
Montclair State University Montclair State University

Montclair State University Digital Montclair State University Digital

Commons Commons

Theses, Dissertations and Culminating Projects

1-2006

Discovery Agent : An Interactive Approach for the Discovery of Discovery Agent : An Interactive Approach for the Discovery of

Inclusion Dependencies Inclusion Dependencies

Dhaval B. Patel

Follow this and additional works at: https://digitalcommons.montclair.edu/etd

 Part of the Computer Sciences Commons

https://digitalcommons.montclair.edu/
https://digitalcommons.montclair.edu/
https://digitalcommons.montclair.edu/etd
https://digitalcommons.montclair.edu/etd?utm_source=digitalcommons.montclair.edu%2Fetd%2F1230&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.montclair.edu%2Fetd%2F1230&utm_medium=PDF&utm_campaign=PDFCoverPages

Harry A. Sprague
Library

Montclair State
University

MONTCLAIR STATE UNIVERSITY

Discovery Agent: An Interactive Approach for
the Discovery of Inclusion Dependencies

by

Dhaval B. Patel

A Master’s Thesis Submitted to the Faculty of

Montclair State University

In Partial Fulfillment of the Requirements

For the Degree of

Master of Science

January 2006

School College of Science and Mathematics Thesis Committee:
Department Computer Science

Andreas Koeller, Ph.D.
Thesis Sponsor

Robert Prezant, Ph.Q¿/ Katherine Herbert, Ph.D.
Committee MemberDean, College of Science and Mathematics

(Date)
Committee Member

Dorothy Derenaer, Ph.D.
Department Chairperson

Discovery Agent: An Interactive Approach for

the Discovery of Inclusion Dependencies

Dhaval Patel
Department of Computer Science, Montclair State University

Upper Montclair, NJ 07043, USA

Abstract

The information integration problem is a hard yet important problem in the field of
databases. The goal of information integration is to provide unified views on diverse data
among several resources. This subject has been studied for a long time. The integration
can be performed using several ways. Schema integration using inclusion dependency
constraints is one of them. The problem of discovering inclusion dependencies among
input relations is NP-complete in terms of the number of attributes.

Two significant algorithms address this problem: FIND2 by Andreas Koeller and Zigzag
by Fabien De Marchi. Both algorithms discover inclusion dependencies among input
relations on small scale databases having relatively few attributes. Because of the data
discrepancy, they do not scale well with higher numbers of attributes.

We propose an approach of incorporating human intelligence into the algorithmic
discovery of inclusion dependencies. To use human intelligence, we design an agent
called the discovery agent, to provide a communication bridge between an algorithm and
a user. The discovery agent demonstrates the progress of the discovery process and
provides sufficient user controls to govern the discovery process into the right direction.
In this thesis, we present a prototype of the discovery agent based upon the FIND2

algorithm, which utilizes most of the phase-wise behavior of the algorithm and
demonstrate how human observer and algorithm work together to achieve higher
performance and better output accuracy.

The goal of the discovery agent is to make the discovery process truly interactive
between system and user as well as to produce the desired and accurate result. The
discovery agent can deliver an applicable and feasible approximation of an NP-complete
problem with the help of suitable algorithm and appropriate human expertise.

DISCOVERY AGENT: AN INTERACTIVE APPROACH

FOR THE DISCOVERY OF INCLUSION DEPENDENCIES

by
DHAVAL B PATEL

A THESIS
Submitted in partial fulfullment of the requirements

For the degree of Master of Science in
The Department of Computer Science in

the Graduate Program of
Montclair State University

January 2006

Acknowledgements

I would like to thank my advisor, Dr. Andreas Koeller, for his valuable guidance,
indispensable advice and eminent support during this thesis at Montclair State University.
I would also like to thank my dissertation committee members Dr. Katherine Herbert and
Dr. John Jenq for their support and benevolence towards the completion.

I express sincere appreciation to Dr. Dorothy Deremer, the Chairperson of the
Department of Computer Science at Montclair State University for her kind help. I also
wish my thanks to Beverly Macaluso for her unforgettable help during my stay here at
Montclair State University.

Finally I want to thank my sister and brother for their relentless help and support towards
my entire Masters at Montclair State University.

Contents

1. Introduction..1

2. Background... 3

2.1 Introduction to Schema Integration.. 3

2.2 Problem Definition.. 5

2.3 Algorithms developed in IND Discovery...8

2.4 Autonomous Interface Agent...13

3. An interactive approach for inclusion dependency discovery.......................................14

4. The discovery agent...18

5. Interaction of the agent with the FIND2 algorithm... 21

5.1 Background... 21

5.2 The agent overview... 23

6. Visualization... 25

6.1 Visualization of unary INDs... 26

6.2 Visualization of binary INDs.. 31

7. Agent walkthrough...33

7.1 The main screen...33

7.2 A dialog to visualize unary INDs.. 36

7.3 A dialog to visualize binary INDs.. 38

8. Related work.. 40

9. Conclusion and future enhancements... 42

10. References 43

List of Figures

2.1.1 Tasks in Information Integration...3

2.1.2 Schema Matching...4

2.2.1 Example of unary and binary INDs...5

2.3.1 Conceptual diagram of the FIND2 algorithm..11

3.1 The formation of Unary INDs... 14

3.2 The formation of Binary INDs..14

3.3 Formation of valid unary INDs and invalid binary IND.. 15

4.1 The Outlook of the discovery agent..18

5.1.1 Outline of Phase-I of the FIND2 algorithm...21

5.2.1 Discovery agent execution flow..23

6.1 Input relations FORMER and MEMBER.. 25

6.2 Unique values in MEMBER and FORMER...25

6.1.1 Possible unary INDs.. 26

6.1.2 Valid unary INDs with support value.. 26

6.1.3 The visualization of unary INDs.. 28

6.1.4 Edge Color distribution.. 29

6.1.5 Resulting unary inclusion dependencies.. 30

6.2.1 Possible binary INDs generated from unary INDs.. 31

6.2.2 Binary INDs with their support values.. 31

6.2.3 Visualization of binary INDs... 32

7.1.1 The agent’s main screen... 33

7.2.1 Unary IND visualization dialog... 36

7.3.1 Binary IND visualization dialog.. 38

1. Introduction

The amount of information in the world is rapidly increasing today. While storage of a
huge amount of information itself is a problem, we are also facing the problem of
integration of one or more information sources.

In a large organization, there are many different subdivisions which often produce and
store their data using different database management systems (DBMS). Reasons for the
use of diverse DBMS include a lack of coordination as well as very large size of
organizations. This diversity creates big challenges in database integration. The database
integration is a key process in many processes like the merger & acquisition of
organizations, the adoption of enterprise architecture to facilitate services on the internet,
and so on.

The goal of information integration is to provide an integrated and unified view of
information residing at different sources. Integration is one of the core problems in
database systems and has many application domains such as e-commerce, warehouse
management, digital libraries and data mining. (Wiederhold, 1996; Knoblock and Levy,
1995; Widom, 1995; Hull, 1997)

Significant work has been done solving integration problems using different techniques.
One of those techniques is schema integration in which we take input from several
subschemas each of which were developed independently from each other and produce
an output representing a global and unified schema (Batini, Lenzerini & Navathe, 1986).
Initially, schema integration was performed with the help of meta-data or required human
(expert) knowledge. Recent work has been carried out in schema integration focusing on
an integration process taking actual data into account. In this process, the input is a
collection of data built using different schema and format, and the goal is to produce an
output which consists of global and unified schema.

In this thesis, we will concentrate on schema integration using inclusion dependencies.
The inclusion dependency is an integrity constraint in relational databases (Date, 1981;
Casanova, Fagin, Papadimitriou, 1984; Mannila and Raiha, 1986; Casanova, Tucherman
and Furtado, 1988; Godfrey, Grant, Gryz and Minker, 1998; Leven and Vincent, 2000). It
represents semantics of the database and plays a key role in various applications, such as
relational database design and maintenance (Leven, 2000; Klettke, 1999), database
reverse engineering (Casanova and de Sa, 1983; Markowitz and Makowsky, 1990;Petit,
Toumani and Kouloumdjian, 1995), semantic query optimization (Paulley & Larson,
1994; Qian, 1996; Gryz, 1998; Cheng, Gryz, Koo, Leung, Liu, Quian and Schiefer,
1999), efficient view maintenance in data ware houses (Quass, Gupta, Mumick and
Widom, 1996; Laurant, Lechtenborger, Spyratos and Vossen, 1999) and so on.

Two significant algorithms developed in the field of discovery of inclusion dependencies
are FIND2 (Koeller & Rundensteiner, 2003) and Zigzag (De Marchi, Lopes & Petit,
2002). Both algorithms automatically discover a complete set of inclusion dependencies

1

from the data in two arbitrary relational tables. While both algorithms perform well on
smaller databases, they do not scale well for more than 20-30 attributes in some cases.

The goal of this thesis is to improve the performance and the accuracy of the overall
discovery process by eliminating unwanted noise from input data using human
intelligence. To incorporate human intelligence into the discovery process along with the
algorithm computation, we introduce a software agent, called the discovery agent, to
perform the discovery process. The main task of the discovery agent is to eliminate
unwanted noise by involving human expertise. The automatic discovery of inclusion
dependencies using an algorithm alone suffers from low quality in the result accuracy and
high runtime of the algorithm computation.

In the following chapters, we first discuss inclusion dependencies and their importance in
the field of data integration. Then we discuss the inclusion dependency discovery process
using FIND2 and Zigzag algorithms. Due to limited scope of the thesis, we concentrate
more on the FIND2 algorithm. However, the discovery agent can work with any
discovery algorithm with moderate changes. After discussing the discovery process, we
learn details about the discovery agent and its execution flow. Then we discuss about the
user interface of the agent and see how it makes the discovery process interactive and
effective.

2

2. Background

2.1 Introduction to Schema Integration

Figure 2.1 gives a conceptual idea about information integration. In the classification of
the figure, our main focus will be exclusively on logical integration, not physical
integration.

Fig. 2.1.1 Tasks in Information Integration (Koeller, 2001)

As mentioned in Fig. 2.1.1 and described in (Koeller, 2001), logical integration involves
two major issues:

1. Obtaining necessary schema information to build logical schema model of final
outcome (Schema Integration)

2. Providing integrated data to user based upon schema designed in step-1 (Data
Integration)

In this thesis, we will concentrate on Schema Integration. There are many unsolved
challenges involved in Schema Integration due to the fact that input information sources
are developed independently of each other and there is no physical link between them.

3

In Schema Integration, the core problem is to develop a mapping between elements of
two input schemas which are related semantically to each other. That mapping is scalled
a Match and the process is called Schema Matching (Rahm & Bernstein, 2001).

Fig. 2.1.2 Schema Matching (Rahm & Bernstein, 2001)

From figure 2.1.2, there are two ways to perform Schema Matching:
1. Schema-only matching
2. Instance-based matching

In Schema-only matching, the match is performed under the consideration of only meta
data (schema information) from both input sources. Due to the fact that we are not taking
data into account, we only have information such as entity names, data type, foreign-key
relationships, constraints and other schema structures to perform integration. Here the
match can be performed at the schema-element-level, in which we match each element of
the first schema corresponding to an element of the second schema, or at the structure-
level, in which we match a group of elements forming a structure from the first schema to
a corresponding structure of elements from the second schema. Both approaches are often
implemented through linguistic means (e.g. based upon name, textual descriptions of
schema elements) or are constraint-based (e.g. based upon keys and relationships). (Rahm
& Bernstein, 2001)

The main drawback of Schema-only matching is the frequent lack of proper information
and documentation from both input schemas. Since both input schemas are developed
independently from each other, consistent schema information is often difficult to obtain
or unreliable. One solution to this problem is to use (human) domain experts to collect
additional information regarding input schemas and apply such information in Schema-
only matching.

In the second approach, Instance-based matching, the match is performed under
consideration of the data itself. This approach is more generally applicable than schema-
based matching and helpful even in the case of semi-structured data. Here the final
schema can be derived from patterns discovered in the instance data. Both linguistic and
statistical approaches are used. While instance-based matching is the only applicable
method when schema information is missing, is can still benefit integration when
substantial schema information is available. A combination of both approaches is
promising.

4

2.2 Problem Definition

The problem addressed in this thesis is the discovery of Inclusion Dependencies (INDs)
between tables in unknown relational databases, by comparing the data in two given
tables.

Formally, an inclusion dependency is defined as below:

Definition 1: IND
Let R[ai, a2, an] and S[b\, b2, bm] are two input relations. Let X and Fbe a

sequence of k distinct attributes from R and S respectively, where 1 < k < min(n.m). An
inclusion dependency a is a rule of the form a = R[X] c SfF]- Here k is called the arity of
a.

Note that an IND is simply an assertion, it might be true in a given database instance or it
might not be true.

Unary INDs

V alid IN D s: MyMovies[A_TITLE,A_STYLE] cMovies[Title,Genre]
MyMovies[A_TITLE] cMovies[Title]

MyMovies[A_STYLE] cMovies[Genre]

Fig. 2.2.1 Example of unary and binary INDs

Fig. 2.2.1 describes the unary (k= 1) and binary (k=2) INDs from two relations MyMovies
and Movies.

Definition 2: valid IND
An IND a = 7?[ai, a2, ..., an] c 5[bi, b2, ..., bm] between two relations R and S is

valid if the sets of tuples in R and S satisfy the rule given by a. Otherwise the IND is
called invalid for R and S.

5

Casanova et al. (Casanova et al., 1982) describe a complete set of inference rules
(iaxiomatization) for INDs. That means that, in a process similar to functional dependency
inference, new INDs can be derived from existing INDs through the three rules stated
below:

Axiom 1: Reflexivity
For any relation R[sl\, a2, ..., an], R[aj, a2, an] c R[ai, a2, an] is valid.

Axiom 2: Transitivity
For any three relations R[ai, a2, an], 5[bi, b2, bn] and T[c\, C2, •••, cn], if an

IND R[ai, a2, ..., an] c S[bj, b2, bn] and an IND S[bi, b2, ..., bn] c 7Ici, c2, cn] are
valid, then an IND R[aj, a2, an] c T[c\, c2, cn] is also valid.

Axiom 3: projection and permutation (from (Casanova et al., 1982))
If /?[ai, a2, ..., an] c S[bj, b2, ..., bn] is valid, then for any sequence (ii, i2,..., ik) of

distinct integers from {1, 2,..., n} R[ai, a2, ..., ak] c N[bi, b2, ..., bk] is valid.

Definition 3: derived INDs
A valid IND o can be derived from a set Z of valid INDs, if o can be obtained by

repeatedly applying the above axioms on INDs taken from Z.

From above definitions and axioms (in particular the projection-and-permutation axiom),
it is clear that a valid k-ary IND with k > 1 naturally implies a set of valid m-ary INDs,
for any 1 < m < k, by projection. Note that the number of INDs implied by a k-ary IND is
equal to the number of subsets of attributes in the IND, i.e., 2k. This leads to a very high
number of INDs that need to be discovered.

The problem of discovering inclusion dependencies among input relations has been
proven to NP-hard in terms of the number of attributes of input relations (Kantola,
Mannila, Râihâ & Siirtola, 1992).

Since INDs can be derived from one another, a set of INDs can be completely described
by a subset from which all INDs in the set can be derived.

Definition 5 - IND Cover.
Consider £ = { oi, 02, 03,..., on } is a set of valid INDs. A cover of Z, denoted by

G(Z), is a set of valid INDs with the following properties:
(1) For all INDs among Z, each IND can be derived from the cover.
(2) If any IND is removed from the cover, all INDs of Z can no longer be derived

from the cover.

In other words, the cover €(Z) contains only those valid INDs from which all valid INDs
in Z can be derived. For details, see (Koeller and Rundensteiner, 2002).

6

Since the cover contains all information about inclusion dependencies between relations
in a minimal number of INDs, the IND discovery problem can be reduced to the problem
of finding the cover of valid INDs. While trying to find all valid INDs is impossible due
to their large number, the cover can be found using efficient techniques.

Due to the fact that the maximal number of INDs is very high, an algorithm to find the
cover should perform following tasks:

1. Select a number of INDs for validation (also knows as a guess)
2. Test those individual INDs for actual validity
3. Refine the guess and repeat.

We will now discuss two IND discovery algorithms, FIND2 and Zigzag, which use
different approaches to solve a discovery problem.

7

2.3 Algorithms developed in IND Discovery

As mentioned earlier, there are two known algorithms developed in the discovery of
INDs.

(1) Zigzag by Fabien De Mar chi (De Mar chi, Lopes & Petit, 2002)

Definition 1: search space C
Let /?[ai, a2, an] and S[b\, b2, bn] are two input relations.. The search space

C can be defined as:
C = { R[ai, a2, ..., an] c S[bi, b2, ..., bn] } and
V 1 < i <j < n, (a, < a,-) v (a; = ay- a b, < by)
In words, C contains IND expressions whose sequences are sorted in order to

naturally restrict the search space to only one permutation of each IND expression [see
also Axiom 3, above].

Definition 2: generalization, specialization
Let i and; be two IND expressions, we say that i generalize j (or j specialize /), if

i can be obtained by projection on j.

Definition 3: positive border or positive cover
Let I c C. The positive border or positive cover of I is the set of INDs which can

be represented by its most specialized (largest) elements.

Definition 4: negative border or negative cover
Let J c C . The negative border or negative cover of I is the set of INDs which can

be represented by the most general elements which it does not contain.

Definition 5: pessimistic approach
In the pessimistic approach, the algorithm walks through the IND search space

from most general (smallest) INDs to most specific (largest) INDs. It involves discovery
of high-arity INDs combining valid low-arity INDs and validating them against the
database. This approach is not practical whenever large INDs have to be discovered. That
is because in order to discover one k-ary IND, 2k smaller INDs have to be discovered
first.

Definition 6: optimistic approach
In the optimistic approach, the algorithm makes a speculation of a specific (large)

IND and validates it against the actual database.

The Zigzag algorithm uses a combination of pessimistic and optimistic approaches. The
algorithm is divided into two main sections:

1. Pessimistic exploration of general INDs up to a specified level.
2. “Zigzag” between negative border in construction and corresponding positive

optimistic border.

The principle of this algorithm is to mix top-down and bottom-up approaches for finding
the positive border of valid INDs.

First, the pessimistic approach is performed using a levelwise algorithm M IN D [8] up
to specified level k. Using the result of this step two sets of INDs, a set SIk which
contains valid INDs and a set UnSIk which contains invalid INDs, are made. Then the
algorithm computes positive cover Co+(U) and negative cover Co'(Ik) from SIk and UnSIk
respectively. Using the optimistic positive border generation algorithm [9], the optimistic
positive border Co+(Iopt) is then computed from Co'(Ik). The algorithm terminates when
every element of Co+(Iopt) is marked as true in previous passes i.e. when Co+(Iopt) /
Co+(Ik) is empty. Otherwise INDs of Co+(Iopt) / Co+(Ik) are validated against the database.
After validation, the valid INDs are added to Co+(Ik). The invalid INDs are then divided
into two groups OptI and Pessl. OptI contains INDs which are “almost true” and the rest
are in Pessl. The algorithm uses a special error measure mechanism to generate OptI and
Pessl. The INDs of OptI are traversed into a top-down manner, from the most specific to
most general. While performing this traversal, Co+(Ik) and Co'(Ik) are updated
accordingly. The INDs of Pessl are validated against the database and based upon the
result, Co+(Ik) and Co'(Ik) are updated. Again Co+(Iopt) is computed from the new Co‘(Ik)
for next iteration. (De Marchi, Lopes & Petit, 2002)

Thus, the algorithm carries out optimistic jumps in the IND search space, performing
“Zigzags” between the negative and positive borders in construction.

The algorithm performs well finding INDs among relations having a moderate amount of
tuples and relatively few attributes.

9

(2) FIND2 by Andreas Koeller (Koeller, 2001)

The FIND2 algorithm uses a graph theory approach to discover INDs among the input
relations by mapping an IND Discovery problem to the graph problem. Before we go into
details of algorithm, we will give brief definitions of concepts used in the algorithm.

Definition 1 - Uhypergraph
A ^-uniform hypergraph is a pair G = (V, E) where V is the set of nodes and E is

the set of edges. An element e e E is a set with cardinality k of pairwise distinct elements
from V, denoted by {vj, V2, vk }. An element e is called Uhyperedge and k is known
as rank of graph G.

Definition 2 - Clique
A clique of graph G is a maximal complete subgraph of G (Harary 1994).

Definition 3 - hyperclique
Let G = (V,E) be a Uhypergraph. A hyperclique is a set C c V such that for each

Usubset S of distinct nodes from C, the edge corresponding to S exists in E. The
cardinality of a hyperclique C, denoted by |C|, is the number of nodes in C.

The FIND2 algorithm maps a substantial part of the IND discovery problem to the
Clique-Finding problem (also known as the Maximum Clique Problem), which is a
famous NP-complete problem. More details on this mapping can be obtained from
(Koeller & Rundensteiner, 2003). FIND2 uses a special algorithm called
HYPERCLIQUE to find the hypercliques in ^-uniforms hypergraphs. Due to limited
scope of this thesis, details and description about the HYPERCLIQUE algorithm is
omitted. For detail information, please refer (Koeller & Rundensteiner, 2003).

According to (Koeller & Rundensteiner, 2004), the FIND2 algorithm takes two relations
R and S, with kR and ks attributes respectively and returns the cover of INDs between kR
and ks by applying clique- and hyperclique-finding techniques using iterative process
going from m=2 to ks. The algorithm divides the whole operation into three phases (Fig.
2.3.1):

I BASELINE : finding valid unary and binary INDs
II CLIQUE: finding high-arity INDs from cliques

III CLEANUP: finding additional INDs from subsets of invalid cliques.

10

Relation R Relation S

Phase-I: BASELINE
This is the first step in the FIND2 algorithm in which we find unary and binary

INDs from kR and ks in relations R and S. We first compute the unary INDs by combining
kR and ks and then we validate them against the database. After validation, we have valid
unary INDs which then serve as an input to find binary INDs. Again, the possible binary
INDs are computed from the valid unary INDs and validated against the database.

Using valid unary INDs set V and valid binary INDs set E between input relation
R and S, the algorithm then constructs a graph G=(V,E) (i.e., with the unary INDs as
nodes and the binary INDs as edges) between them. Here any node in V which has no
adjacent edges in E forms a clique of size 1 and corresponds to a unary IND that is part of
the solution. Therefore, it is added to a specified result variable before further calculation.

Phase-II: CLIQUE
In this phase, the algorithm tries to find higher arity INDs from cliques. The

HYPERCLIQUE algorithm is now used by the FIND2 algorithm in this phase. First it
computes the m-hypergraph Gm from nodes V and edges Em (here m=2 which denotes
binary level). The algorithm then computes hypercliques from graph Gm using a clique
finding algorithm HYPERCLIQUE. It also validates each clique’s implied IND against
the database.

11

From the result of this validation, the set Ctmp is generated from the cliques that
imply all invalid INDs, which then serves as an input to Phase-III. The cliques implying
valid INDs are added to the solution.

From Ctmp, the algorithm generates m+l-ary INDs which serve as an input to the
next iteration of the algorithm. If there are no m+l-ary IND found at this step, the
algorithm terminates and returns result as a final answer.

Phase-III: CLEANUP
After the iteration process of Phase-II, the solution set would contain all valid

INDs that have been found as (hyper)cliques of lower-arity INDs. However some
maximal INDs may have been missed in this process. If an IND a found by the clique
finding algorithm is invalid, it is still possible that its implied sub-INDs are valid and
maximal. Therefore for the current step m all maximal m-ary sub-INDs of the invalid
m+l-ary INDs in Em+;.

For the given m, the algorithm then validates m-ary sub-INDs of the invalid m+l-
ary INDs and adds the valid INDs to solution set. (Koeller & Rundensteiner, 2004)

For small arity INDs (arity<9), an “exhaustive” or “levelwise” algorithm is often faster
due to lower overhead. However, it does not perform well for high arity INDs (arity>9).
The FIND2 algorithm shows a significant performance gain for INDs with arity>9. It also
scales well while performing on larger relations.

Due to the limited scope of this thesis, we will concentrate on the FIND2 algorithm in the
further discussion. We will discuss limitations of the current algorithm and propose a
discovery agent to overcome those limitations.

12

2.4 Autonomous Interface Agent

Before we discuss about the discovery agent, let’s take a brief overview over an
autonomous interface agent which is the key concept on which the discovery agent is
built on.

An agent is an autonomous entity with an ontological commitment and agenda of its own.
Recent studies in Human-Computer Interaction divide agents into two main categories:

1. Interface agents, in which the agent operates in the interface and assists users
in operations

2. Autonomous agents, in which the agent operates on its own without user
intervention.

Both interface agents and autonomous agents are designed and implemented to perform
distinct operations. However in many cases, we need functionalities from both of them.
An autonomous interface agent (Lieberman, 1997) is designed to incorporate features
from both interface agent and autonomous agent. Lieberman explains the importance of
autonomous interface agents and shows how useful they are when performing certain
tasks, which needs both autonomous behavior and careful observation to achieve accurate
results (Lieberman, 1997). He developed an autonomous interface agent, called “Letizia”,
which searches through the Web space as a continuous, cooperative venture between the
user and a computer search agent (Lieberman, 1997).

In this thesis, we developed an interface agent for the purpose of discovering inclusion
dependencies in databases.

13

3. An interactive approach for inclusion dependency discovery

As explained before, in phase-I, the FIND2 algorithm discovers the unary INDs from the
input relations using an enumeration technique. Using these unary INDs, it then discovers
the binary INDs. Using the unary and the binary INDs as the ground work, the algorithm
discovers high-arity INDs in higher phases.

Let /?[aj, a2, ..., an] and S[bi, b2, ..., bm] are two input relations. The formation of unary
INDs can be described as below:

R Unary INDs R çzS S

Fig. 3.1 The formation of Unary INDs

Here we are assuming all attributes from R and S are of the same type so that they can
form a possible unary IND. n*m is the largest number of possible INDs between R and S.
In general terms, if a relation R has total kR attributes and a relation S has total ks
attributes, there are kR* ks unary INDs possible.

A binary IND is formed from two unary INDs as shown in fig. 3.2.

Unary INDs Binary INDs

(^ai-bT) Q a^ -b ib O)

Unary INDs

Fig. 3.2 The formation of Binary INDs

14

In words, the binary INDs can be generated from pairs of unary INDs by merging them
together. So the number of binary INDs generated could be 0(n2) of the number of unary
INDs.

Also if we merge two valid unary INDs and make one binary IND, it is not always true
that resulting binary IND is also valid. Fig. 3.3 explains that scenario.

Table 2

Fig. 3.3 Formation of valid unary INDs and invalid binary IND

From Fig. 3.3, we can see that two unary INDs Tablel[Firstname] C Table2[Firstname]
and Table 1 [Birthyear] c Table2[Marriageyear] are valid but the binary IND
Tablel[Firstname, Birthyear] c Table2[Firstname, MarriageYear] is invalid. But still we
have to check this validity against the database which consumes resources.

One important point to be noticed here is that in the formation of unary INDs the input is
attributes from relations while in the formation of binary INDs the input is formally
discovered unary INDs. Since two unary INDs are combined to form a binary IND, a
moderate amount of unary INDs can generate a large amount of binary INDs. We need to
check validity of each unary and binary INDs against the database. This validation can be
resource and time consuming and due to that it affects the algorithm performance.

15

For example, if we have 10 attributes in both input relations there are 100 possible unary
INDs and 4050 possible binary INDs (if we assume that all 100 unary INDs are valid).
Now we need to run at least 4150 database queries to check the validity of unary and
binary INDs. If we have 15 attributes in both input relations, the number of possible
unary INDs is 225, the number of possible binary INDs is 22050 and the total database
queries just to validate unary and binary INDs are 22275. Here the small addition of 115
unary INDs can result into a big addition of 18000 binary INDs and 18125 database
queries. Thus the resource consumption in this process grows extremely fast.

If we follow the same brute-force enumeration approach to find high-arity INDs, we will
face an exponential run-time and it will become practically impossible to find valid high-
arity INDs. By using the HYPERCLIQUE algorithm and other intelligent computations
in Phase-II, the FIND2 algorithm does an excellent job generating high-arity INDs and at
the same time eliminating many invalid INDs. However, depending on the data in the
input relations, the algorithm will discovery many unary and binary IND candidates
which will turn out later not to be part of the solution. In those cases, the algorithm will
spend most of its resources in their validation and will not able to perform higher phases
computations.

The main reason for this phenomenon is that a valid unary IND is a purely mathematical
pattern (the values of one attribute form a subset of the values of another attribute) and
may not represent a relationship of those attributes in a real world. Such INDs slow down
the algorithm significantly and should not be included in the algorithm computations.
This concept is defined more formally below:

Definition 1: spurious INDs
Whether an IND is valid or invalid, is decided by taking actual data into an

account. Thus a valid IND suggests a relationship between attributes. In many cases, we
accidentally found INDs between attributes representing two distinct entities but having
similar data values. Since the IND is valid from the data perspective, it is still irrelevant
in the real world. These INDs are known as spurious INDs. (Koeller, 2001)

The spurious INDs are generated mostly by accident due to similarity in data.
Since the relationships based on these INDs do not hold in the real world, these INDs are
considered as a noise to the algorithm. They should be eliminated for an accuracy of the
result.

For example, consider two relations«Tablel[Firstname, Birthyear] and Table2[Firstname,
Marriageyear] from fig. 3.3. Here the unary IND Table 1 [Birthyear] c
Table2[Marriageyear] is valid from the database point of view but since both attributes
represent two distinct entities in the physical world, it is irrelevant from the real world
physical-entities perspective and it is a spurious IND.

The automated process used by the algorithm to eliminate this unwanted noise is not
sufficient for accurate IND discovery. We will learn more about this process in a later
section and will see how it is not effective in all cases.

16

We propose an approach to use human intelligence and knowledge along with the
algorithm computation for elimination of unwanted noise. Human intelligence is helpful
in many automated processes. As a daily-life example, consider “Highway cruise
control”. A car on a road can drive at steady speed but is not capable of taking a decision
when the traffic conditions change. At that time, the user takes control of the car. In this
sense, our main focus would be implementing an agent which can work with an observer
to eliminate unwanted noise generated by data discrepancy.

With the inspiration from Letizia (Section 2.4), we propose an approach to design an
agent to discover inclusion dependencies among input relations using the FIND2

algorithm. We refer to this agent as “The discovery agent” since it is mainly designed for
the inclusion discovery process. We will now discuss the details about the discovery
agent in next section.

17

4. The discovery agent

The discovery agent is built on the similar concept used by the autonomous interface
agent (Lieberman, 1997). It provides a communication layer between an observer and an
algorithm as well as between an algorithm and the actual data source(s). The core part of
the agent is the FIND2 algorithm and the other two layers (interfaces) are provided to
facilitate the external communication. Fig. 4.1 gives the view of the discovery agent
operation.

Intelligent
Observer

/*

CD
> -
CD

_ l
1_
cd
> •
fU
_ l
0)
u

£
. c Phase 1

C
O
4->

'C
0
cn

u
CD
c
c

fUM—
<L>

CD
<M

Cl Phase 2
0
U

c
1—1
l_
CD
10
z>

CO
CD
u

CD
-C
1 - Phase 3

D
O
CO
CD

t î . 03

V
T h e d i s c o v e r y a g e n t

Data
Source(s)

Fig. 4.1 The Outlook of the discovery agent

The task of the data source(s) connection layer is to provide the data to the algorithm
upon request. The data can come from physical databases or from the Internet using
different services. Since a human intervention is not required in this case, this interface
can be considered as autonomous. The proper implementation of this interface can reduce
the time spent on accessing and transferring data to the algorithm and thus it can improve
the overall performance of the agent. In this thesis, the data is provided by a local
database and the provided implementation of this interface with respect to the scope of
the thesis is efficient in terms of data availability. Our main focus will be on the user
interface layer.

Using the user interface, the discovery agent can take advantages of the observer’s
intelligence and knowledge in the discovery process. In the same manner, an observer is
beneficial to supervise the discovery process and can drive the discovery process into the
right direction using his knowledge and his decisions. In each phase, the algorithm needs
an intelligent assistance and guidance to proceed in to the right direction. Using this layer
the agent can provide the required assistance and guidance to the algorithm.

18

The discovery agent has certain characteristics and abilities as described below:

□ The discovery agent provides a visual representation of the discovery process to an
observer via the user interface layer. While the FIND2 algorithm is begin executed,
the visual representation contains the algorithm progress, intermediate results of
different phases, current algorithm computation and so on.

Due to this ability, an observer will be able to follow and supervise the algorithm’s
progress. It helps him making a right decision about the further computations.

□ To accommodate the phase-wise behavior of the FIND2 algorithm, the discovery
agent should provide an ability to go back to the previous computational phase. With
this ability, an observer should be able to “undo” the wrong computation. Also an
observer should be able to stop and resume the process at any time.

□ The discovery agent should provide an ability to save the progress and the result of its
current stage. It can also open and resume the discovery process from the previously
saved stage.

It gives flexibility to an observer in working with the agent on a discovery process.

□ The discovery agent performs computations on input relations based upon the FIND2

algorithm which has exactly two relations as its input. So the agent should provide a
way to an observer to specify those input relations. Due to this, an observer will be
able to run the discovery process on specific relations that he wants.

The input data source(s) may contain many relations. Performing a discovery process
on each relation pair from input data source(s) can be very time and resource
consuming. With the help of this ability, an observer can narrow down a discovery
process to relations that he/she interested in.

□ The FIND2 algorithm uses certain input parameters which are independent to input
relations but are used in many internal computations (for example parameters
describing the maximal size of certain internal data structures). These parameters can
affect the algorithm execution process. The agent should provide an ability to change
these parameters visually and then perform the algorithm execution based upon that.

Due to this ability, an observer can able to tune the algorithm based upon his input
criteria and thus will be able to achieve the maximum performance.

□ The implementation of the agent should be independent of the algorithm it the sense
that it should work with any algorithm besides FIND2. It can also provide a way to an
observer to choose the algorithm that he wants. Based upon the chosen algorithm, the

19

agent reflects the proper user interface which is specifically designed for that
algorithm. It makes the agent capable of incorporating multiple discovery algorithms.

This feature makes the agent versatile to work with any discovery algorithms. It is
very difficult to make one generic agent to work with any discovery algorithm, but it
is possible to do that with the proper implementation environment and techniques.

□ The final output of the discovery agent is inclusion dependencies between input
relations and thus a measure by which one can identify how much input relations and
which of their attributes are related to each other. This output is very helpful in the
integration of the input relations or the input data sources. Based on this output, the
agent or the system based on this agent should ask an observer to perform additional
tasks.

Due to this, an observer can not only discover how input relations or data sources are
related to each other, but he can also perform the actual integration based on those
results. Thus the agent or the system can be used as an actual information integration
system.

Above characteristics give an overall idea about the effectiveness and the extendibility of
the discovery agent. Though we cover most of the characteristics and the abilities of the
agent, the agent is not limited to them. The actual implementation of the agent may vary
from above points because of the limitation of implementation environment and
techniques.

From the above discussion we can think about the impact of the discovery agent.

The essential functionality of the agent, an interactive IND discovery, has been
implemented in a prototype. As discussed in the “Problem Scope” section, the main area
where the FIND2 algorithm needs help of an observer assistance is in phase-I (the
discovery of unary and binary inclusion dependencies). So in this thesis, we concentrate
on a version of the discovery agent which only focuses on the Phase-I of the FIND2

algorithm. Then we discuss the implementation techniques and the usability of our
version of the discovery agent.

20

5. Interaction of the agent with the FIND2 algorithm

5.1 Background

Before we go into detail about the discovery agent, let’s take a quick look at phase-I of
the FIND2 algorithm. Fig 5.1 gives us an outline of the phase-I computational steps.

FIND2 a lgo rithm

Binary INDs

Input to higher phases

Fig. 5.1.1 Outline of Phase-I of the FIND2 algorithm

As shown in Fig 5.1.1, first the algorithm starts processing with input relations and tries
to find unary INDs. We already discussed the formation of the unary INDs before. The
algorithm tries to discovery spurious INDs with the help of a support value, as defined
below.

Definition: Support value
The support value is a heuristic measure to estimate the real-world semantic

relationship between two sets of attributes that form a valid inclusion dependency. The
support is a number composed of the number of distinct tuples in attributes/attribute sets
and the distribution of actual values (a set of counts or multiplicities for each unique data
value in each attribute) in attributes/attribute sets. (Koeller, 2001).

Phase-I of the

«

Input data
source(s)

Generate all possible unary INDs
from input re lations

Validate aga inst the database and
the support value

Rem ove invalid unary INDs

Result: valid unary INDs

Unary INDs

21

With the help of the support measure, the algorithm tries to discover semantic
relationship between input attributes that stand in a valid inclusion dependency to each
other. Similar numbers of distinct values and similar value distribution suggests a
semantic relationship between attributes and therefore lead to higher support value. The
lower support value can be caused by following reasons:

□ The number of distinct values in the attributes/attribute sets is very low.
□ The number of distinct values in one attribute/attribute set is significantly

different from the number of distinct values in the other attribute/attribute set.
□ The distribution of values in the two attributes/attribute sets is different.

From the definition of the support value, one can think a low support value as “no”
relationship and a high support value as “maybe” or “strong” relationship between
attributes. However since the computation of the support value is based on statistics, the
result is not always reliable. For example:

□ A low support value is computed for an IND if the underlying attributes have very
few values, suggesting that they are not related to each other in real world. For
example, an attribute “MARRIED” has two distinct values TRUE and FALSE
and an attribute “HOMEOWNER” also has two distinct values TRUE and
FALSE. Based on these values, a low support value is computed, suggesting that
“MARRIED” and “HOMEOWNER” represent two distinct entities in the real
world and they are not related to each other. This IND would correctly be labeled
as spurious due to its low support value. On the other hand, an IND relating two
other attributes with two values each which are related would yield the same low
support value, and could wrongly be labeled as spurious.

□ In the similar manner, high support values are not reliable in all cases. If we have
two attributes with 5 to 10 distinct values each, and they have similar
distributions, the support value will be high but it may possible that attributes
have different meaning in real world. We could have one attribute that has values
from 1...6 representing the income group of a person (1 - under 10000, 2 - 10000
to 20000, and so on), and another attribute, from 1...6 representing the tax bracket
of the person (1 - under 15%, 2 - 15-18%, 3 - 18-25%, and so on). In this case, the
discovered inclusion dependency is spurious.

The support value suggests a semantic relationship between input attributes that have
been found to form a valid IND in the database. The low and high score of the support
values suggest how useful these INDs are (low being less useful and high being more
useful). However as we have seen in above examples that these values are not always
reliable. The algorithm can not easily decide on a threshold value for the support value
above which all INDs are considered as non-spurious (i.e., semantically meaningful). An
observer has to make that decision based upon the nature of attributes.

In the upcoming sections, we will discuss how the agent provides this facility to an
observer. Using this facility, an observer can also include INDs having lower support
values than the threshold value into the computation.

22

5.2 The agent overview

The discovery agent is specifically designed based upon this approach. We will discuss
the design and implementation of the agent later but first let’s take a look at the overall
flow of the agent’s execution process:

Input data
source(s)

.

r i r
f --- \

Generate all possible unary INDs
from input relations

_̂__ J

f \
Generate all possible b inary INDs

from valid unary INDs
^ >

r 1r

Validate against the database and
the support value

c __________________________ J

r '
Validate against the database and

the support va lue
_̂__________________________________ >

r

Rem ove invalid unary INDs Rem ove invalid b inary INDs

f r

Result: valid unary INDs Result: valid binary INDs

© 3
f

® ■
P
k

1r r

Input to higher phases

Fig. 5.2.1 Discovery agent execution flow

Fig. 5.2 gives the outlook of the execution process. Here the agent introduces the user
intervention at 3 places (1,2 and 3) as shown and as described below:

(1) First an observer decides the input relations on which he/she wants to perform the
discovery process. The agent gives a choice to an observer to select only relations
on which he/she wants to perform the discovery. It gives a good amount of
flexibility to an observer.

(2) Here the agent asks an observer for his assistance to eliminate spurious INDs. The
agent displays all INDs to an observer in a way that he/she will be able to identify
spurious INDs. We will discuss more about the visualization of INDs in the next
section. After an observer’s decision, the resulting unary INDs are the valid non-

23

spurious unary INDs and they are used to find binary INDs as well as higher
phases.

(3) In a similar manner, the agent seeks the observer’s assistance in removing
spurious binary INDs from among the valid binary INDs. After validating binary
INDs against the database and calculating support measure, they are presented to
an observer for review. An observer removes spurious binary INDs by careful
examination of binary INDs and using user interface controls provided by the
agent. These binary INDs are then used in higher phases of the FIND2 algorithm.

With the observer’s assistance and expert knowledge, the agent will be able to reduce
most of spurious INDs at phase-I. Of course, the user interface and the visualization play
an important role in this user-system interaction process. In following sections, we will
discuss about visualization techniques and the user interface in sufficient details.

24

6. Visualization

In this section, we discuss the visualization techniques for unary and binary INDs. In this
discussion we use following two input relations as a running example.

NAME BIRTHYEAR MEMBERSINCE MEMBERUNTIL

Jones 1940 1969 1989

M iller 1945 1960 1988

Myers 1960 1980 1988

Shu ltz 1969 1988 1989

Becker 1961 1989

Tab le 1: M EM BER

MEMBER YOB LEFTIN

Myers 1960 1988

Shu ltz 1969 1989

Tab le 2: FORM ER

Fig 6.1 Input relations FORMER and MEMBER

Fig. 6.1 describes two input relations FORMER and MEMBER. We are trying to
discover inclusion dependencies between tables MEMBER and FORMER. Fig 6.2
described the unique values of attributes in both relations:

TABLE ATTRIBUTES UNIQUE VALUES

MEMBER NAME Jones, M iller, Myers, Shu ltz, Becker

BIRTHYEAR 1940, 1945, 1960, 1961, 1969

MEMBERSINCE 1960, 1969, 1980, 1988, 1989

MEMBERUNTILL 1 9 88 ,1989

FORMER MEMBER Myers, Shu ltz

YOB 1960 ,1 9 6 9

LEFTIN 1 9 88 ,1989

Fig 6.2 Unique values in MEMBER and FORMER

25

6.1 Visualization of unary INDs

As a simple optimization of the algorithm, only attributes with the same datatype (CHAR
or NUMBER) are compared. Therefore, from fig. 6.1, we get a total of 7 possible unary
INDs as described in fig. 6.1.1 below:

MEMBER[NAME] c FORMER[MEMBER]
MEMBER[BIRTHYEAR] c FORMER[YOB]

MEMBER[BIRTHYEAR] c FORMER[LEFTIN]
MEMBER[MEMBERSINCE] c FORMER[YOB]

MEMBER[MEMBERSINCE] c FORMER[LEFTIN]
MEMBER[MEMBERUNTIL] c FORMER[YOB]

MEMBER[MEMBERUNTIL] c FORMER[LEFTIN]

Fig. 6.1.1 Possible unary INDs

The FIND2 algorithm validates all of above unary INDs against the database. As a result,
it found an invalid IND MEMBER [BIRTH YEAR] c FORMER [LEFTIN] because
unique values of BIRTHYEAR (1940, 1945, 1960, 1961, 1969) are different from unique
values of LEFTIN (1988, 1989) and so they are assumed to represent two different
physical entities. The same conclusion can be made for invalid IND
MEMBER [MEMBERUNTIL] c FORMER [YOB], These invalid INDs are removed
from the result and the algorithm then concentrates on the remaining 5 valid INDs. The
algorithm also computes support values for all 5 INDs which is helpful in further
analysis. Fig. 6.4 describes the remaining 5 INDs with their support values:

N o. U n a ry IN D s S u p p o rt v a lu e

1 MEMBER[NAME] c FORMER[MEMBER] 0.4

2 MEMBER[BIRTHYEAR] c FORMER[YOB] 0.4

3 MEMBER[MEMBERSINCE] c FORMER[YOB] 0.4

4 MEMBER[MEMBERSINCE] c FORMER[LEFTIN] 0.4

5 MEMBER[MEMBERUNTIL] c FORMER[LEFTIN] 0.67

Fig. 6.1.2 Valid unary INDs with support value

From fig. 6.1.2, there is only one IND, MEMBER[NAME] c FORMER [MEMBER], is
between the MEMBER attribute of FORMER and the NAME attribute of MEMBER
with support value 0.4. Even though the support value is low, since there is no other
INDs present which involves any of these two attributes we can say that this IND is valid
and MEMBER and NAME both represents same physical entity. The data from Fig. 6.2
also support this premise.

26

On the other hand, the attribute YOB of FORMER is related with attributes
BIRTHYEAR and MEMBERSINCE of MEMBER with two INDs
MEMBER [BIRTHYEAR] c FORMER [YOB] and MEMBER[MEMBERSINCE] c
FORMER[YOB] having same support value 0.4. Since it is very unlikely that one
attribute in relation FORMER is related to several attributes in relation MEMBER, this
result constitutes noise for the algorithm and it increases the algorithm’s complexity and
reduces the algorithm’s accuracy. So for an accurate result, this noise should to be
eliminated by using observer’s assistance. By looking at data, the observer can conclude
that the IND MEMBER [MEMBERSINCE] c FORMER [YOB] is invalid in the real
world because they both represent different physical entities. So he/she eliminates
MEMBER[MEMBERSINCE] c FORMER[YOB] from future computations using
appropriate controls.

For the attribute LEFTIN of MEMBER, we found two INDs with different support
values. The IND MEMBER [MEMBERSINCE] c FORMER [LEFTIN] has support value
0.4 and MEMBER [MEMBERUNTIL] c FORMER [LEFTIN] has support value 0.67.
Fig. 6.2 gives the reason for this difference. The unique values of attributes
MEMBERUNTIL and LEFTIN are the same while the unique values of
MEMBERSINCE and LEFTIN are different. Due .to high support value,
MEMBER [MEMBERUNTIL] c FORMER [LEFTIN] should be considered as non-
spurious while the other can be considered spurious.

The unary inclusion dependencies establish relations between attributes of input relations.
In that context, we can think of the unary inclusion dependencies between two input
relations as edges and attributes from input relations as vertices of a bipartite graph. Since
the core of the discovery agent, the FIND2 algorithm, maps the IND discovery problem to
a graph problem, we found the approach to visualize the unary inclusion dependencies as
bipartite graph to be the most suitable.

The agent uses a new hybrid approach to display unary INDs as shown in fig. 6.1.3.

27

r

Fig. 6.1.3 The visualization of unary INDs

The approach used in Fig. 6.1.3 can be explained in following three categories:

(1) Vertex color distribution
Vertices are drawn using k colors to anticipate the idea of k groups of

vertices in ^-partite graph. Since we are comparing two relations here, we have k
= 2 so we use only two colors. Vertices in red indicate the relation FORMER
while vertices in blue indicate the relation MEMBER. Also vertices are drawn in
such manner that all groups (2 here) do not overlap each other and display clear.

With the help of the color distribution, an observer will be able to
visualize all input relations and their attributes, which are involved in the
discovery process.

(2) Vertex shape distribution
In fig. 6.5, vertices are drawn using two geometrical shapes: circle and

square. Flere the shape of the vertex represents the data type of an attribute
underneath. In that context, a circle is used to represent the data type
‘VARCHAR’ or textual data and a square is used to represent the data type
‘NUMBER’ or numeric data. Since there are only two distinct data types present
from both input relations, we have only two distinct shapes. If we found more
distinct data types, the agent will use more geometrical shapes.

Using this shape distribution, an observer will have a visual picture about
all data types from input relations. By viewing distinct shapes, the observer can
understand quickly why there are no inclusion dependencies between attributes of
different types.

28

(3) Edge color distribution
To use observer’s assistance, we use an approach of drawing edges using

different colors to highlight the difference in support values of INDs. We use two
basic colors “red” and “green”. The color “red” represents the lowest support
value and the color “green” represents the highest support value. INDs with
support values between highest and lowest value are drawn using following
technique:

1) We make a set of all support values, say S. So S = { si, S2, sk } where
Sj, S2, ..., Sk are k support values and si < S2 < ... < Sk. So si is the lowest
support value and Sk is the highest support value.

2) We divide the color spectrum between red and green in to k different
subparts and assign each part’s color to corresponding support value. This
distribution can be visualized as:

Lowest ---► H ighest
Support Value

Fig. 6.1.4 Edge Color distribution

The color “red” is formed by RGB (255, 0, 0) and the color “green” is
formed by RGB (0, 255, 0). Based upon the size of the support value
collection, the color spectrum is constructed as shown in Fig. 6.1.4.

3) In our example, we have two support values 0.4 and 0.67. Since the size of
the set is 2, we have drawn edges using only two colors red and green as
seen in Fig. 6.1.3.

4) If the collection contains only one record (or all INDs have the same
support value), we use “black” color for the edge.

The main objective of the color distribution is to develop a visual picture from
which an observer has clear idea about which INDs should be consider as valid
and also to eliminate spurious INDs.

By using proper user interface control, an observer can eliminate INDs with lower
support values. At the same time, he/she can also choose any specific IND that he/she
wants to include in final result. We will discuss more about the user interface details in
next section.

After above analysis, we come up with 4 unary INDs as shown in Fig. 6.7, which are then
used to find binary INDs.

29

N o. U n a ry IN D s S u p p o rt v a lu e

1 M EMBER[NAME] ç FORM ER[M EM BER] 0.4

2 M EMBER[BIRTHYEAR] ç FORMER[YOB] 0.4

3 M EM BER[M EM BERSINCE] ç FORMER[YOB] 0.4

4 M EMBER[M EMBERUNTIL] ç FORMER[LEFTIN] 0.67

Fig. 6.1.5 Resulting unary inclusion dependencies

30

6.2 Visualization of binary INDs

Fig. 6.1.5 display list of unary INDs from which binary INDs are generated as follows:

MEMBER[NAM E, BIRTHYEAR] c FORM ER[M EM BER, YOB]
MEMBER[NAM E, M EM BERSINCE] c FORM ER[M EM BER, YOB]

MEMBER[NAM E, MEMBERUNTIL] c FORM ER[M EM BER, LEFTIN]
M EMBER[BIRTHYEAR , MEMBERUNTIL] c FORMER[YOB, LEFTIN]

M EM BER[M EM BERSINCE , MEMBERUNTIL] c FORMER[YOB, LEFTIN]

Fig. 6.2.1 Possible binary INDs generated from unary INDs

These binary INDs are then validated against the database. After validation, the algorithm
computes the support value for each IND. As a result of the validation against the
database, the binary IND MEMBER [NAME, MEMBERSINCE] c
FORMER[MEMBER, YOB] is removed. The data from Fig. 6.1 also supports this
removal. Fig. 6.2.2 displays the resulting 4 binary INDs with their support values:

N o. B in a ry IN D s
S u p p o rt

v a lu e

1 M EMBER[NAM E, BIRTHYEAR] c FORM ER[M EM BER, YOB] 0.4

2 M EM BER[NAM E, MEMBERUNTIL] c FORM ER[M EM BER, LEFTIN] 0.4

3 M EMBER[BIRTHYEAR , MEMBERUNTIL] c FORMER[YOB, LEFTIN] 0.4

4 M EM BER [M EM BERSINCE , MEMBERUNTIL] c FORMER[YOB, LEFTIN] 0.4

Fig. 6.2.2 Binary INDs with their support values

As seen from the formation of binary INDs, a binary is generated using two unary INDs. 4
In that sense, the order of attributes must be preserved. For example, two unary INDs
MEMBER [MEMBERUNTIL] c FORMER [LEFTIN] and MEMBER[MEMBERSINCE]
c FORMER [YOB] produce only one binary IND MEMBER [MEMBERUNTIL,
MEMBERSINSE] c FORMER [LEFTIN, YOB],

To visualize this behavior, we use nodes to represent unary INDs and an edge connecting
two nodes represents a binary IND which is formatted using those two end node unary
INDs.

For display purpose we use circle graph as shown in Fig. 6.2.3.

31

YOB, BIRTHYEAR

Fig. 6.2.3 Visualization of binary INDs. Nodes are the unary INDs from Fig. 6.1.5. Edges
are the binary INDs from Fig. 6.2.1

The binary IND also contains the support value and it is represented by the color of the
edge. The generation of color based upon the support value remains the same as we
discussed in the case of unary INDs. The color here is black due to same support value.

The observer can now use this visualization to decide which binary INDs (edges) in this
graph represent real-world patterns, i.e., relationships between two pairs of attributes
across two relations.

In this section, we discuss about visualization techniques used by the discovery agent to
display unary and binary INDs. However the agent also provides user interface controls
to an observer so that he/she can make significant changes. In the next section, we will
discuss about the actual user interface of the discovery agent and how it is helpful to an
observer making right decisions.

32

7. Agent walkthrough

So far we have discussed the design and execution flow of the discovery agent. In this
section, we discuss about user interfaces layer of the agent. Though the agent has many
screens from which it receives input from an observer, here we discuss three screens
which play a major role in the execution of the agent. By looking at these three screens, a
reader can visualize how the discovery agent works. These screens are listed as,

1. The agent’s main screen
2. A dialog to visualize unary INDs
3. A dialog to visualize binary INDs

7.1 The main screen

Input panel

Ó
Output panel

Ô
Data source panels

V

Fig. 7.1.1 The agent’s main screen

33

The main screen of the discovery agent is dividing into three main components:

1. The data source panels
■ There are two data sources panels from which an observer can choose input

relations.
■ It displays a tree like structure for the data source(s). The root of the tree is the

name of the data source. At the first child level, all relations belonging to this data
source are displayed. All relation nodes have their attributes as child nodes. The
tree structure provides ease of navigation to an observer.

■ The agent runs the discovery process with two input relations, one of which is at
the left side and the other one is at the right side. Based upon this fact, we
designed the main screen in such a way that the left data source panel provides
relations for the left side and the right data source panel provides relations for the
right side.

■ By arranging data source panels into left and right, it will be easy for an observer
to choose input relations for the discovery process.

■ An observer can also perform attributes selection and thus can run the discovery
process on attributes that he/she wants. To do this, an observer first selects
attributes from any relation and then he/she can add them to the input panel by
clicking on the “Add to Input” button.

■ Each data source panel provides sorting facility by which an observer can sort the
data source tree based upon attributes name or attribute type (NUMBER,
VARCHAR, TEXT and so on). It helps an observer deciding which relations
he/she wants to include.

2. The input panel
■ The input panel has a tabbed interface to display input to various subsections of

the phase-I of the algorithm.
■ The first tab displays two input relations in a tree-like structure. It also provides

the “remove” button by which an observer can remove relations or attributes.
■ When an observer is done selecting relation and attributes, he/she starts the

discovery process by clicking on the “Apply” button. <
■ The “Reset” button clears out the input section of the current tab.
■ After clicking on “Apply”, the agent runs the algorithm and discovers all unary

INDs. It then displays all unary INDs into the output panel and also into the input
panel in another tab (called “Unary INDs”). The “Unary INDs” tab displays all
unary INDs in tabular form. This tab also gives control to analyze all unary INDs
in graphical form which we will discuss in next few minutes.

■ In a similar manner, the input panel also displays a binary INDs tab and provides
control to analyze them.

■ The main purpose behind the input panel is to display the section where the
algorithm needs a human assistance.

34

3. The output panel
■ The output panel displays an output of the algorithm at each sub level of Phase-I

into a tabbed interface.
■ As a first step, it displays all unary INDs into tabular form in a tab named “Unary

INDs”.
■ In the same manner, it displays all binary INDs into other tab named “Binary

INDs”
■ This section only displays the intermediate results of the algorithm for an

observer. An observer can only view the information here. He/she can only
change the information in the input panel.

35

7.2 A dialog to visualize unary INDs

füfiufiï.iMflihWÊ. * MEUSE« MFWÉïMWl? ii.

\ \ M EMBER[MEMBERSINCE] Ç FORMER[LEFTIN]

------------- K3

\ \
N N\ N\ \

\ N
\ \---Ç——

\ \N \
\ \

\ \N \

FORMER Y O T t J M EM BER.BISTOTEa B
\ \\ \

\ \
\ \

\ \
N N

\ \\ \

MEMBER. MEMBERS!?! CE

-Gmpti Cßittrelf '-—
•f : DispiwvmWie iat»*ts
< ArrB- aliasing

Ze-om

I I I I I I I I I I I
»JÖ D * 6,2 0 3 0 '•) 0 5 0 « 0,7 0,8 fl» 1.0

E d g e Fitter

•Graph truformAhSh-------

tEFT^ WEMBERSINCE

Type u m B m

< is rwll value allowed ?

« 6 * d a »

y M i * Court
' . ¿ m ji
5989

Ok ' C m m

6
Graph Contro ls Unary IND Inform ation

Fig. 7.2.1 Unary IND visualization dialog

■ Built on the visualization technique that we discussed before, fig. 7.2.1 displays the
agent’s dialog by which an observer can visualize all unary INDs.

■ With the IND visualization, the screens also have few user controls as follows:
1. Edge Filter:

It is most helpful control for an observer. With the help of a slider, an observer
can exclude edges (which represent unary INDs here) with low support values.
When an edge is excluded, the corresponding IND is also excluded from future
computations. Excluded edges are drawn using light dotted lines. For example,
when the slider points on 0.3, the graph filters out edges (INDs) that have support
values less than 0.3.

36

2. Display vertex labels
Using this control, an observer can show/hide vertex labels on the graph.

3. Anti-aliasing
Using this control, an observer can turn on/off the graph anti-aliasing. It is

helpful to view the graph in low resolution display monitors.
4. Zoom control

As the name suggests, this controls helps an observer zooming in and out in
the graph. When you have a large number of nodes and edges, this feature is
helpful to view details of the graph.

■ An observer also can exclude edges manually by a single right mouse click on a
normal edge. By default, all edges (INDs) are included in the graph and they are
displayed using dark solid lines. When you right-click on a solid (included) edge
explicitly, the edge (IND) will be marked as excluded and displayed in a light dotted
pattern. When you click on a dotted (excluded) edge, it is included and drawn as a
dark solid shape. Using this feature, an observer is able to manually select/deselect
INDs which he/she wants to include in- or exclude from computations.

■ Apart from the control section, the dialog also displays graph related information in
“Graph Information” section in Fig. 7.2.1.

■ When you select any node in the graph, this section displays information such as
type, default value, whether it is primary key or not and whether the null value is
allowed for that particular attribute represented by the node. Also it displays distinct
values of the attribute (“Value” column in fig. 7.2.1) and how many times a particular
value appears (“Count” column in fig. 7.2.1) for that attribute in the relation. With the
help of this information, an observer can think about an actual entity represented by
that attribute.

■ In the similar manner, when you select any edge, it displays information about
attributes that are involved in that particular IND. In fig. 7.2.1, the information about
unary IND MEMBER[MEMBERSINCE] c FORMER[LEFTIN] is displayed. As
you can see there are two tabs LEFTIN and MEMBERSINCE which represents two
attributes LEFTIN and MEMBERSINCE which are involved in the IND. When you
select any of the tabs, it will display all information about that particular attribute.

■. With the help of this information, an observer can have necessary information about
attributes to decide whether an IND is also relevant (i.e., non-spurious) in the real
world. The tab layout provides the ease of the usage and helps an observer with
his/her decision.

■ When you click on any node of the graph, the graph will highlight that node and it
will also highlight all connected nodes. This feature is very helpful to determine the
number of relationships in which the particular node (attribute or unary IND) is
involved.

37

7.3 A dialog to visualize binary INDs

Fig. 7.3.1 Binary IND visualization dialog

■ Fig. 7.3.1 displays the binary IND visualization dialog.
■ We already discussed the visualization techniques for binary INDs. The graph is

constructed here is based upon those techniques only.
■ Also the graph controls serve the same purpose as they served in unary IND

visualization dialog. The graph interacts with an observer in the same manner as we
discussed in the unary IND visualization dialog. Due to fact that here we are
considering binary INDs, there are few changes in visually which we discuss next.

■ Here the node in the graph now represents a unary IND. So by selecting any node, an
observer can view all the attributes involved in the unary IND in graph information
section. Since we have two attributes involved in any unary IND, there are two tabs
representing them in graph information section (similar to what we discussed in unary
IND visualization dialog).

■ Here an edge represents a binary IND. So when you select any edge, an observer will
see two parts in the “Graph Information” section which displays two unary INDs. As

38

shown in fig. 7.3.1, the binary IND MEMBER [BIRTH YEAR, MEMBERUNTIL] c
FORMER[YOB, LEFTIN] is selected in the graph. Since it is generated from two
unary INDs MEMBER [BIRTHYEAR] c FORMER[YOB] and
MEMBER [MEMBERUNTIL] c FORMER [LEFTIN], these two INDs are displayed
in the “Graph Information” section.

■ The dialog uses same interface as we discussed in unary IND visualization to
maintain consistency in viewing.

The goal of the agent is to provide a superior user interface by which an observer can
review the information quickly which helps him/her making intelligent decision. We
believe that by using proper display techniques and with the ease of usage, an observer
will be able to figure out and remove spurious INDs from further computation which
further increases the reliability of the result of the overall discovery process and the speed
of the discovery algorithm.

39

8. Related work

Inclusion Dependencies and Functional Dependencies are two most significant integrity
constraints in relational databases. They play a major role in data integration (Cali,
Calvanese, De Giacomo and Lenzerini, 2004; Calvanese, De Giacomo, Lenzarini, Nardi
and Rosati, 2001; Fernandez, Florescu, Kang, Levy and Suciu, 1998; Fernandez,
Florescu, Levy and Suciu, 1999; Arenas, Bertossi and Chomicky, 1999; Fagin, Kolaitis,
Miller and Popa, 2003; Popa, Velegrakis, Miller, Hernández and Fagin, 2002). The
problem of integrating two data sources has been studied for a long time and in this
section we provide an overview of the work that has been done in many area to achieve
the goal of integration.

There are many projects built for integration of heterogeneous databases. ARTEMIS
(Castaño, de Antonellis & de Capitani de Vemercati, 2001; Castaño, De Antonellis,
1999) and Microsoft’s CUPID (Madhavan, Bernstein & Rahm, 2001) are example of
performing integration using schema-based matching approach. ARTEMIS is used as a
component of a heterogeneous database mediator,, called MOMIS (Mediator
environment for Multiple Information Sources) (Bergamaschi, Castaño and Vinicini,
1999; Beneventano, Bergamaschi, Castaño, Comi, Guidetti, Malvezzi, Melchiori and
Vincini, 2000; Bergamaschi, Castaño, Vincini, Beneventano, 2001). CUPID is a hybrid
matcher based on both element- and structure-level matching. Semlnt (Li & Clifton,
2000) and LSD (Doan, Domingos & Halevy, 2001) are example of performing
integration using instance-based matching approach.

Casanova, Fagin & Papadimitriou (1982) defined the term inclusion dependency and
worked on rules dealing with how to obtain inclusion dependencies, how to derive other
inclusion dependencies from already derived inclusion dependencies and how to obtain
inclusion dependencies from functional dependencies. In their work, they also established
the inference rules which form the basis of all algorithm for the discovery of high-arity
inclusion dependencies.

The discovery problem also appears in data mining, namely the problem of the discovery
of association rules (Agrawal and Ramakrishnan, 1994). Much work in the literature
deals with implementation issues and optimizations on Agrawal’s algorithm (Bayardo,
1998; Lin and Kedem, 1998; Han et al., 2000; Zaki, 2000) or generalizations of the
problem (Mannila and Toivonen, 1997). (Koeller and Rundensteiner, 2004)

Inclusion dependency discovery can also be used in the database design. Ling & Goh
(1992) demonstrated how inclusion dependencies can be used to model important
database constraints leading towards better design of database schemas. Ling & Goh also
proposed a new normal form, called Inclusion Normal Form (IN-NF). Levene & Vincent
(2000) further studies normal forms based upon INDs and derived the formal definition
of new form Inclusion Dependency Normal Form (IDNF) by providing sufficient and
necessary semantics.

40

Functional Dependencies are also important in data integration. Lim & Harrison (1997),
Bell & Brockhausen (1995), Huhtala et al. (1998), Knobbe & Adriaans (1996) and
Savnik & Flach (1993) have all worked on the discovery of Functional Dependencies and
showed the importance of the result in the data integration. While functional and
inclusion dependencies are related to each other, the results of this thesis apply strictly to
inclusion dependency discovery only.

Kantola, Mannila, Raiha & Siirtola (1992), Bell & Brockhausen (1995) and Knobbe &
Adriaans (1996) provide some theoretical basis for the discovery of various patterns,
including functional and inclusion dependencies, in databases. As we have already
discussed, FIND2 by Dr. Andreas Koeller (Koeller & Rundensteiner, 2003) and Zigzag
by F. De Marchi (De Marchi, Lopes & Petit, 2002) are most recent algorithms developed
in the field of inclusion dependency discovery.

Human intelligence has been proven as an effective solution for achieving desired results.
Vijayshankar Raman and Joseph M. Hellerstein demonstrate the use of human
intelligence in an interactive data cleaning system, Potter’s Wheel (Raman, Hellerstein,
2001). “The Control Project” (Hellerstein, Avnur, Chou, Hidber, Olston, Raman, Roth,
Haas, 1999) uses human-computer interaction techniques in the data analysis.

In this thesis, we combine the area of inclusion dependency discovery with the idea of
independent software agents. Lieberman (1997) defined autonomous and interface agents
and showed the importance of the collaboration between them. He explained design
principles of such agents with the Letizia system. The WebWatcher from Armstrong,
Freitag, Joachims & Mitchell (1995) and the LIRA from Balabanovic & Shoham (1995)
are closest projects to Letizia which involve the interaction between agents and users.

In this thesis, we proposed an approach to make an agent built on the concept used by
autonomous interface agents (Lieberman, 1997) for the inclusion dependency discovery
process. Up to our knowledge, the closest project to our work is the DBA Companion
Project which is maintained by Fabien De Marchi, Stephane Lopes and Jean-Marc Petit.
The DBA Companion Project provides the understanding of logical database constraints
from which logical database tuning can be achieved. This project differs from the
discovery agent in the sense that it involves functional dependencies while the discovery
agent only concentrates on inclusion dependencies. The goal of the discovery agent is to
provide a unified data integration solution based upon the collaborative efforts of the
inclusion dependency discovery algorithm and the human intelligence.

41

9. Conclusion and future enhancements

The discovery of inclusion dependencies is a hard problem in the field of the data
integration. In thesis, we showed that with collaborative efforts of suitable algorithm
intelligence and proper human expertise, a software agent can produce effective result
towards finding an applicable solution of an NP-complete problem.

In this thesis, we propose an approach of using agents in the discovery of inclusion
dependencies. The discovery agent that we presented in this thesis demonstrates the
collaborative efforts of the algorithm and the observer to deliver a comprehensive
inclusion dependency discovery solution.

There is a large gap between research solutions and industrial applications based on those
solutions. Here we are trying to reduce this gap by introducing the discovery agent and its
interactive and semi-automated process of inclusion dependency discovery. The aim of
the discovery agent to provide a data integration solution based on the discovery of
inclusion dependency.

In this thesis, we discussed many characteristics of the discovery agent. We demonstrated
the effectiveness and usefulness of the agent by implementing its small scale prototype.
Our work mainly involves the user interface layer but the development of the agent is not
limited to it. Compatibility between different forms of data sources (e.g,. XML databases
rather than just relational databases), ability to work with two different forms of data
sources at a same time, and better interaction with the discovery algorithm used are some
of the major future enhancements of the discovery agent.

42

10. References

Agrawal, R. and Ramakrishnan, S. (1994). ‘Fast Algorithms for Mining Association
Rules’. Proc. Inti. Conf. on Very Large Databases (VLDB). pp. 487-499.

Arenas, M., Bertossi, L.E. and Chomicky, J. (1999). Consistent query answers in
inconsistent databases. Proceedings of the 18th ACM SIGACT SIGMOD SIGART
Symposium on Principles of Database Systems (PODS’99). pp. 68-79.

Armstrong, R., Freitag, D., Joachims, T.& Mitchell, T. (1995). WebWatcher: A Learning
Apprentice for the World Wide Web. In AAAI Spring Symposium on Information
Gathering, Stanford, CA.

Balabanovic, M. & Shoham, Y. (1995). Learning Information Retrieval Agents:
Experiments with Automated Web Browsing. In AAAI Spring Symposium on Information
Gathering, Stanford, CA.

Batini, C., Lenzerini, M., and Navathe, S.B. (1986). A comparative analysis of
methodologies for database schema integration. ACM Computing Surveys, 18(4):323-
364.

Bayardo, R. J. (1998), ‘Efficiently mining long patterns from databases’. In: L. Haas and
A. Tiwary (eds.): Proceedings of SIGMOD, Vol. 27(2). pp. 85-93.

Bell, S. and Brockhausen, P. (1995). Discovery of Data Dependencies in Relational
Databases. Technical Report. LS-8 Report 14, University of Dortmund.

Beneventano, D., Bergamaschi, S., Castano, S., Comi, A., Guidetti, R., Malvezzi, G.,
Melchiori, M. and Vincini, M. (2000). Information integration: the MOMIS project
demonstration. Proceedings of 26th International Conference on Very Large Databases
(VLDB). pp. 611-614.

Bergamaschi, S., Castano, S. and Vincini, M. (1999). Semantic integration of
semi structured and structured data sources. ACM SIGMOD Record 28(1). pp. 54-59.

Bergamaschi, S., Castano, S.,Vincini, M. and Beneventano, D. (2001). Semantic
integration of heterogeneous information sources. Data Knowledge Engineering 36(3).
pp. 215-249.

Calvanese, D., De Giacomo, G., Lenzarini, M., Nardi, D. and Rosati, R. (2001). Data
integration in data warehousing. International Journal of Cooperative Information
Systems 10(2). pp. 237-271.

43

Cali, A., Calvanese, D., De Giacomo, G. and Lenzerini, M. (2004). Data integration
under integrity constraints. Information Systems, 29(2). pp. 147-163

Casanova, M.A. and de Sa J.E.A. (1983). Designing entity-relationship schemes for
conventional information systems. Proceedings of the Third International Conference on
the Entity-Relationship Approach to Software Engineering, pp. 265-277.

Casanova, M.A., Fagin R. and Papadimitriou C.H. (1982). ‘Inclusion Dependencies and
their Interaction with Functional Dependencies’. Proceedings of ACM Conference on
Principles of Database Systems (PODS), pp. 171-176.

Casanova, M.A., Tucherman, L. and Furtado, A-L. (1988). Enforcing inclusion
dependencies and referential integrity. Proceedings of the 14th International Conference
on Very Large Databases, pp. 38-49.

Castano, S., De Antonellis, V. (1999). A schema analysis and reconciliation tool
environment. Proceedings of International Database Eng Appl Symp (IDEAS), IEEE
Computer, pp. 53-92.

Castano, S., de Antonellis, V. & de Capitani de Vemercati, S. (2001). Global viewing of
heterogeneous data sources. IEEE Transactions on Knowledge and Data Engineering,
13(2). pp. 277-297

Cheng, Q., Gryz, J., Koo, F., Leung, T.Y.C., Liu, L., Qian, X. and Schiefer, B. (1999).
Implementation of two semantic query optimization techniques in DB2 universal
database. Proceedings of the 25th International Conference on Very Large Databses. pp.
687-698.

Doan, A. H., Domingos, P. & Halevy, A. Y. (2001). Reconciling schemas of deiparate
data sources: A machine-learning approach. Proceedings of the ACM SIGMOD
International Conference on Management of Data, USA. pp. 509-520.
Date., C.J. (1981). Referential integrity. Proceedings of Seventh International Conference
on Very Large Databases, pp. 2-12.

De Marchi, F., Lopes S., and Petit J.-M. (2002). ‘Efficient Algorithms for Mining
Inclusion Dependecies’. Proceedings of International Conference on Extending Database
Technology (EDBT) pp. 464-476.

Fagin, R., Kolaitis, P.G., Miller, R.J. and Popa, L. (2003). Data exchange: semantics and
query answering. Proceedings of the 9th International Conference on Database Theory
(ICDT 2003). pp. 207-224.

Fernandez, M.F., Florescu, D., Levy, A. and Suciu, D. (1999). Verifying integrity
constraints on web-sites. Proceedings of the 16h International Joint Conference on
Artificial Intelligence (IJCAE99). pp. 614-619.

44

Fernandez, M.F., Florescu, D., Kang, J., Levy, A. and Suciu D. (1998). Catching the boat
with Strudel: experiences with a web-site management system. Proceedings of the ACM
SIGMOD International Conference on Management of Data. pp. 414-425.
Han, J., Pei, J. and Yun, Y. (2000). ‘Mining Frequent Patterns without Candiate
Generation’. SIGMOD Record (ACM Special Iterest Group on Management of Data)
29(2). pp. 1-12.

Harary, F. (1994). Graph Theory. Reading, MA: Addison-Wesley, 1994.

Hellerstein, J.M., Avnur, R., Chou A., Hidber C., Olston C., Raman V., Roth T. and Haas
P.J. (1999). Interactive Data Analysis: The Control Project. IEEE Computer Society
Press, pp. 51-59.

Huhtala, Y., Karkkainen, J., Porkka, P. & Toivonen (1998). Efficient discovery of
functional and approximate dependencies using partitions. In Proceedings of IEEE
International Conference on Data Engineering, pp. 392-401.

Hull, R. (1997). Managing semantic heterogeneity in databases: A theoretical
perspective. Proceedings of PODS-97.

Godfrey, P., Grant, J., Gryz, J. and Minker, J. (1998). Integrity constraints: semantics and
applications. J. Chomicki, G. Saake (Eds.), Logics for Databases and Information
Systems, Kluwer Academic Publishes, Boston, pp. 265-306.

Gryz, J. (1998). Query folding with inclusion dependencies. Proceedings of the 14th IEEE
International Conference on Data Engineering, pp. 126-133.

Kantola M., Mannila H., Räihä, K.J., and Siirtola H. (1992). Discovering functional and
inclusion dependencies in relational databases. International J. of Intelligent Systems,
7:591-607.

Klettke, M. (1999). Reuse of database design decision. Workshops on Evolution and
Change in Data Management, Reverse Engineering in Information Systems, and the
World Wide Web and Conceptual Modeling. Vol. 1727. pp. 213-224.

Knobbe, A.J. and Adriaans, P.W. (1996). Discovering Foreign Key Relations in
Relational Databases. Proceedings of the 13th European Meeting on Cybernetics and
Systems Research, Vienna. Pp 961-966

Knoblock, C. and Levy, A. (eds.) (1995) AAAI Symposium of Information Gathering
from Heterogeneous, Distributed Environments, number SS-95-08 in AAAI Spring
Symposium Series.

Koeller, A. (2001). Integration of Heterogeneous Databases: Discovery of Meta
Information and Maintenance of Schema Restructuring Views. PhD Thesis, Worcester
Polytechnic Institute, Worcester, MA, USA.

45

Kodier, A. and Runden Steiner, E.A. (2002). ‘Discovery of High-Dimensional Inclusion
Dependencies’. Technical Report WPI-CS-TR-02-15, Worcester Polytechnic Institute,
Dept, of Computer Science.

Kodier, A. and Rundensteiner, E.A. (2003). ‘Discovery of High-Dimensional Inclusion
Dependencies’. Proceedings of IEEE International Conference on Data Engineering.
Banglor, India, pp. 683-685.

Kodier, A. and Runden Steiner, E.A. (2004). ‘Scalable Discovery of Inclusion
Dependecies’. Unpublished Report.

Krishnamurthy, R., Litwin, W. and Kent, W. (1991). Language features for
interoperability of databases with schematic discrepancies. SIGMOD Record (ACM
Special Interest Group on Management of Data), 20(2), pp. 40-49.

Laurent, D., Lechtenbörger, L, Spyratos, N, and Vossen, G. (1999). Complements for
data warehouses. Proceedings of the 15th International Conference on Data Engineering.
pp. 490-499.

Leven, M. & Vincent, M.W. (2000). Justificaiton for Inclusion Dependency Normal
Form. In IEEE Transactions on Knowledge and Data Engineering (TKDE), 12(2), pp.
281-291.

Li, W. & Clifton, C. (2000). Semlnt: A tool for identifying attribute correspondences in
heterogeneous databases using neural network. Journal of Data and Knowledge
Engineering, 33(1). pp. 49-84.

Lieberman, Henry (1997). “Autonomous interface agents”. Proceedings of the SIGCHI
conference on Human factors in computing systems, pp. 67 - 74

Lim, W. & Harrison, J. (1997). Discovery of Constraints from Data, for Information
System Reverse Engineering. In Proc. Of Australian Software Engineering Conference
(ASWEC ’97), Sydney, Australia.

Lin, D.-I and Kedem, Z. M. 1998. ‘Pincer Search: A new algorithm for discovering the
maximum frequent set’. International Conference on Extending Database Technology,
EDBT’98. pp. 385-392.

Ling, T W and Goh, C.H. (1992). “Logical database design with inclusion dependencies”.
In Proceedings of the Eight International Conference on Data Engineering, pp. 642-649.

Madhavan, J., Bernstein, P. A., & Rahm, E. (2001). Generic schema matching with
CUPID. Proceedings of the 27rh International Conference on Very Large Databases, pp.
49-58.

46

Mannila, H. and Toivonen, H. (1997). ‘Levelwise Search and Borders of Theories in
Knowledge Discovery’. Data Mining and Knowledge Discovery 1(3). pp. 241-258

Mannila, H. and Räihä, K.J. (1986). Inclusion dependencies in database design.
Proceedings of the Second IEEE International Conference on Data Engineering, pp. 713-
719.

Markowitz, V.M. and Makowsky, J.A. (1990). Identifying extended entity-relationship
object structures in relational schemas. IEEE Trans. Software Engineering, pp. 777-790.

Myers, B.A. (1998) "A Brief History of Human Computer Interaction Technology."
ACM interactions. Vol. 5, no. 2, March, 1998. pp. 44-54

Paulley, G.N. and Larson, Per-Äke. (1994). Exploiting uniqueness in query optimization.
Proceedings of the 10th International Conference on Data Engineering, pp. 68-79.

Petit, J-M., Toumani, F. and Kouloumdjian, J. (1995). Relational database reverse
engineering: a method based on query analysis. International Journal of Cooperative
Information Systems 4. pp. 287-316.

Popa, L., Velegrakis, Y., Miller, R.J., Hernández, M.A. and Fagin, R. (2002). Translating
Web data. Proceedings of the 29th International Conference on Very Large Data Bases
(VLDB 2002). pp. 598-609.

Qian, X. (1996). Query folding, in: S.Y.W. Su (Ed.). Proceedings of the 12th IEEE
International Conference on Data Engineermg. pp. 48-55.

Quass, D., Gupta, A., Mumick, I.S. and Widom, J. (1996). Making views self-
maintainable for data warehousing. Proceedings of the Fourth International Conference
on Parallel and Distributed Information Systems, pp. 158-169.

Rahm E., Bernstein P. (2001). A survey of approaches to automatic schema matching.
VLDB Journal: Very Large Data Bases, 10(4), 334-350

Raman, V. and Hellerstein, J.M. (2001). Potter's Wheel: An Interactive Data Cleaning
System. Proceedings of the 27th International Conference on Very Large Data Bases, pp.
381-390.

Savnik, I. & Flach, P.A. (1993) Bottom-up induction of functional dependencies from
relations. IN Piatetsky-Shapiro, G., editor, Proc. Of AAAI-93 Workshop: Knowledge
Discovery in Database, pp. 174-185.

Widom, J. (1995). Special issue on materialized views and data warehousing. IEEE
Bulletin on Data Engineering, 18(2).

47

Wiederhold, G. (1996) Special issue: Intelligent integration of information. Journal of
Intelligent Information Systems. 6(2/3).

Zaki, M.J. (2000). ‘Scalable Algorithms for Association Mining’. IEEE Transactions on
Knowledge and Data Engineering (TKDE), 12(3). pp. 372-390.

48

	Discovery Agent : An Interactive Approach for the Discovery of Inclusion Dependencies
	tmp.1674831944.pdf.mxrdT

