because countries with less

cyber-attacks could make the system developers care less about security. Also the plan is to

create patterns and rules from the common mistakes that can be easily applied to machine

learning. This will aid students to be more aware and create a platform for vulnerability

education.

SECURE CODING COMPLACENCY 39

References

Imtiaz, S. M., Sultana, K. Z., & Varde, A. S. (2021). Mining Learner-friendly Security Patterns

from Huge Published Histories of Software Applications for an Intelligent Tutoring System

in Secure Coding. Proceedings - 2021 IEEE International Conference on Big Data, Big

Data 2021 (pp. 4869-4876). (Proceedings - 2021 IEEE International Conference on Big

Data, Big Data 2021). Institute of Electrical and Electronics Engineers

Inc.. https://doi.org/10.1109/BigData52589.2021.9671757

Kotey, J., Ripley, M., George, G., Sultana, K. Z., & Codabux, Z. (2021). A preliminary study on

common programming mistakes that lead to buffer overflow vulnerability. Proceedings -

2021 IEEE 45th Annual Computers, Software, and Applications Conference, COMPSAC

2021 (pp. 1375-1380). (Proceedings - 2021 IEEE 45th Annual Computers, Software, and

Applications Conference, COMPSAC 2021). Institute of Electrical and Electronics

Engineers Inc.. https://doi.org/10.1109/COMPSAC51774.2021.00194

Yilmaz, T., & Ulusoy, O. (2022) Understanding security vulnerabilities in student code: A case

study in a non-security course. Journal of Systems and Software, vol. 185.

https://doi.org/10.1016/j.jss.2021.111150

NVD Dashboard. (n.d.). National Vulnerability Database.

https://nvd.nist.gov/general/nvd-dashboard

Hladun, I. (2022). Top 25 coding errors leading to software vulnerabilities. Waverley,

https://waverleysoftware.com/blog/top-software-vulnerabilities/

 Dewhurst, R. (). Static code analysis. Static Code Analysis | OWASP Foundation.

https://owasp.org/www-community/controls/Static_Code_Analysis

Hamilton, C. B. (2015). Security in Programming Languages. COMP 116: Introduction to

Computer Security - Final Project Archive. https://www.cs.tufts.edu/comp/116/archive/

SECURE CODING COMPLACENCY 40

Owasp Top Ten. OWASP Top Ten | OWASP Foundation. (n.d.).

https://owasp.org/www-project-top-ten/

Taeb, M., & Chi, H. (2021). A Personalized Learning Framework for Software Vulnerability

Detection and Education. 2021 International Symposium on Computer Science and

Intelligent Controls (ISCSIC), 2021, pp. 119-126.

https://doi.org/10.1109/ISCSIC54682.2021.00032

Du, W. (2011) SEED: Hands-On Lab Exercises for Computer Security Education. IEEE Security

\& Privacy, vol. 9, no. 5, pp. 70-73. https://doi.org/10.1109/MSP.2011.139

Jelen, S. (2019). Securitytrails,'' What is CVE? - Common Vulnerabilities and Exposures,

https://securitytrails.com/blog

David, A., Akinpelu, O., & Adebowale, A. (2021). Africa How Has 716,000 Software Developers

in 2021, a 3.8% Rise in 1 Year. Technext. https://technext.ng/2022/02/22/africa-now-has-

716000-software-developers-a-3-8-rise-in-one-year/

Morrow, S. (2022). What Is Secure Coding and Why Is It Important?. Vpnoverview.

https://vpnoverview.com/internet-safety/business/what-is-secure-coding/

Sultana, K. Z., & Williams, B. J. (2017). Evaluating micro patterns and software metrics in

vulnerability prediction. Workshop on Software Mining, vol. 00, 2017, pp. 40–47.

 https://doi.org/10.1109/SOFTWAREMINING.2017.8100852

Morrison, P. J., Pandita, R., Xiao, X., Chillarege, R., & Williams, L. (2018). Are vulnerabilities

discovered and resolved like other defects? In Proceedings of the 40th International

Conference on Software Engineering (ICSE '18). Association for Computing Machinery,

New York, NY, USA, 498. https://doi.org/10.1145/3180155.3182553

SECURE CODING COMPLACENCY 41

Yang, J., Ryu, D., & Baik, J. (2016). Improving vulnerability prediction accuracy with secure

coding standard violation measures. International Conference on Big Data and Smart

Computing (BigComp), pp. 115–122. https://doi.org/10.1109/BIGCOMP.2016.7425809

Van den Berghe, A., Yskout, K., & Joosen, W. (2018). Security patterns 2.0: Toward security

patterns based on security building blocks. IEEE/ACM Intl. Workshop on Security

Awareness from Design to Deployment, pp. 45–48.

https://doi.org/10.23919/SEAD.2018.8472853

Pham, N. H., Nguyen, T. T., Nguyen, H. A., & Nguyen, T. N. (2010). Detection of recurring

software vulnerabilities. IEEE/ACM Intl. Conf. on Automated Software Engineering, pp.

447–456. https://doi.org/10.1145/1858996.1859089

Pothamsetty, V. (2005). Where security education is lacking. 2nd annual conference on

Information security curriculum development (InfoSecCD '05), ser. InfoSecCD ’05, pp. 54–

58. https://doi.org/10.1145/1107622.1107635

Fernández, E., Washizaki, H., Yoshioka, N., Kubo, A., & Fukazawa, Y. (2008). Classifying

Security Patterns, 342-347. https://doi.org/10.1007/978-3-540-78849-2_35

Hovemeyer, D., & Pugh, W. (2004). Finding bugs is easy. SIGPLAN, 92–106.

https://doi.org/10.1145/1052883.1052895

Nadeem, M., Williams, B. J., & Allen, E. B. (2012). High False Positive Detection of Security

Vulnerabilities: A Case Study,'' ACM-SE ’12, NY, USA, pp. 359–360.

https://doi.org/10.1145/2184512.2184604

Reynolds, Z. P., Jayanth, A. B., Koc, U., Porter, A. A., Raje, R. R., & Hill, J. H. (2017).

Identifying and Documenting False Positive Patterns Generated by Static Code Analysis

Tools. IEEE/ACM 4th Int. Workshop on Software Engineering Research and Industrial

Practice (SER IP), pp. 55–61. https://doi.org/10.1109/SER-IP.2017..20

SECURE CODING COMPLACENCY 42

Du, W. (2011). SEED: Hands-on lab exercises for computer security education. IEEE Security and

Privacy, 9(5), 70-73. [6029361]. https://doi.org/10.1109/MSP.2011.139

Theisen, C., Williams, L., Oliver, K., & Murphy-Hill, E. (2016). Software security education at

scale. 346-355. https://doi.org/10.1145/2889160.2889186

Team, G. D. W. T. (2021). How many developers are in US and in the world [updated]. Grid

Dynamics Global Team. https://www.griddynamics.com/services/global-

team/blog/development-trends/number-software-developers-world?ref=hireremote.io

Kenton, W. (2022). How analysis of variance (ANOVA) works. Investopedia.

https://www.investopedia.com/terms/a/anova.asp

Vizteck. (2016). Benefits of using Sonarqube for code reviews. Vizteck Solutions.

https://www.vizteck.com/post/benefits-of-using-sonarqube-for-code-reviews

S-Quadra Advisory. (2003) ``freeradius \<= 0.9.3 RLM-SMB module stack overflow

vulnerability,'' https://marc.info/?l=bugtraq&m=106986437621130&w=2

Groebert, F. (2007). NoseRub 0.5.2 - Login SQL Injection.

https://www.exploitdb.com/exploits/4805

Open Web Application Security Project. (n.d.). Buffer Overflow.

https://owasp.org/www-community/vulnerabilities/Buffer_Overflow

Common Weakness Enumeration. (n.d.). CWE-665: Improper Initialization.

https://cwe.mitre.org/data/definitions/665.html

Common Weakness Enumeration. (n.d.). CWE-397: Declaration of Throws for Generic Exception.

https://cwe.mitre.org/data/definitions/397.html

Common Vulnerabilities and Exposures. (2022). CVE-2022-28463: ImageMagick 7.1.0-27 is

vulnerable to Buffer Overflow.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-28463

Common Weakness Enumeration. (n.d.). CWE-252: Unchecked Return Value.

https://cwe.mitre.org/data/definitions/252.html

	A Functioning Code May Not Be a Secure Code : A Preliminary Study on the Students' Complacency with Secure Coding
	Microsoft Word - MyThesisFinalDoc (2).docx

