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Abstract  

This study investigated how problem-solving videos can be used in video-mediated professional 

learning to support secondary preservice mathematics teachers (PMTs) in developing teacher 

knowledge for noticing student thinking in the context of the derivative concept in calculus. A 

model of the trajectory of PMTs’ noticing was constructed as six PMTs viewed and analyzed 

videos of students’ problem solving. At the same time, the nature of video-mediated interactions 

that were found to be productive in supporting this knowledge development was examined. A 

design experiment was used as the research methodology. Data was collected from video 

recordings of eight semi-structured teaching episodes for each of the three pairs of PMTs and 

analyzed through a grounded theory approach. Considering that the knowledge was video-

mediated, developed collaboratively, and assessed in action, the study was grounded in situated 

and sociocultural perspectives, and the conceptual framework of professional teacher noticing 

guided the analysis. The constructed model of noticing development that emerged from the 

experiment entails the following four processes: describing, interpreting, comparing and 

contrasting, and responding. This model represents an approach to an ambitious professional 

vision that can support calculus educators in iteratively improving their practice through readily 

accessible, video-mediated professional learning. The study also identified interactions that were 

found to mediate the development of PMTs’ noticing. The social interactions that supported 

PMTs’ noticing of student thinking are highlighting (moments worth noticing) and prompting 

(PMTs to notice what was highlighted). Prompts posed to the PMTs generated centers of focus 

(Lobato et al., 2013) offered opportunities for their describing, interpreting, responding to 

student thinking. The material interactions refer to features of problem-solving videos that were 

found to support the PMTs' learning to notice: (1) The videos offer images of students’ problem 
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solving that could serve as an opportunity for decentering; (2) They are effectively curated; (3) 

They can be paused and re-viewed repeatedly, and (4) They provide a comprehensive and 

appropriate scope and sequence of derivative topics. These findings contribute to research in 

calculus education, with implications for the design of learning experiences in mathematics 

teacher preparation.  

 

Keywords: teacher noticing, professional development, design experiment, calculus  



TEACHER NOTICING AND KNOWLEDGE FOR TEACHING THE DERIVATIVES vi 

Acknowledgements  

I thank God for His grace and for enabling me to achieve this milestone. Despite working on this 

dissertation for countless hours and successfully defending it, it is not a one-man show. Many 

people who have contributed to the success of this dissertation. 

 

I would like to express my sincere gratitude to my Supervisor and Dissertation Chair, Dr. Steven 

Greenstein. No words can express how grateful I am for your support throughout my graduate 

school. You are just phenomenal! 

 

To my distinguished committee members, Dr. Mika Munakata and Dr. Joseph DiNapoli, thank 

you both for inspiring and guiding me during this research. Your critiques pushed me to think 

and reflect deeply, thereby strengthening my dissertation. You are wonderful! 

 

I would like to thank Dr. Erin Krupa for accepting me into Noyce program, which funded my 

graduate studies. I would not have gotten this far without you! To all the faculty and graduate 

students, thank you for enhancing a collegial and supportive environment which enabled me to 

accomplish my goals. 

 

The preservice mathematics teachers who participated and shared their ideas in this study, I’m 

indebted to you! I could not have written this dissertation without your participation. 

 

Special thanks to my beloved mum, Monica Karei, for believing in me! You are the best! Lastly, 

the list is too long to mention everyone, but I salute you all! 



TEACHER NOTICING AND KNOWLEDGE FOR TEACHING THE DERIVATIVES vii 

 

Dedication  

To my family: Doris, Liam, Robert, Erastus, and Monica Karei. 

 



TEACHER NOTICING AND KNOWLEDGE FOR TEACHING THE DERIVATIVES viii 

Content 
Chapter 1: Introduction .................................................................................................. 14 

Framing the Study ...................................................................................................... 14 

Use of Videos in Teacher Education .......................................................................... 15 

Research Questions .................................................................................................... 18 

Chapter 2: Literature Review ......................................................................................... 19 

The Current State of Postsecondary Calculus Education ........................................... 19 

Students’ Knowing and Learning of the Derivative ................................................... 20 

Instructors’ Knowledge of the Derivative .................................................................. 25 

Models of Knowledge for Teaching Mathematics ......................................................... 27 

Mathematics Content Knowledge (MCK) ................................................................. 28 

Mathematics Knowledge for Teaching (MKT) .......................................................... 34 

Common Content Knowledge and Specialized Content Knowledge......................... 40 

Relationship Between Mathematical and Pedagogical Content Knowledge ............. 42 

Preservice Teachers’ Mathematical and Pedagogical Content Knowledge ............... 45 

Teachers’ Professional Noticing .................................................................................... 48 

Research on the Development of Teachers’ Professional Noticing ........................... 49 

Concluding Remarks on the Literature Review ............................................................. 57 

Theoretical Perspectives ................................................................................................ 58 

Sociocultural Perspective ........................................................................................... 58 

Vygotsky’s Zone of Proximal Development and Scaffolding ..................................... 59 

The Value of a Sociocultural Perspective for this Study ............................................ 61 

Situated Learning Perspective .................................................................................... 62 

Contribution of Situated Learning to this Study......................................................... 64 

Chapter 3: Methodology and Methods ........................................................................... 66 

Design Experiment Methodology .............................................................................. 67 



TEACHER NOTICING AND KNOWLEDGE FOR TEACHING THE DERIVATIVES ix 

Research Setting ......................................................................................................... 68 

Participants ................................................................................................................ 69 

Recruitment ................................................................................................................ 70 

The Episodes of a Design Experiment ....................................................................... 71 

Interview Protocol Adjustments ................................................................................. 76 

Sequence of Design Episodes .................................................................................... 78 

Data Collection ........................................................................................................... 80 

Problem-Solving Videos ................................................................................................ 81 

Session 1: The Constant Rate of Change ................................................................... 83 

Session 2: Increasing Rate of Change........................................................................ 84 

Session 3: Approximating Instantaneous Rate of Change ......................................... 85 

Session 4: Limit Definition of the Derivative ............................................................. 86 

Session 5: Using Limits to Compute Derivatives ....................................................... 86 

Session 6: Slopes of Secant and Tangent Lines.......................................................... 87 

Session 7: Graphing the Derivative ........................................................................... 88 

Session 8: Interpreting Derivatives ............................................................................ 88 

Data Analysis ................................................................................................................. 89 

Data Analysis for Research Question 1 ..................................................................... 90 

Focusing Framework .................................................................................................. 94 

Data Analysis for Research Question 2 ..................................................................... 97 

How Trustworthiness was Established .......................................................................... 99 

Credibility................................................................................................................... 99 

Dependability ........................................................................................................... 100 

Confirmability .......................................................................................................... 101 

Transferability .......................................................................................................... 102 

Chapter 4 Results: Trajectories of Knowledge Development ...................................... 103 



TEACHER NOTICING AND KNOWLEDGE FOR TEACHING THE DERIVATIVES x 

Coding for the Learning Trajectory of Participants ................................................. 104 

The Emergent Framework of Learning to Notice Students’ Thinking ........................ 107 

Learning to Notice through Describing .................................................................... 107 

Superficial Descriptions ........................................................................................... 107 

Describing Students’ Problem-Solving Strategies ................................................... 109 

Using Students' Own Words in Descriptions to Support Claims ............................. 112 

Learning to Notice through Interpreting .................................................................. 114 

Using Analogies to Make Interpretations ................................................................ 114 

Considering the Design of Tasks in the Interpretation of Elicited Thinking ........... 116 

Leveraging Content Knowledge to Construct Interpretations ................................. 118 

Identifying and Analyzing Misconceptions (in an Applied Context) ........................ 122 

Collaborative Analysis of Derivative Reasoning ..................................................... 124 

Making Sense of Students’ Struggles in Problem Solving........................................ 127 

Making Inferences about Students’ Thinking from (Multiple) Artifacts of their Work

 .................................................................................................................................. 130 

Learning to Notice through Responding .................................................................. 133 

Superficial Instructional Responses ......................................................................... 133 

Conceptual Instructional Responses ........................................................................ 135 

Learning to Notice through Comparing and Contrasting ......................................... 143 

Conclusion to Chapter 4 ............................................................................................... 145 

Chapter 5 Results: Mediators of Knowledge Development ......................................... 150 

Centers of Focus ....................................................................................................... 151 

Focusing Interactions ............................................................................................... 154 

Highlighting and Prompting .................................................................................... 155 

Features of Problem-Solving Videos ....................................................................... 165 

Analyzing Students’ Problem Solving as an Opportunity for Decentering .............. 166 



TEACHER NOTICING AND KNOWLEDGE FOR TEACHING THE DERIVATIVES xi 

The Videos are Effectively Curated .......................................................................... 168 

The Videos can be Paused and Re-viewed Repeatedly ............................................ 169 

The Videos Provide a Comprehensive and Appropriate Scope and Sequence ........ 170 

Concluding Chapter 5 .................................................................................................. 171 

Chapter 6: Conclusion of the Study ............................................................................. 174 

Introduction .............................................................................................................. 174 

Summary of the Findings ......................................................................................... 174 

Responding to Research Question 1: Trajectories of Knowledge Development ..... 177 

Responding to Research Question 2: Mediators of Knowledge Development......... 181 

The Significance of the Findings ................................................................................. 185 

Limitations of the Study ............................................................................................... 186 

Implications and Future Research ................................................................................ 186 

References .................................................................................................................... 191 

Appendices ................................................................................................................... 205 

Appendix A: Interview Contact Summary Form ..................................................... 205 

Appendix B: Salient Episodes in the Problem-solving Videos ................................ 205 

Appendix C: A List of Problem-solving Videos. ..................................................... 217 



TEACHER NOTICING AND KNOWLEDGE FOR TEACHING THE DERIVATIVES xii 

List of Tables 
 
Table 1 ................................................................................................................................................................. 73 

Table 2 ................................................................................................................................................................. 78 

Table 3 ................................................................................................................................................................. 93 

Table 4 ............................................................................................................................................................... 153 

Table 5 ............................................................................................................................................................... 175 

 

 
 
 



TEACHER NOTICING AND KNOWLEDGE FOR TEACHING THE DERIVATIVES xiii 

List of Figures 
Figure 1 ................................................................................................................................................................ 34 

Figure 2 ................................................................................................................................................................ 60 

Figure 3 ................................................................................................................................................................ 63 

Figure 4 ................................................................................................................................................................ 84 

Figure 5 ................................................................................................................................................................ 84 

Figure 6 ................................................................................................................................................................ 85 

Figure 7 ................................................................................................................................................................ 86 

Figure 8 ................................................................................................................................................................ 87 

Figure 9 ................................................................................................................................................................ 87 

Figure 10 .............................................................................................................................................................. 88 

Figure 11 .............................................................................................................................................................. 89 

Figure 12 ............................................................................................................................................................ 111 

Figure 13 ............................................................................................................................................................ 113 

Figure 14 ............................................................................................................................................................ 117 

Figure 15 ............................................................................................................................................................ 119 

Figure 16 ............................................................................................................................................................ 131 

Figure 17 ............................................................................................................................................................ 140 

Figure 18 ............................................................................................................................................................ 167 

Figure 19 ............................................................................................................................................................ 169 

 



TEACHER NOTICING AND KNOWLEDGE FOR TEACHING THE DERIVATIVE 
  

 14 
 

 Chapter 1: Introduction 

Framing the Study 

 The use of videos in teacher education has recently gained much attention, as it is 

considered effective in supporting preservice teachers’ development of knowledge and skills 

required for actualizing meaningful instruction in the classroom. However, as this literature 

review will reveal, there was a need to investigate further how videos can be used to develop 

authentic, situated, and contextualized domain-specific knowledge for teaching. For this reason, 

this study used the design experiment methodology to explore the knowledge for teaching the 

derivative that preservice mathematics teachers (PMTs) developed through their mediated 

engagement with videos of students solving mathematics problems. In these videos, 

undergraduate-level students were solving problems related to the concept of derivatives. PMTs 

were asked to view and analyze these problem-solving videos in order to develop their skills for 

noticing students’ mathematical thinking and their knowledge for teaching the derivative. 

In addition to analyzing the development of these skills and knowledge, I discerned the 

nature of interactions among the PMTs, the problem-solving videos, and the researcher that were 

seen to be productive for supporting the knowledge and skills development. To do so, I took both 

situated and sociocultural perspectives on knowing, as they honor the contexts in which 

knowledge is developed and the tools and interactions that mediate it. Moreover, focusing 

(Lobato et al., 2013) and teachers’ professional noticing (Van Es & Sherin, 2002) frameworks 

were used to analyze these interactions in order to yield insights into how teacher knowledge 

may be developed. In my review of the literature, I reviewed the research on the use of video in 

teacher education, the current state of postsecondary calculus education, models of knowledge 

for teaching mathematics, and teachers’ professional noticing in mathematics education. Through 
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this review, I identified gaps in these bodies of literature and concluded by laying out a 

theoretical framework and methodology that this investigation into knowledge development 

employed. In my concluding remarks, I discussed the forms of knowledge PMTs might develop 

for teaching the derivative through their engagement in a design experiment mediated by 

problem-solving videos of students in a semi-structured interview setting. I used the review as a 

whole to inform a conjecture of the noticing skills and forms of knowledge that are needed to 

effectively teach the derivative, and the kinds of interactions that supported their development. 

Use of Videos in Teacher Education 

This study incorporated the use of problem-solving videos as a medium for developing 

prospective teachers’ knowledge for teaching the derivative and their skills for noticing students’ 

mathematical thinking. Videos have been used in preservice mathematics teacher education to 

support prospective teachers to develop the knowledge and skills needed to initiate and sustain 

student-centered teaching approaches in mathematics classrooms and also to support them as 

they learn to anticipate and address students’ misconceptions and facilitate their learning of the 

target understandings of fundamental mathematical concepts. This review identified gaps in the 

research on the use of videos in preservice teacher preparation and proposed a means to address 

them. The research questions that framed this study will be presented immediately following this 

section. 

Research has shown that records of practice (e.g., classroom videos, examples of student 

work, lesson plans, instructional materials) can support teachers in connecting the theoretical 

knowledge acquired in teacher education programs to the actual practices in a classroom context, 

such as “ways to introduce the task, questions to pose as students work on the task, and methods 

of managing the classroom discourse” (Borko et al., 2011, p. 184). In particular, as “sites for 
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analysis [that] are situated in practice” (Doerr & Thompson, 2004, p. 180), videos can serve as 

“springboards for analysis and discussion about mathematics teaching and learning” (Borko, 

2011, p. 184).  

Borko et al. (2008) explored how teachers can use their classroom videos as a tool for 

enhancing productive analysis of their teaching practice and further develop insights for 

improving their teaching. They conducted a PD in which mathematics teachers developed a 

“supportive and analytical environment” within a period of 2-years. Teachers met once a month 

to examine their practice collaboratively as a community of practice by watching video excerpts 

of each other’s instruction and focusing their discussions on students’ thinking as well as the 

teacher’s role in developing and implementing lessons. The study’s findings reveal teachers’ 

positive opinions about their participation in the PD: “Viewing footage from their own 

classrooms allowed the teachers to see what they were doing well and to identify areas for 

improvement” (p. 434), thereby developing richer models of responsive teaching. For example, 

they learned to “better appreciate their students’ capacity for mathematical reasoning” (p. 434) 

and to develop an understanding that they and their colleagues are all grappling with similar 

problems of practice.  

As teachers engage in video-mediated discussions of problems of practice, social, 

intellectual, and material resources (Vygotsky, 1978) mediate their learning, and negotiations of 

teachers’ ideas contribute to the shared knowledge for teaching that emerges. Thus, by 

presenting the richness, complex reality, and authenticity of classroom interactions, videos of 

classroom practice offer a viable venue for the development of teacher knowledge with an eye 

toward an ambitious and responsive pedagogy. Indeed, research on teacher noticing (Sherin & 

van Es, 2002; van Es, 2011) reveals that videos can be an essential practice artifact. They allow 
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teachers to systematically analyze and reflect on their teaching when viewed along with a 

structured protocol to mediate their analysis. Sherin (2004) adds that an affordance of videos is 

that teachers can pause and review them multiple times at their own pace to carefully analyze 

and reanalyze events as they unfold. Such an affordance can be invaluable, as it mitigates the 

overwhelming demand of observing an entire class where multiple events occur concurrently, all 

worthy of the observer’s attention. In addition, videos are editable, which means that clips can be 

extracted that are specific to the goals of professional learning.  

Moore-Russo and Viglietti (2011) used animated videos of modeling geometry classroom 

instruction in professional development with both novice and prospective teachers, and found 

them to be useful in helping teachers extend their content knowledge and get better at making 

instructional decisions based on student thinking. These animated videos are intentionally 

designed to focus on three “elements” of a learning environment: the chalkboard, the instructor, 

and the students. The camera views these elements from all angles, thus enabling a clear view of 

students’ written work and their conversations, teachers’ responses to students’ inquiries, and 

even facial reactions of the participants.  

Videos have also been used in teacher education programs to support preservice 

mathematics teachers learning to notice classroom events and teaching practice. For example, 

Star and Strickland (2008) used a pre-and-post-test design to determine the kinds of classroom 

events that preservice mathematics teachers noticed before and after completing a math methods 

course. Although they indicated limited noticing skills in the pre-test, in the post-test they had 

developed significant observation skills as revealed by their abilities to notice features of the 

classroom environment, tasks, mathematical content, and communication (teacher-to-student, 

student-to-student) that occurred during the lesson. Similarly, Wilson et al. (2011) used statistics 



TEACHER NOTICING AND KNOWLEDGE FOR TEACHING THE DERIVATIVE 
  

 18 
 
problem-solving videos to teach teachers how to respond to student thinking by analyzing the 

problem solving of the students in the videos, characterizing what teachers noticed (Lobato et al., 

2013), and proposing instructional decisions based on what they learned. Thus, resulting to a 

model of how teachers learn to notice student thinking.  

Although research has explored the use of classroom videos in teacher education, as well 

as analysis of students’ work as they solve mathematical problems, it has offered neither 1) the 

principles for the design of a video-based model of PMTs’ knowledge development for teaching 

the derivative (e.g., What should those videos contain?), nor 2) an articulation of the nature of 

interactions among the PMTs, videos, and the teacher educator that can support that development 

(i.e., How are PMTs meant to engage with the videos?). Given that videos of professional 

practice have been shown to be useful in teacher preparation and professional development, new 

research can help us better understand just how it is that problem-solving videos in particular can 

be used to develop the noticing capacity and teacher knowledge for derivatives of future teachers 

of calculus. This study aimed at responding to that call for research.  

Research Questions 

This literature review was organized around a study that sought to address the following 

research questions: 

1. How does teacher knowledge specific to noticing students’ mathematical thinking in 

the domain of the derivative develop through video-mediated professional learning? 

2. What forms of video-mediated interactions support this development? 
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Chapter 2: Literature Review  

The Current State of Postsecondary Calculus Education 

Calculus is fundamental to STEM fields, and students take calculus courses at either the 

secondary or tertiary levels in the United States. Students in STEM-related programs such as 

engineering, medicine, economics, and mathematics take a sequence of calculus courses as its 

concepts have widespread applications in these fields. Thus, these courses tend to be 

prerequisites for much of their coursework, which means that they act as gateway courses. 

Unfortunately, research has found that these courses too often rely on memorization and 

rote learning of calculus concepts (e.g., Bressoud et al., 2015), giving too little attention to their 

conceptual underpinnings. Such approaches to learning deny students a meaningful 

understanding of calculus, which contributes to the difficulties they experience in STEM courses, 

particularly in solving problems situated in dynamic and real-world scenarios (Moore & 

Thompson, 2015; Thompson, 1994). As a result, many STEM students eventually change their 

majors due to poor learning experiences in courses characterized by such an approach (Bressoud 

et al., 2015). Thus, it is crucial to undertake research to identify more viable approaches to the 

teaching and learning of calculus. 

Since this study focused on constructing a model of PMTs' knowledge for teaching the 

derivative, I now present research related to students' learning of the derivative. This literature 

focuses on the ways students in calculus tend to think and reason about the concept of the 

derivative. Its findings can inform a study designed to support PMTs as they come to learn how 

to teach the concept of derivatives effectively. I present this research on students learning the 

derivative to achieve two goals: 1) Review what the research says about what students know 

about the derivative and the struggles they are likely to face, and 2) Review what the research 
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tells us about how these misconceptions have been addressed in practice. These insights were 

invaluable as I developed a model of the knowledge that PMTs need to foster students' learning 

of the derivative concepts. 

Students’ Knowing and Learning of the Derivative 

Research has shown that students tend to learn content with understanding when it is 

represented in an organized and meaningful way (Ball et al., 2008; Ball, 2003). Therefore, it is 

necessary to explore students’ understanding of the mathematical concepts and ideas related to 

the derivative and how they are connected. I begin by presenting the literature on how students 

learn slope, as it is foundational to the concept of derivative 

Students’ Conceptions of Slope. Carlson et al. (2010) explored students' covariational 

reasoning, a mental action regarding "how one variable changes while imagining successive 

amounts of change in the other" (p. 117). They stressed the importance of understanding the 

covariational aspect of slope as a significant phenomenon for developing a meaningful 

understanding of the rate of change, a key component of the derivative. Moreover, Carlson et al. 

propose that covariational reasoning enables students to "unpack the notion of slope (steepness) 

by describing the relative changes of input and output values" and apply the same knowledge to 

"determine growth patterns and growth rates of various function types" (p. 117).  

Studies (e.g., Lobato & Siebert, 2002; Lobato & Thanheiser, 2002) that investigated 

students' linkages of slope to real-life applications have reported their struggles to make those 

connections. For instance, Lobato and Siebert (2002) conducted a teaching experiment to support 

students in developing quantitative reasoning about linear functions and slopes. They engaged 

students in exploring the meaning of steepness in the context of hills and ramps. One student 

who was interviewed was asked how he would measure the steepness of a ramp. The students 
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explained three methods: measuring the inclination angle, using a level, and making a series of 

height measurements taken at equal-width intervals. However, the student could not explain how 

the steepness of a ramp can be maintained by varying the height and the length, thus indicating 

that he had not considered a proportional relationship between the height and the length.  

For a student to understand slope as it is applied in real-life situations and be able to 

engage in quantitative and covariational reasoning, Lobato and Siebert (2002) suggest an 

approach that involves three aspects: (a) isolating attributes in order to quantify them, (b) 

identifying how quantities reflect different measures of attributes, and (c) understanding 

relationships among quantities. Lobato and Siebert further discourage a focus on the slope as "a 

calculation used to determine the "tilt" of a straight line in a coordinate grid system (as is done in 

many traditional and some reform classrooms)" (p. 94). They do so because if this were a 

student's operating conception of the slope, they would find it difficult to use the concept to 

make sense of covarying quantities. Instead, they suggest "a focus on the slope as the 

construction of a ratio of the variation of one quantity to the associated variation of another 

quantity [where the two quantities covary] in such a way that the slope is a measure of some 

attribute" (p. 94). This would provide students with a knowing of slope that is general enough to 

connect with their experiences outside of math class.  

Stump (2001) offers a standard for the conceptual knowledge of slope that students need 

to develop: "Understanding the relationships among the various representations of slope that 

typically appear in school (algebraic, geometric, trigonometric, and calculus), understanding 

slope as a measure of steepness and rate of change in real-world situations" (p. 210). 

Unfortunately, research reveals that students hold conceptions of slope much narrower than 

Stump's standard, undermining students' abilities to understand the derivative.  
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Nagle et al. (2013) conducted a qualitative study to explore college students' conceptions 

of the slope. Students responded to a paper-and-pencil 'quiz' with items that sought to assess their 

understanding of slope. The analysis revealed an almost exclusively procedural understanding. 

For example, slope as an indicator of the behavior of a graph (i.e., "considering slope as a gauge 

for determining increasing or decreasing trends of a line," p. 1500) and as a parametric 

coefficient (i.e., "m is the coefficient of x," p. 1503) were common in their responses. 

Furthermore, such narrow concepts of slope fail to capture it as a ratio of covarying quantities.  

Findings such as this help to explain why students might struggle to appreciate slope in the 

context of real-world applications where change is central. 

Other evidence of students' struggles to conceptualize slope in real-world situations is 

provided in the literature (e.g., Nagle & Moore-Russo, 2013), and this maybe a byproduct of 

teachers’ struggles to do so, as well. For example, Stump (2001) found that although preservice 

mathematics teachers deliberately designed lessons on slope with connections to real-world 

situations, they neglected to maintain those connections during their implementation. Stump 

stresses the need for teachers to instantiate and maintain these connections by incorporating 

scenarios involving ratios of changing quantities, such as velocity and acceleration, and by 

making connections to the slope of function graphs in order to support students' understanding of 

slope. Students should always be mindful, Stump writes, of the question, "What does the slope 

represent in the context of this situation?" (p. 87). The real-life situations provide a productive 

avenue in which students' meaningful understanding of slope can be developed. In conclusion, 

the research tells us that instructional approaches that represent slope as a ratio of covarying 

quantities and situated in real-life applications are productive for developing students’ 

conceptual knowledge of slope.  
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Students’ Conception of the Derivative. Research that explores student understanding 

of the derivative has found that students experience difficulties in learning just about every idea 

associated with the derivative concept––the derivative function, the slope of a tangent line, the 

rate of change, the difference quotient, and the limit (Park, 2013; Zandieh & Knapp, 2006). Park 

(2013) explored Calculus I students’ understanding of the derivatives of a function, at a point, 

and over an interval. The students provided responses to tasks related to derivatives in a survey 

and participated in a follow-up, task-based, semi-structured interview to reveal their approaches 

to solving the problems. Park’s findings reveal students’ confusion between the derivative as a 

value (the slope of a tangent line at a particular point) and the derivative as a function (a new 

function that outputs the slope of the function graph at each point).  

For example, one of the tasks assessed students’ understanding of the relation between a 

function and its tangent line. One of the students indicated that 𝑓 ′(1) equals the equation of the 

tangent line. That is, 𝑓 ′(1)  =  1
2

𝑥 + 1
2
  and went on to explain that 𝑓 ′(1) is a point and  1

2
𝑥 +  1

2
  

is a function instead of realizing that 𝑓 ′(1)would give the slope of a tangent line at the point 𝑥 =

1. This student’s work implies that they had different views of the left-hand and right-hand sides 

of the equation; one as a value and the other as a function. The student did not even differentiate 

the function of the tangent line before thinking of evaluating 𝑓 ′(1) to find the slope at 𝑥 = 1. The 

student’s thinking reveals a lack of understanding of the relationship between a function and its 

tangent line and also of the concept of slope at a particular point. Moreover, when finding the 

slope of 𝑓(𝑥) at 𝑥 = 1, the student found the value of the function at 𝑥 = 1 rather than the 

derivative function, further evidence of the common confusion.  

Park (2013) further reports on students’ over-reliance on differentiation rules to solve 

problems given in symbolic and graphical forms. For instance, to sketch a derivative graph, some 
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students found its derivative and then evaluated it at several points to sketch a derivative 

function. They thought of derivative as discrete points and not as a function in its own right. In 

doing so, the students expressed difficulties in understanding that the derivative is the slope of a 

function at a particular point and that it may change over an interval, and that these 

understandings can be utilized to sketch a derivative function. That is, the connections they made 

were pointwise and not across an interval, in which case they would be able to conceive of and 

reason about change over time.  

Researchers have utilized the notion of multiple representations of derivatives in various 

registers to describe what a deep and flexible understanding of the derivative should look like. 

For instance, Zandieh’s (2000) framework provides a “description of a student’s understanding 

of the concept of derivative” (p. 104), entailing a conception of derivative in four contexts 

(graphical, symbolic, verbal/rate, and physical), with each explained in all three layers (ratio, 

limit, and function).  Jones and Watson (2018) extended Zandieh’s (2000) framework to explore 

what the concept of derivative consists of, what student understanding of the derivative looks 

like, and how it evolves as students engage with tasks and activities related to the derivative 

concept in various contexts. They conducted task-based clinical interviews with first-semester 

calculus students to test their proposal that target understanding of the concept of derivative 

involves two features, the first of which is an understanding of all three key elements––ratio of 

objects, limit, and function (RLF in short). In this framework, these processes are referred to as 

process-object layers because each of them can be seen as a dynamic process that is reified to 

mathematical objects. For instance, for Zandieh (2000), the process that “takes two objects... and 

acts by division” (p. 107) is reified into ratio, a mathematical object. The next layer (limit) is 

obtained through passing (limiting process) infinite ratios to approach a limit value. Then, limit 
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(as an object) is utilized in the next layer’s process that “pass[es] through (possibly) infinitely 

many input values and for each determines an output value given by the limit... at that point” (p. 

107). This process is reified into an object, which is a function.  

The second feature of Jones and Watson’s (2018) model of derivative understanding is 

the ability to explain the three layers in at least one context (i.e., representation). They found that 

students who were able to explain the three layers (i.e., RLF) in at least one context (graphical, 

symbolic, and physical) had a well formed RLF schema and were able to articulate concepts 

associated with the derivative. They assert that this framework offers insights into what learning 

of the derivative entails. They further posit that the developed understanding of the derivative 

through this model forms a foundation for advanced calculus courses and has implications for the 

design of instructional materials that support the attainment of target understanding (forming 

RLF schema of derivative in at least one context).  

The literature reviewed in this subsection shows that students face difficulties as they 

strive to understand the concept of derivative, yet by presenting it to them through engagement 

with multiple representations, they are more likely to develop a meaningful understanding of the 

concept. The research further reveals that meaningful learning of the derivative depends on the 

knowledge that teachers hold and how they make it available to students through well-designed 

activities and other visual mediators.  

Instructors’ Knowledge of the Derivative 

Nagle et al. (2013) provided a 13-item survey to college calculus students and instructors 

in order to assess their concept images of the slope, which is defined as “the total cognitive 

structure that is associated with the concept, which includes all the mental pictures and 

associated properties and processes” (Tall & Vinner, 1981, p. 152). They found that even though 
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instructors provided several conceptualizations of slope, they did not provide slope as indicators 

of graph behaviors, a conceptualization that was elicited by the students. These discrepancies of 

the interpretation of slope “may be linked to the academic cultures and mathematical emphases 

found in secondary versus tertiary mathematics” (Nagle et al., 2013, p. 1492). This is a 

phenomenon of concern because “the first derivative test in calculus uses the sign of the 

derivative (the slope of the tangent line) to determine the increasing or decreasing behavior of a 

function” (p. 1509). When calculus instructors at the college level fail to represent the slope as a 

behavior indicator, the students are likely to have difficulties understanding the first derivative 

test of the function.  

Nagle and Moore-Russo (2013) conducted a related study to explore preservice and 

secondary in-service teachers’ concept of slope and their instructional intent. The participants 

were enrolled in a graduate-level course that focused on introducing digital tools that can be 

utilized to teach mathematics. They used Wordle software to create a word cloud so as to reveal 

their “individual’s thoughts about a topic... and their understanding of slope” (p. 7), and the 

extent to which teachers “have developed an interconnected understanding of a topic and the 

likelihood that they will be able to mediate the concept to students” (p. 6). They also used Prezi 

zooming presentation software to create a concept map of slope that they would use to inform the 

design of instruction to teach the concept to secondary students. The tasks teachers wrote were 

used to assess what they know about slope and what they believe their students should know, 

thus enabling the researchers to discern a relationship between how teachers understand slope 

and how they think about presenting it. The findings revealed a gap between teachers’ concept 

images of slope (revealed in the word cloud) and their instructional intent (indicated by concept 

mapping), implying that there exists a disconnect between teachers’ understanding of a concept 
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and the content they deliver to their students. In particular, to the researchers, “it appears that 

[pre-service and in-service] teachers emphasize an image of slope that is more procedural and 

less conceptual than their own image of the concept” (p. 14).  

Nagle and Moore-Russo concluded from their findings that knowledge of a concept is 

necessary though not sufficient for meaningful instruction. Teachers may need more knowledge 

in choosing instructional materials for teaching and maintaining a commitment to their 

instructional objectives in their teaching. These findings should motivate researchers to engage 

in investigations that establish relationships between teachers’ concept images, instructional 

materials, and the dynamics of an enacted lesson. As I allude to later in this review, perhaps a 

solution to the disconnect between instructional intent and enactment can be found in developing 

a base of teacher knowledge through practice in the context of teaching. 

Models of Knowledge for Teaching Mathematics  

In this section, I explore mathematics content knowledge (MCK), pedagogical content 

knowledge (PCK), and the relationship between the two. Since the development of knowledge 

for teaching calculus is central to the research undertaken in this study, I now provide a review of 

the literature on knowledge for teaching mathematics that inform the nature of knowledge that 

developed to teach calculus. I also include a rationale for why PMTs need an in-depth 

understanding of MCK and PCK to effectively teach derivative in calculus.  

Research on teacher knowledge has been concerned with understanding the knowledge 

that teachers should possess and how they can make content available for students to learn (Ball 

et al., 2008; Rowland et al., 2005). Badillo et al. (2011) stressed the need in the particular case of 

teaching the derivative. Other efforts have led to various conceptualizations of teacher 

knowledge for teaching mathematics, such as Mathematical Knowledge for Teaching (MKT; 



TEACHER NOTICING AND KNOWLEDGE FOR TEACHING THE DERIVATIVE 
  

 28 
 
Ball et al., 2008; Hill et al., 2008), the model of ‘proficiency’ in the teaching of mathematics 

(Schoenfeld & Kilpatrick, 2008), and the knowledge quartet (Rowland et al., 2005). In this 

regard, some scholars have called for a shift in investigative attention from the structure of 

teacher knowledge (i.e., domains of knowledge that constitute teacher knowledge) to research 

that seeks to develop models of how such knowledge for teaching can be developed (Beswick et 

al., 2015; Scheiner, 2015).  

Mathematics Content Knowledge (MCK) 

Thompson (1984) asserts that teachers’ conceptions of mathematical content influences 

how their mathematics is enacted in the classroom because teachers can only support students to 

learn the content they understand. Putman and Borko (2000) posit that teachers should engage 

with mathematical content in more meaningful ways in order to “understand the central facts and 

concepts of the discipline, how these ideas are connected, and the processes used to establish 

new knowledge and determine the validity of claims” (p. 6). Therefore, teachers need more 

opportunities – and maybe different kinds of opportunities – to learn mathematics content more 

deeply as they learn how to teach it. 

Despite MCK being an essential component of teacher knowledge with a relationship to 

teaching and learning, research finds that many mathematics teachers lack the profound 

understanding of fundamental mathematics (Ma, 1999) that is necessary to actualize meaningful 

teaching in the classroom. For instance, Ball (1990) explored prospective elementary teachers’ 

understanding of mathematics content at three colleges using questionnaires and interviews, and 

found that even though they had completed core content courses for mathematics majors, they 

still had shallow knowledge of elementary-level fraction concepts.   
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In the context of advanced mathematics, Pino-Fan et al. (2018) assessed prospective 

teachers’ mathematical content knowledge related to the derivative through an analysis of 

questionnaires and found that the knowledge they possess is limited. For example, one student 

was able to provide meanings for the derivative, but given a function, they could not identify 

points where the tangent to the graph of that function was horizontal. Lew et al. (2016) 

conducted a case study and reported similar findings. They video-recorded the lecture of an 

experienced and well-respected professor and also interviewed him and his students to explore 

students’ understandings of the central concepts within proofs in a real analysis class. Although 

the students followed the steps in the professor’s calculations, they actually lacked the 

knowledge required to comprehend his explanations. If these findings can be generalized, they 

suggest that PMTs complete teacher education programs with narrow knowledge of the content 

they will teach, which means they’re likely to encounter difficulties in their efforts to support 

students’ meaningful learning of that same content.  

Research has found that teachers' MCK is a significant predictor of their professional 

practice (Baki & Arslan, 2017), classroom instructional practice (Tsamir, 2005), curriculum 

implementation (Sherin, 2002), and student learning (Hill et al., 2005). For instance, Baki and 

Arslan (2017) worked with preservice mathematics teachers to explore the relationship between 

MCK and mathematics pedagogical content knowledge (MPCK), which is a proposed domain of 

knowledge that includes student content knowledge and knowledge of how to organize and 

present a mathematics lesson. Analysis of data collected through observations and interviews 

revealed that preservice mathematics teachers with weak MCK had difficulties interpreting 

students' responses and explanations and providing them with appropriate feedback, thus 

affecting the quality of their teaching. These studies are essential because they help us 
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understand the quality of MCK held by the teachers and how such knowledge influences their 

mathematics teaching.  

Furthermore, Baki and Arslan's (2017) finding of an interplay between MCK and MPCK 

led them to stress the need for teachers to develop in-depth and relational understandings of these 

domains of teacher knowledge. They expressed concern that professional development, although 

focused on strengthening teachers’ conceptions of content knowledge needed for teaching 

mathematics, may not offer the kind of sustained engagement necessary to develop MCK and 

MPCK. In response, they recommended that teacher education programs provide opportunities 

for prospective teachers to develop MCK and PCK as well as their interplay in the work of 

teaching mathematics. Additional research that seeks to construct a theoretical model of teacher 

knowledge that develops in practice can inform this practical need. 

Research has also found MCK to be a central component of teacher knowledge and an 

important influence on students’ mathematical achievement (Ball et al., 2004; Hill et al., 2005). 

As a result, professional bodies of mathematics education (e.g., National Council of Teachers of 

Mathematics [(NCTM, 2000) have emphasized the need for teachers to develop the content 

knowledge they need to implement mathematics education reforms. However, teachers need 

more than MCK to teach mathematics meaningfully (Hill et al., 2008; Sherin, 2002). They also 

need to understand common student conceptions of mathematics, common errors they commit as 

they think and reason about mathematics, and knowledge of mathematics curriculum that can 

inform the design of instruction that meets the learning needs of students. In this regard, Sherin’s 

(2002) observations and analyses of classroom lessons concluded that the meaningful teaching of 

mathematics entails an interaction of the following domains of teacher knowledge: subject 

matter, curriculum materials, and knowledge of student learning.  
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The obvious conclusion is that in teacher preparation coursework, mathematics teacher 

educators should teach the mathematics that PMTs will eventually teach. They should also 

support them in developing capacities to leverage that knowledge when teaching. However, the 

research on what and how much mathematics teachers should know is mixed, resulting in 

disagreements over the depth and breadth of mathematical knowledge that a teacher should know 

(e.g., Ball & Bass, 2000). Moreover, scholars do not even agree on the relationship between the 

number of courses prospective teachers take in college, the teacher knowledge that’s developed, 

and the potential impact on students’ achievement. Ball and Bass (2000), for instance, found that 

the number of advanced mathematics courses taken by a teacher has no association with their 

students’ achievement. However, research finds that teacher knowledge does (Campbell et al., 

2014; Darling-Hammond, 2000). What these findings repeatedly remind us is that MCK is 

necessary but not sufficient for enacting effective mathematics teaching, thus raising skepticism 

about any claims concerning a relationship between the number of mathematics courses a teacher 

has taken and the quality of their teaching. Therefore, still more research is needed to understand 

better how MCK, as a component of teacher knowledge, contributes to effective teaching. 

Perhaps it plays a stronger role than these findings would have us believe, but that the way it has 

been measured (in terms of the number of advanced math courses one has taken) is lacking in 

validity. 

As teachers design instruction, they integrate their knowledge of the subject matter with 

their assumptions and beliefs about the teaching and learning of mathematics, what they know 

about students’ prior knowledge and misconceptions, and the contexts in which the developed 

knowledge will be applied (Ball, 1988). These findings further emphasize that MCK alone is not 

sufficient to teach mathematics effectively. In response, some researchers have proposed looking 
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to pedagogical content knowledge for answers. In the next section, I provide literature on how 

scholars have proposed a domain of pedagogical content knowledge and have suggested that 

both it and MCK are essential resources of teacher knowledge for supporting students’ learning. 

Pedagogical Content Knowledge (PCK) 

In his 1986 Presidential Address to the American Education Research Association 

(AERA), Shulman introduced the concept of pedagogical content knowledge or PCK. PCK 

refers to knowledge at the intersection of content knowledge and pedagogical knowledge specific 

to the teaching of that content. Shulman (1986) offered PCK as a domain of teacher knowledge 

that distinguishes the “understanding of the content of a specialist from that of the pedagogue” 

(p. 8). He went on to describe PCK as a “special amalgam of content and pedagogy that is 

uniquely the province of teachers, their own special form of professional understanding” (p. 8). 

Furthermore, he saw PCK as a form of knowledge that “goes beyond subject matter per se to the 

dimension of subject knowledge for teaching” (p. 9). That is to say, Shulman saw PCK as a form 

of knowledge relevant to the specific work of teaching.  

PCK is the knowledge acquired as a result of the transformation of the substantive and 

syntactic structures of an academic discipline into curricular materials and pedagogical 

representations (Shulman, 1987). This transformation involves preparing and critically 

interpreting curricular materials, representing ideas in the form of analogies and metaphors, 

selecting appropriate teaching methods and models, and adapting representations to the 

characteristics and needs of children being taught. In the transformation process, teachers seek to 

reorganize and represent the subject matter of the discipline in a form “that is appropriate for 

students and peculiar to the task of teaching” (Grossman et al., 1989, p. 32). Thus, according to 

them, PCK can be understood as a constellation of “forms [of knowledge] that are pedagogically 
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powerful and yet adaptive to the variations in ability and background presented by the students” 

(p. 15).  

To accomplish this transformation and represent materials in ways that students can 

comprehend, Shulman (1987) explained that the teacher should know instructional strategies, 

appropriate ways to represent content to the students, and common student misconceptions. 

Instructional strategies include ways of organizing instruction, specific actions teachers might 

take, activities for student learning, and the materials they can use in instruction. Scholars have 

taken up Shulman’s notion of transformation and applied it to their specific disciplines. For 

example, in mathematics education, the transformation has been described as a means of 

unpacking mathematics content into forms that students can access and understand (Adler & 

Davis, 2006). 

 There is a need for teacher professional learning that can support PMTs to develop and 

represent mathematics with the complex realities of classrooms in mind (Cochran-Smith, 2003). 

These professional practices require that mathematics teacher possess a profound grasp of MCK 

and the ability to unpack and meaningfully represent it to facilitate students' learning. Thus, PCK 

cannot be viewed as a sub-category of SMK or a generic form of knowledge, but a new form of 

knowledge “that preserves the planning and wisdom of practice that the teacher acquires as a 

result of repeated planning and teaching of, and reflection on the teaching of, the most regularly 

taught topics” (Hashweh, 2005, p. 290). That is to say, as PCK is transformed from MCK in the 

manner described by Shulman (1987), Hashweh (2005), and others, it becomes increasingly 

aligned to the work of teaching because both the content and pedagogy – essential constituents of 

teacher knowledge – are integrated and interact in the enactment of classroom teaching. As such, 
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PCK is an invaluable component of teacher knowledge that should be given full attention to 

professionalizing teachers in teacher preparation. 

Mathematics Knowledge for Teaching (MKT) 

Ball et al. (2008) define mathematical knowledge for teaching (MKT) as “mathematical 

knowledge that teachers need to carry out their work as teachers of mathematics” (p. 4). An 

adaptation of their original representation of MKT appears in Figure 1 below. 

Figure 1 

Ball et al's (2008) Mathematical Knowledge for Teaching (MKT) 

 

A reproduction of Ball, Thames, and Phelps’s (2008) conception of Mathematical Knowledge for 
Teaching (MKT). 
 

MKT is a framework that emerged from analysis of the work of teaching and that focuses 

on the ways in which teachers use their knowledge to teach mathematics in the classroom. 

Principally, Ball and colleagues (2008) posit that teachers should be able to discuss the models, 

concepts, and procedures of mathematics in the classroom. This kind of discussion constitutes 
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reasoning about mathematical concepts, establishing their meanings, and making sense of the 

relationships among them. Further, Hill and colleagues (2005) offer that the work of teaching 

involves providing justifications for mathematical statements, making connections among ideas 

and procedures within mathematics, as well as providing exemplars for mathematical concepts, 

strategies, and proofs to the students. Moreover, teachers should not only share strategies for 

solutions to mathematical problems, they should also attend to the meanings of concepts that are 

implicated in those strategies.  

Ball et al. (2008) introduced constructs of teacher knowledge specific to the teaching of  

mathematics by building on two domains of teacher knowledge introduced by Shulman (1986) –

pedagogical content knowledge (PCK) and subject matter knowledge (SMK). Specifically, as 

shown in Figure 1 above, PCK is parsed into three components: knowledge of content and 

students (KCS; knowledge about mathematics and students in terms of their conceptions and 

their misconceptions of mathematical concepts as well as interpreting their mathematical 

thinking); knowledge of content and teaching (KCT; knowledge of the design of instruction, 

such as the knowledge governing the choice of examples to introduce a concept and then take 

students deeper into it); and knowledge of content and curriculum (KCC; which refers to the 

understanding of instructional materials and programs). 

 Similarly, Ball et al. (2008) also parse subject matter knowledge (SMK) specific to 

mathematics into three domains: specialized content knowledge (SCK; mathematical knowledge 

and skills tailored for teaching, not typically held by any well-educated adult, and not used in 

settings other than teaching mathematics), common content knowledge (CCK; mathematical 

knowledge possessed by any well-educated adult, and certainly by all mathematicians), and 

horizon content knowledge (HCK; teachers' knowledge regarding how various mathematical 
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topics link up and relate to each other). Finally, Ball et al. (2008) portray MKT as a domain of 

teacher knowledge beyond a mere grasp of content knowledge to include representations of 

content, being familiar with typical students' misconceptions, and making in-the-moment 

decisions during instruction to achieve stipulated learning objectives. Thus, MKT is conceived as 

an integrated base of knowledge for teaching mathematics. 

Ball and colleagues (2008) propose that MKT is a practice-based theory because it 

evolves from on-the-job analysis of teaching. However, while they appreciate Shulman's PCK as 

a point of departure for discussions related to teacher knowledge in discipline-specific areas, they 

critiqued it for several reasons. One of the critiques is the lack of an empirical grounding to 

justify that PCK is a special and distinct form of teacher knowledge. Here, Ball and colleagues 

(2008) recognize the transformed nature of SMK (Shulman, 1987) by recognizing that it also 

includes knowledge of how to unpack SMK and represent it in ways that students can come to 

understand. Still, they regard the transformation process to be theoretical (as opposed to 

empirical) because it occurs in teacher preparation, independent of authentic teaching situations. 

Ball et al. (2008) further critiqued Shulman (1986) for holding a static view of PCK. A 

static view of knowledge alludes to the notion that knowledge for teaching is held internally and 

awaiting application in the classroom. Ball and colleagues (2008) raised concerns about the 

prospect that this knowledge could be robust yet removed from the practice of teaching in a 

classroom context. They argued that the transformation may fail to capture the complex reality of 

classroom situations and influence student learning. Moreover, other scholars propose to broaden 

Shulman's conceptualization of PCK beyond the knowledge of instructional strategies, 

representations, and student (mis)conceptions to also incorporate beliefs about the nature of 

mathematics (Friedrichsen et al., 2011), knowledge about how emotions and affects influence 
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teachers’ and students’ educational experiences (Zembylas, 2007), and knowledge of media for 

instruction (Mark, 1990).  

Ball (2003) proposes three core principles that typify the nature of teacher knowledge 

that PMTs should develop in their teacher preparation. The first principle underpins the need for 

PMTs to develop "more understanding of the insides of ideas, their roots and connections, their 

reasons and ways of being represented" (p. 8). The second principle holds that PMTs should 

learn specialized knowledge for teaching mathematics. On that ground, they are expected to 

resolve problems that are inherent to the work of teaching, such as "interpreting someone else's 

error, representing ideas in multiple forms, developing alternative explanations, [and] choosing a 

usable definition" (p. 8). Finally, the third principle upholds the need for PMTs to learn 

mathematical knowledge related to the mathematics they will teach in the future and meet the 

demands of teaching. Such knowledge should support teaching in a raft of ways, "from offering 

clear explanations, to posing good problems to students, to mapping across alternative models, to 

examining instructional materials with a keen and critical mathematical eye, to modifying or 

correcting inaccurate or incorrect expositions" (p. 8). These principles are important because 

they tell us about the kind of knowledge that teacher education programs should provide to 

support prospective teachers to develop to meet the demands for teaching mathematics. To 

address the need for a model of PCK that accounts for the complexity of classroom contexts, 

Ball and colleagues (2008) developed MKT so that it is dynamic and grounded in empirical 

evidence from observations and assessments of actual classroom teaching and student learning. 

The argument that MKT is dynamic implies that this kind of teacher knowledge develops as it is 

applied in teaching; its development is contingent on the teaching context.  
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Teaching Knowing: Dynamic and Static Views of PCK 

Before continuing my review of the research on teacher knowledge domains, I take a 

pause in this section to elaborate on the distinction between static and dynamic views of teacher 

knowledge. This distinction is critical because it informed my intentions of developing a model 

of how PMTs acquire knowledge for teaching mathematics through video-mediated methods.  

Building on Shulman’s (1986, 1987) work, Gess-Newsomen’s (1999) imagined PCK 

being both integrated and transformative. An integrated model holds that PCK does not stand as 

a distinct domain of teacher knowledge. Instead, knowledge from across domains such as subject 

matter, pedagogy, and the context (i.e., situations and activities embedded in the teaching and 

learning) are integrated and interact in the act of teaching. As mentioned above, MKT is 

conceived as an integrated model. It is also a static model. This means that it can be developed 

independently of the contexts in which it will be applied. In other words, it can be acquired 

outside of teaching situations and held it in ready-made form awaiting application in teaching. 

Shulman’s (1987) model of teacher knowledge is also statically held, because he omitted––or at 

least under-emphasized––a constant dialog and a dynamic interaction of these domains with 

actual learners and within the context in which knowledge is developed and applied. 

Gess-Newsomen’s (1999) view of integrated knowledge has the additional feature that 

the knowledge is contingent and adaptive to the immediate context in which the teacher interacts. 

The supposed divisions between subject matter, pedagogy, and the context wither away as these 

interdependently blend to form a new, more highly integrated body of knowledge hypothesized 

to be more useful in teaching than its constituent domains operating in parallel. Thus, as 

Hashweh (2005) proposes, such knowledge is relevant to teaching precisely because we can 

inquire about its use in authentic teaching contexts. This notion of professional knowledge 
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coming into being through the immediate context in which it is enacted (i.e., being adaptive to 

the situations and classroom complexities) has been described as a dynamic view of teacher 

knowledge (Gess-Newsomen, 1999; Scheiner, 2015). Putnam and Borko (2000) underpin the 

need for such a dynamic view, as they emphasize the value of developing “professional 

knowledge in context, stored together with characteristic features of classrooms and activities, 

organized around the tasks that teachers accomplish in classroom settings, and accessed for use 

in similar situations” (p. 13).  

Cochran et al. (1993) share a dynamic view of teacher “knowing.” This use of “knowing” 

as opposed to “knowledge” is intentional. As a critique of the static view of teacher knowledge, 

Cochran and her colleagues introduced a form of knowing called “pedagogical content knowing” 

(PCKg) that is dynamic, evolving, contingent, and more consistent with the tenets of 

constructivism. From this perspective, they propose that teacher educators need to 

simultaneously construct “a teacher’s integrated understanding of four components of pedagogy, 

subject matter content, student characteristics, and the environmental context of learning” (p. 

266). They should use that understanding to develop “teaching strategies for teaching specific 

content in a discipline in a way that enables specific students to construct useful understandings 

in a given context” (p. 266). Here, the “students” are preservice teachers, and they construct 

knowledge in the immediacy of a teaching context. Thus, Cochran et al. took an explicitly 

constructivist view of teacher knowledge. They held that “teachers must develop their 

pedagogical knowledge and subject matter knowledge in the context of two other components of 

teacher knowledge: teachers’ understanding of students and of the environmental context of 

learning” (p. 266). Thus, PCKg refers to knowledge that is continually developing and 

considerate of a teaching context as it iteratively attends to the particularities of that context.  
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Exploring ways of knowing how to teach is essential to scholars like (Scheiner et al., 

2019), who attribute the notion of specialization of mathematics teacher knowledge to knowing 

how to teach or a “style of knowing” (p. 168), rather than an acquired body of knowledge. For 

this reason, specialized content knowledge (SCK, presented next) for teaching mathematics is 

not accounted for by the mathematical content knowledge that teachers know but by how 

“teachers’ knowing comes into being” (p. 168). In a phrase, a dynamic view holds that the 

knowledge is “not [in] a state of being but a process of becoming” (p. 167). That is, the 

knowledge for teaching is seen to develop in the context of teaching or simulations of teaching. 

In the context of design, (Schön, 1992) describes this phenomenon as “knowing in action” (p. 5). 

Consistent with Scheiner et al.’s (2019) perspective on knowing – and Schön’s (1992) view of 

“knowing in action” (p. 5), this dynamic view of teacher knowledge is one that took in this study. 

Common Content Knowledge and Specialized Content Knowledge  

Having reviewed the literature on the broader domains of teacher knowledge above (i.e., 

MCK, PCK, and MKT), in this section, I present research-based conceptions of their subdomains 

to gain insights into the nature of knowledge developed in the study on which this review is 

framed. Specifically, I explore two components of SMK (Ball et al., 2008; see Figure 1 above), 

common content knowledge (CCK) and specialized content knowledge (SCK). Then, I review 

the literature on how they are defined, how they are advocated for in teacher preparation and 

professional development, and the nature of their interactions and the relationship between them. 

Also, I will explore how they are positioned as subdomains of mathematics teacher knowledge. It 

is expected that exploring PMTs’ understanding of these subdomains of knowledge for teaching 

mathematics will help clarify their distinction, reveal insights for developing them during teacher 
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preparation, and hopefully illuminate and inform the design of a video-mediated study of 

professional learning. 

Ball and colleagues (2008) extended earlier notions of SMK (see Ma, 1999; Shulman, 

1986) by devising CCK and SCK as essential constituents of SMK. As such, it seems that CCK 

is Ball et al.’s way of referring to MCK for teaching. However, as I understand CCK and MCK, 

there are distinctions between them. The latter is more extensive than the former, going beyond 

conceptual and procedural mathematics to a more elaborate model of mathematical proficiency, 

such as the one provided in “Adding it up” by the National Research Council (2001), which 

includes conceptual understanding, procedural fluency, strategic competence, adaptive 

reasoning, and productive disposition. Research on teacher knowledge (e.g., Ball, 2003; Council 

& Committee, 2001; Hill et al., 2008) finds that CCK is not sufficient for effective mathematics 

teaching. Thus, MCK and/or some other construct(s) of content knowledge specialized for 

teaching mathematics must be identified. 

Ball et al. (2008) conceived of specialized content knowledge (SCK) as a dimension of 

mathematical content knowledge. Hill et al. (2005) describe it as involving “explaining terms 

and concepts to students, interpreting students’ statements and solutions, judging and correcting 

textbook treatments of particular topics, using representations accurately in the classroom, and 

providing students with examples of mathematical concepts, algorithms, or proofs” (p. 373). Hill 

and colleagues (2008) further considered SCK as pure content knowledge “tailored in particular 

for the specialized uses that come up in the work of teaching” (p. 436) and the promotion of 

students’ mathematical reasoning and thinking. It is described as “pure” knowledge because it is 

“not mixed with knowledge of students or pedagogy and is thus distinct from the pedagogical 

content knowledge identified by Shulman and his colleagues” (Ball et al., 2008, p. 396).  
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Relationship Between Mathematical and Pedagogical Content Knowledge 

 This section reports on research that has illuminated how mathematical content 

knowledge (MCK) and pedagogical content knowledge (PCK) as essential domains of 

mathematics teacher knowledge are related. The determined interactions between the two 

domains can provide us with insights to inform their curricular emphasis in teacher preparation 

and professional development. Therefore, I draw from the literature to explore the intertwined 

nature of the MCK and PCK and their importance and position in the teacher knowledge base 

required for teaching mathematics. 

Research has found that MCK plays a role in PMTs’ development of PCK (Baki & 

Arslan, 2017; Kilic, 2011). Baki and Arslan (2017) posit that MCK is a predictive prerequisite 

for the development of PCK. For instance, Baki and Arslan (2017) found from their study that 

PMTs with limited mathematical content knowledge (MCK) had difficulties developing and 

leveraging mathematical pedagogical content knowledge (MPCK) to present instructional 

materials to students in ways they could comprehend and learn from. This was evidenced as 

PMTs struggled to assess students’ understanding of the concepts and their deficiencies in 

addressing students’ responses and explanations appropriately. Further, Baki and Arslan found 

that even PMTs with strong MCK but insufficient MPCK enacted ineffective lessons. They 

showed difficulties in making the tasks accessible while maintaining cognitive demand, selecting 

appropriate and suitable representations, and leveraging knowledge already known to the 

students.  

 Kilic (2011) also found a direct relationship between MCK and PCK. He suggested that 

teachers need a vast and in-depth understanding of the subject matter and the capacity to 

represent instructional materials appropriately, assess students’ learning, and make sound 
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instructional decisions associated with presentations and sequencing of the instructional delivery. 

Kilic conceives PCK in terms of four constituent components with a “reciprocal relationship 

between them” (p. 3): knowledge of subject matter (teachers’ procedural knowledge and 

conceptual understanding of mathematics), knowledge of pedagogy (teachers’ ability to choose 

appropriate tasks, examples and representations for a particular group of students and their 

repertoire of teaching strategies), knowledge of students (involves teachers’ knowledge of 

students’ conceptions, misconceptions, and possible difficulties about a particular topic and their 

ability to diagnose and eliminate such misconceptions and difficulties effectively), and 

knowledge of curriculum (knowledge of learning goals for different grade levels and knowledge 

of instructional materials). Kilic investigated the development of this knowledge among 

secondary preservice mathematics teachers through their participation in the activities and 

discussions in their methods course and field experiences. The participants were interviewed and 

also asked to respond to content-specific questions in order to assess their PCK. The researcher 

participated in the course, took notes, and accessed written materials provided in the class. Kilic 

found from the analysis of observations, interviews, and written artifacts of students’ work that 

the participants’ knowledge of the subject matter influenced their development of PCK. And in 

particular, those participants with in-depth subject matter knowledge elicited “a rich repertoire of 

teaching strategies, and [were] able to critically select tasks, examples, representations, and 

instructional materials to promote students’ understanding of a particular topic, and to diagnose 

and eliminate students’ errors and misconceptions effectively” (p. 8). 

For Scheiner (2015), PCK and MCK intertwine to “build the knowledge bases that 

constitute the particular kind of knowledge that is considered as specialised for the purposes of 

teaching mathematics” (p. 568). This intertwining is evident in his model of PCK, which has 
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three domains in different dimensions: (1) knowledge of students’ understandings (KSU, 

cognitive perspective), (2) knowledge of learning mathematics (KLM, epistemological 

perspective), and (3) knowledge of teaching mathematics (KTM, didactical perspective). It is 

worth mentioning that Scheiner’s model is unique among the other models presented here in the 

sense that it proposes that teachers should possess a model of how learning works. 

Research underscores the need for mathematics educators to develop the ability to 

manage the classroom, organize lesson activities, develop a good lesson plan, motivate students, 

and assess students’ understanding of the mathematical content as they enact student-centered 

instruction in the classroom (Fennema & Franke, 1992). Shulman (1987) suggests that the 

knowledge that a teacher needs for teaching involves a “blending of content and pedagogy into 

an understanding of how particular topics, problems, or issues are organized, represented, and 

adapted to the diverse interests and abilities of learners, and presented for instruction” (p. 8). 

Other scholars (e.g., Ball, 2000) shared the same assertion that teachers need to know about the 

students, curriculum, educational goals, and instructional materials to design instructions that 

meet the needs of the learners. Park and Oliver (2008) further emphasized the importance of 

understanding the intellectual needs of students, mathematical topics and their organization, and 

utilization of curriculum materials as essential components of PCK that support teachers to enact 

effective teaching. 

What emerges from this body of literature is that MCK and PCK are inextricably 

intertwined and that their interactions result in an integrated base of knowledge needed for the 

teaching of mathematics. This insight informs the proposed study framed around this literature 

review regarding what domain of mathematical knowledge is more crucial and should receive 

more attention. In an earlier conception of this study, I had focused my attention on PCK. My 
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focus shifted later because the literature revealed that neither of the two components of 

mathematical knowledge alone can provide sufficient affordances to teach mathematics 

effectively. Instead, a model of knowledge that integrates MCK and PCK is needed.  

Preservice Teachers’ Mathematical and Pedagogical Content Knowledge  

PMTs seek to develop MCK and PCK as they progress through teacher preparation 

coursework. Researchers (Ball, 2000; Piccolo, 2008) argue that as preservice teachers go through 

the program, they gain knowledge and experiences interweaving MCK and PCK to develop 

teacher knowledge that they can draw on to support students as they learn mathematics. For 

example, Ball and Bass (2009) posited that PMTs should go beyond understanding mathematical 

facts, algorithms, and procedures. In addition, they should develop in-depth knowledge regarding 

the connections between mathematical concepts and know how to break big ideas down into 

concepts that students can understand. Thus, the expectations are bold, as PMTs require a high 

level of preparation to develop skills of drawing insights from the interaction of MCK and PCK 

to inform their classroom instruction (Cooney, 1994). 

Several studies reveal a close relationship between MCK and PCK of mathematics (Ball 

et al., 2008; Ding et al., 2014; Krauss et al., 2008). For instance, Krauss and colleagues (2008) 

examined the relationship between the MCK and PCK of preservice mathematics teachers. They 

found that those who had a strong background in MCK also had some PCK for that content too. 

This finding is consistent with the work of Ding and colleagues (2014), which employed a video-

based approach to investigate the relationship between preservice math teachers’ MCK and PCK 

associated with ratios. Their findings reported that preservice math teachers with a rich 

understanding of MCK selected a variety way of representing mathematical concepts related to 

ratios to their students. These findings suggest that preservice teachers with strong MCK are 
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already on their way to developing PCK, thus acknowledging the value of strong MCK for 

teaching. These findings are rather unexpected and have implications for teacher preparation 

regarding the need for mathematics coursework in addition to methods courses. 

Concluding Thoughts on Teacher Knowledge 

Research reviewed on teacher knowledge speaks to knowledge that should be acquired in 

teacher education programs as a resource for enacting meaningful instruction in classrooms. 

Unfortunately, when teachers lack the requisite knowledge for effective teaching, they tend to 

abandon research-based strategies of teaching acquired in teacher preparation and instead fall 

back into ineffective lecture-oriented models of teaching they experienced in their classrooms as 

students (Cohen, 1990; Lortie, 1977). Thus, there is a need to identify just what this requisite 

specialized knowledge for teaching is and understand how it can be developed.  

To meet the demanding task of teaching mathematics, scholars have developed various 

knowledge models for teaching mathematics. These models have informed the field of 

mathematics education regarding the conceptions of teacher knowledge domains. However, 

although these knowledge models help teacher educators understand the relationships between 

content and pedagogy, they have not been specific about that content. For that reason, some 

scholars (e.g., Ball, 2003; Pino-Fan et al., 2018) have called for research that focuses on content-

specific specialized knowledge and how such knowledge may be developed. The study tethered 

to this reviewed literature aimed to align with such calls, and it did so in the context of calculus. 

Shulman’s notion of PCK has been central to a large body of research in mathematics 

education. The literature reviewed in this section identified efforts to specify Shulman’s (1986, 

1987) domain-general conceptualization of PCK to mathematics teaching. However, some 

scholars take issue with the static nature of Shulman’s PCK and have stressed the need to model 
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teacher knowledge that is dynamically emergent in response to what (Brown, 1992) describes as 

the “blooming, buzzing confusion” (p. 141) of classrooms. Thus, there is a need to extend 

Shulman’s PCK to include other essential aspects deemed relevant to teaching, such as the 

curriculum, students, and the context, to provide an integrated knowledge base that can only be 

observed in the enactment of instruction. For that reason, specialized knowledge for teaching 

mathematics has been operationalized as an integrated form of teacher knowledge in the 

discipline of mathematics embedded in the situations, mathematical activities, and interactions 

among teachers and students.  

The literature that has been reviewed in this section further reveals that PMTs’ level of 

MCK is a strong determinant of their ability to develop the knowledge needed for the effective 

teaching of mathematics. Such knowledge results from reorganizing, describing (Scheiner, 

2015), transforming (Shulman, 1987), and facilitating a high degree of integration (Scheiner, 

2015) of MCK and other components of teachers’ knowledge bases. Therefore, it has become 

clear that there is a need to ensure that PMTs have a flexible and rich knowledge of the calculus 

concepts in order to be able to develop a concrete and an integrated knowledge for teaching 

calculus. 

 This review of the literature on teacher knowledge focuses almost exclusively on research 

that assumes static conceptual models defined in terms of their constituent bases of knowledge 

(e.g., MCK, PCK, MKT). However, there is little research operating from a dynamic model of 

the development of teacher knowledge, particularly in calculus education. This study aimed to 

address this gap by providing a model of knowledge development that secondary mathematics 

methods instructors could utilize to support PMTs in developing a dynamic and responsive body 

of teacher knowledge, specifically for teaching calculus. In addition, this research aimed to offer 
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the field an understanding of how PMTs come to notice (e.g., Lobato et al., 2013) student 

thinking, a construct whose literature I review next.  

Teachers’ Professional Noticing  

In this section, I review the literature on teachers' professional noticing. I begin by 

defining teachers' professional noticing and address the way it has been used as a framework for 

supporting PMTs as they learn to attend to the substance of students' ideas and, in turn, broaden 

their knowledge of students' mathematical thinking. Reviewing the research on teachers' 

professional noticing brings together two main foci of this literature review: teacher knowledge 

and teacher professional development. I explore the affordances of the professional noticing 

framework (also referred to as "teacher noticing") and its potential to contribute to a constructive 

process of building teacher knowledge and a capacity to notice student thinking. I conjectured 

that this framework could support PMTs learn to attend to and center students' ideas at the heart 

of their teaching practice. Additionally, through a review of studies that demonstrate how critical 

capacities of teacher noticing can be learned from practice, I further examine how such 

developed noticing capacities can inform teachers' instructional decisions. 

Teachers' noticing is an evolving body of research that has been applied in teacher 

education and professional development programs through deliberate, focused, and systematic 

analyses of artifacts of practice (e.g., classroom videos of teaching or problem solving; Corwin et 

al., 1996)  and microteaching experiences (Amobi, 2005). Van Es and Sherin's (2002) model of 

teacher noticing involves three sequential and interrelated steps: (1) attending to and noticing 

noteworthy events of classroom teaching, (2) interpreting and making sense of the identified 

classroom events, and (3) responding based on their interpretations of those events. Jacobs and 

colleagues (2010) built on van Es and Sherin's (2002) model to explore teachers' noticing in the 
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particular domain of children's mathematical thinking and in the particular context of their 

problem solving. As problem solving was also the context for this study, it was the model that I 

used. Jacobs et al.’s (2010) structure includes: "[a] attending to children's strategies, [b] inferring 

children's understandings from those strategies, and [c] deciding how to respond based on those 

inferences" (p. 172). Thus, Jacobs and colleagues (2010) applied van Es and Sherin’s (2002) 

model of teacher noticing in the particular domain of children’s mathematical thinking. Mason 

(2011) builds from van Es and Sherin’s model, as well, by naming three processes within the 

psychological realm of noticing: 1) a mental preparedness and readiness to notice, 2) reflecting 

on the past to create an awareness of what to notice, and 3) noticing in the moment (attending to, 

interpreting, and responding to student thinking face-to-face and in real-time). Importantly, for 

Mason, these processes are inseparably linked and co-occur "as if constituting a single, 

integrated teaching move" (p. 173).  

Research on the Development of Teachers’ Professional Noticing  

Jacobs et al. (2010) and van Es (2011) have applied the framework of teachers' 

professional noticing to develop teacher knowledge in video-mediated professional development. 

Leveraging that framework has been a means by which to nurture teachers' professional vision 

for responsive instruction that leverage knowledge of student thinking to inform and support 

their learning. Sherin (2007) characterized this professional vision according to two interrelated 

features: selective attention (the ability to identify essential classroom events that represent broad 

principles of teaching and learning) and knowledge-based reasoning (a cognitive process of 

making sense of the identified noteworthy classroom events). Thus, teachers' professional 

noticing, in the context of this study, was concerned with the systematic analysis of student 
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thinking to support PMTs learn to identify and interpret relevant instances of student thinking, 

reflect upon them, and develop competency and expertise for making instructional decisions.  

Sun and van Es (2015) designed a video-based course to support preservice teachers 

(PSTs) to develop a vision for an "ambitious pedagogy" (p. 202) through noticing student 

thinking. PSTs aimed to establish how particular teacher moves in the classroom are likely to 

influence student learning. They engaged in analyzing teaching videos by attending to, 

interpreting, and describing student thinking. To further develop their noticing capacities, the 

researchers engaged PSTs in "reflective cycles" (Rodgers, 2002) that involve "the process of 

learning to see, describe, and contemplate noteworthy events and interactions that occurred 

during teaching" (Sun & van Es, 2015, p. 204). Later, the researchers analyzed teaching videos 

that PSTs had submitted after the course for California's portfolio-based assessment of preservice 

teachers' preparation. As they analyzed these videos, researchers looked for "evidence of reform-

oriented mathematics practices, such as eliciting student thinking, exploring and probing student 

ideas, and comparing and contrasting student-generated strategies" (p. 205). The researchers 

found that the video-based course participants were more likely to enact noticing practices than 

those who did not participate in the course. In particular, they elicited, attended to, and 

responded to student thinking during instruction. Sun and van Es used these findings to argue 

that these particular practices enable teachers to enact responsive teaching and examine whether 

a lesson's objectives have been achieved.  

Jacobs and colleagues (2010) also investigated prospective and practicing teachers' 

noticing, but they did so in the context of children's mathematical thinking (Carpenter et al., 

1999). Their purpose was to model how noticing develops among participants with varying 

levels of teaching experience, teacher leadership (e.g., visiting other teachers' classrooms and 
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mentoring them, sharing mathematical problems with colleagues, and giving presentations at 

faculty meetings and conferences), and exposure to PD focused on understanding children's 

mathematical thinking. The participants were sorted into the following groups: Prospective 

teachers (no experience, no PD), Initial participants (experienced, no PD), Advancing 

participants (experienced, PD), and Emerging teacher leaders (experienced, PD, having 

leadership skills). Teacher leaders are those teachers who organized professional development 

for their colleagues around instruction that is responsive to children's mathematical thinking.  

All participants in the study solved mathematical problems, read research related to 

student thinking, analyzed classroom videos, and characterized students' mathematical thinking 

through analyses of their written work. Then, depending on artifacts that teachers submitted 

(either teaching video clips or students' written work), teachers either watched students' problem-

solving video clips or examined written student work. Their analyses were guided by prompts 

such as, "Please describe in detail what you think each child did in response to this problem" (p. 

178), and "Please explain what you learned about these children's understandings…[and] pretend 

that you are the teacher of these children. What problem or problems might you pose next?" (p. 

179). Analyses of post-PD assessments revealed that the PD had supported teachers to assess 

children's thinking and respond to it in ways that support children's understanding. Moreover, the 

difference in the levels of experience, PD, and leadership skills was associated with varying 

levels of expertise related to noticing. Specifically, the effect was stronger for those teachers with 

more substantial experience. That is, teachers' growth in ability to attend and respond to 

children's strategies correlated with years of teaching experience. This study demonstrates not 

only that teacher noticing can be learned (and that learning is associated with teaching and 
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leadership experience), it also yields examples of activities (those incorporated in the PD) that 

have been shown to support its development.  

  As mentioned above, learning to notice involves teachers refining what they attend to and 

how they reason about what they see. With an objective similar to Jacobs and colleagues (2010), 

who sought to understand the nature of the development of teacher noticing, Sherin and Han  

(2004) studied how such teacher learning occurs through the use of video clubs. These are 

"meetings in which groups of teachers watch and discuss excerpts of videotapes from their 

classrooms" (p. 163). Four middle-school mathematics teachers participated in the study. In each 

meeting, they watched videos of themselves teaching and discussed what they saw. To direct 

their attention to student thinking, the researcher asked teachers to explain a particular student's 

statement or action. For example, a researcher asked a teacher to interpret what a student was 

saying about a particular graph they were interpreting. The teacher repeated exactly what the 

student had said about the graph: "It is not realistic." In the discussion that ensued, the teachers 

agreed that the student's words were "not very descriptive" (p. 169) of the graph. Thus, those 

words did not enable the teacher to attend to the student's ideas. Had the student's analysis of the 

graph been more elaborate, the teacher would be provided with resources to attend to the 

student's ideas and then interpret and respond to them. In other instances, a researcher would ask 

teachers to "clarify or expand upon a comment that he or she made or to explain the connection 

between a particular comment and what was viewed in the video" (p. 167). Over time, the 

researchers found that these "focusing" discussions supported teacher-participants' shifts in 

attention from focusing exclusively on students' actions to focusing on the mathematical 

substance (i.e., their thinking about content) of those actions. Further, the teacher-participants' 

analyses of student thinking became more sophisticated over time, from shallow statements of 
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students' ideas to substantive analyses and evidence-based interpretations, and eventually, to 

generalize a trajectory of the development of students' thinking. Over time and through a similar 

intervention, teachers shifted from focusing on what students do and mere descriptions of their 

actions to attending to and analyzing students' strategies and discussing their mathematical 

thinking in detail.  

Sherin and van Es's (2002) study yielded similar findings. They conducted a study in 

which preservice and in-service teachers in a video club discussed excerpts of classroom videos. 

Their objective was to understand how videos can support teachers to learn to notice and 

improve their practice. In-service teachers discussed videos of their teaching only, while 

preservice teachers discussed their own videos and those of others' classrooms. Teachers focused 

on three aspects of the videos: student thinking, the teacher's role, and classroom discourse. For 

each of these aspects, teachers were asked to respond to the generic prompt "What did you 

notice?" In addition, they wrote narrative essays of what it was about the videos that they noticed 

and discussed. Teachers' responses to the prompts were analyzed and revealed that two 

fundamental changes occurred over time: 1) what the teachers noticed and 2) how they described 

and interpreted what they noticed. Their analyses shifted over time from focusing on the 

classroom teacher's practice to focus on the students and their mathematical thinking. Also, they 

moved from making evaluative statements to interpreting classroom events and providing 

evidence from the videos to support their stances. Importantly, these changes in what teachers 

notice and reason about as they analyze practice indicate growth of knowledge-based reasoning. 

They also point to a viable means by which teacher learning occurs in this context, as evidenced 

in the increasing sophistication of teachers' analyses of students' thinking and proposals for 

alternative teaching moves that can better support meaningful classroom instruction.  
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Van Es's (2011) study with elementary teachers yielded similar findings. Van Es explored 

how elementary teachers learn to notice children's mathematical thinking over time in a video 

club. She purposed to develop a model of how such learning develops over time. The teachers 

met regularly to share and discuss videos of their lessons. Initially, teachers' assessments of 

student thinking were relatively shallow. They tended to provide general strategy descriptions 

and evaluative comments and offered little or no evidence from the video to support their claims. 

To help them learn to notice, the researcher provided general prompts that focused their attention 

on noteworthy events and specific prompts that directed their focus to student thinking. For 

example, a prompt such as "Let us take a look at how Lindsey solved that problem" (p. 137) is a 

specific prompt that directs the teacher to focus on the mathematical thinking of a particular 

student. Other prompts that the researcher used are "Why do you think she chose that method?" 

(p. 137) and "Where do you see that in the transcript?" (p.137). These specific prompts supported 

teachers to focus on mathematical details, interpret identified student thinking, and provide 

evidence from the videos to support their claims.  

Learning to notice student thinking is a continual process. Teachers progressively engage 

in it even after the video-mediated professional development programs. Franke and Kazemi 

(2001) explain why this learning is sustained as teachers leverage student thinking in their 

instruction. To do so, they characterize teacher knowledge as learned with understanding if it is 

generative (Carpenter & Lehrer, 1999; Greeno, 1988), connected (Hiebert & Carpenter, 1992), 

and driven by one's own inquiry. It is generative in the sense that teacher learning is sustained in 

daily classroom dynamics that enable teachers to continue to further develop their understanding 

of teaching, even beyond formal professional development. It is connected because new 

knowledge is integrated into existing networks of knowledge and provokes a reorganization 
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resulting in "rich integrated knowledge structures" (Franke & Kazemi, 2001, p. 105). Finally, it 

is driven by one's own inquiry when learners "perceive their knowledge as their own" and 

understand "that they can construct knowledge through their own activity" (p. 105).  

Franke et al. (2001) used this framing of learning with understanding in a follow-up study 

that followed teachers' participation in a Cognitively Guided Instruction (CGI; Carpenter et al., 

1999) professional development program. CGI is a professional development program designed 

"to help teachers develop an understanding of their own students' mathematical thinking, its 

development, and how their students' thinking could form the basis for the development of more 

advanced mathematical ideas" (Fennema et al., 1996, p. 404).The objective of that study was to 

examine the degree to which teachers who had learned practices central to noticing were later 

engaged in continuous professional growth. A classification scheme was used to analyze 

teachers' levels of engagement with children's mathematical thinking. Remarkably, the analysis 

revealed that all continued to implement the principles of teaching they had learned in the PD 

four years earlier. Some teachers were found to be at the same level of engagement as when they 

left the PD, while others moved to higher levels of enacting more responsive teaching, indicating 

that they had experienced continuous learning in practice. Thus, their learning was generative. 

Franke and Kazemi (2001) also studied practices related to noticing in the context of a 

CGI workshop. Researchers had worked with teachers for a year–– teaching them a university-

based mathematics methods course and spending time with each of them in their school. Then 

they explored how these teachers, in their classrooms, implemented knowledge they had gained 

in the course about strategies that children are likely to use to solve particular problems, how 

these strategies develop over time, and how they could assess students' understandings by 

making inferences based on these strategies. The teachers had given their students mathematical 
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problems to solve and then worked in groups with other participating teachers to analyze 

students' solutions using CGI principles collaboratively. The researchers found that teacher 

participants had used this knowledge to assess (or notice) their students' thinking formatively and 

that this knowledge had served them as a tool for the continual development of teacher 

knowledge, even a year after the PD. Thus, the teachers learned this knowledge with 

understanding because it was generative and self-driven. This review of some of the CGI 

literature informs my approach to students' thinking about the derivative, as it stresses how 

valuable it is for PMTs to be able to anticipate common misconceptions and strategies that 

students are likely to use to solve problems and to be able to assess their understanding by 

making inferences from those strategies. 

The literature reviewed in this section revealed that efforts to develop teachers' 

professional noticing can be productive for understanding and embracing the complex task of 

teaching and learning and improving classroom practice. A profound contribution of the teachers' 

professional noticing research is that through video analysis and support, teachers can develop 

cognitive awareness of noteworthy aspects of instruction they can attend to and make sense of to 

develop knowledge-based reasoning that iteratively informs the design of classroom instruction. 

The notion of teachers' in-the-moment noticing of students' thinking and reasoning has been 

emphasized. Teachers operating from an inquiry orientation to teaching and learning are engaged 

in an ongoing learning process to elicit and respond to student thinking during instruction. Thus, 

analyzing teaching artifacts is a promising venue in which to support teachers in developing 

knowledge for teaching mathematics. As teachers' attention to student thinking is nurtured, they 

develop dynamic knowledge that emerges from the context of teaching and learning as they 
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transform their content knowledge into knowledge that is accessible to students. In short, they 

develop PCK (Shulman, 1986) and MKT (Ball et al., 2008). 

Concluding Remarks on the Literature Review 

The literature reviewed on teacher knowledge and teachers' professional noticing 

provides insights into how these two constructs are linked and how they can complement one 

another to support PMTs in developing knowledge for teaching. Models of teacher knowledge 

that presuppose that knowledge is transformed, integrated, and developed in the context of 

teaching are proposed to be more relevant to the core work of teaching than statically held 

knowledge of teaching. Such knowledge is dynamic and contingent on classroom interactions 

and is made visible in instruction, particularly when a teacher orchestrates instruction around 

students' thinking. To develop the capacity to enact such an instruction, I conjecture it can be 

developed in and from practice based on the literature reviewed in this study.  

The review of research on teacher noticing emphasizes the critical role that artifacts (e.g., 

classroom videos, problem-solving videos) have played in this body of work. They are 

"springboards" (Borko et al., 2011, p.184) that mediate discussions about teaching and learning 

and that have the potential to represent classroom realities faithfully. Therefore, they offer 

opportunities for an analytic deconstruction of practice to help teachers develop insights around 

designing and enacting instruction that is responsive to the needs of students. Thus, this study 

employed problem-solving videos and a semi-structured interview protocol for supporting PMTs 

to attend to and make sense of student thinking as it unfolded in the video. Similar to Jacobs and 

colleagues' (2010) approach, prospective teachers of calculus watched videos of students solving 

problems to capture situations of interest, reflect upon them, and interpret them to understand 

students' thinking. That way, we could access PMTs' development of knowledge for teaching to 
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enact instructional practices that are responsive to students' thinking. Developing a responsive 

pedagogy from practice yields the kind of ambitious teaching (Kazemi et al., 2009) advocated by 

reform efforts (NCTM, 2000) for the sake of improving mathematics education. 

The core task involved in the episodes of this study was to investigate and advance how 

PMTs attended to, interpreted, and reflected upon aspects of teaching the derivative. As PMTs 

developed knowledge for teaching the derivative, the process culminated in a model in which 

such knowledge was developed in video-mediated professional development. As has been shown 

above, such a model could make a significant contribution to the research on calculus education 

with implications for the design of learning experiences in secondary mathematics teacher 

preparation. 

Lastly, this body of research also demonstrates that teacher knowledge developed in 

video-mediated professional development can be generative. Teachers acquire a model, an 

orientation to professional vision that can support them in an iterative and ongoing manner 

across the trajectory of their practice. This study aimed to address the following research 

questions: 

1. How does teacher knowledge specific to noticing students’ mathematical thinking in 

the domain of the derivative develop through video-mediated professional learning? 

2. What forms of video-mediated interactions support this development? 

Theoretical Perspectives  

Sociocultural Perspective  

According to a Vygotskian (1978) sociocultural perspective, one's cultural, historical, and 

social interactions significantly impact an individual's cognitive and social growth. Vygotsky 

stresses that learning does not reside solely within an individual. Instead, it is distributed within a 
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broader social context such that one's cultural interactions impact how and what one thinks. The 

culture models beliefs and attitudes within the community that children learn from, thus 

influencing learning. Children learn within the community's culture as they interact with peers, 

adults, teachers, and other mentors.  

Vygotsky identified language as a powerful mediator for learning, a means for not only 

expressing thoughts and ideas but for first forming them. It is a psychological tool that enables 

humans to develop higher mental functions. Through language, cultural norms and practices are 

passed to on children through social interactions that differentiate and generalize words that once 

had more narrow meanings. This is a two-step process: “Every function in the child’s cultural 

development appears twice. First, on the social level and, later on, on the individual level … [that 

is] between people (interpsychological) and then inside the child (intrapsychological)” (p. 57). 

For the child, this is a process of internalizing what was once external, thereby promoting 

cognitive development. Artifacts such as instruments, tools, and signs mediate this process. They 

are the cultural tools for intellectual adaptation. Thus, for Vygotsky, thought and language 

promote (rather than precede) cognitive and social development. Thus, learning is the end 

product of those culturally situated, social interactions. This is in contrast to a Piagetian (1970) 

perspective, where the development of cognitive structures precedes and thus enables individuals 

to construct their understanding of the world.  

Vygotsky’s Zone of Proximal Development and Scaffolding  

Vygotsky (1978) defines the zone of proximal development (ZPD) as "the distance 

between the actual development level as determined by independent problem solving and the 

level of potential development as determined through problem-solving under adult guidance or 
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in collaboration with more capable peers." (p. 38). ZPD refers to the difference between one’s 

current level of cognitive development and their potential level of cognitive development. 

Working with a teacher or some other “more knowledgeable other” enables a learner to 

operate at that potential level of development. It is at that potential level where learning occurs, 

where the learner moves from "what I can only do alone" (i.e., what has already developed) to 

"what I can do with help" (i.e., what is currently developing; see Figure 2 below). ZPD can be 

thought of as the “sweet spot” of targeted intervention. Any instruction targeted below it will not 

be useful as development has already occurred there; any instruction outside of ZPD will also not 

be useful, because learning there is out of reach of the learner. Thus, ZPD involves two critical 

components: the potential level of development and also the interactions with others that support 

it. 

Figure 2 

Vygotsky's Zone of Proximal Development 

 

Note: Vygotsky’s zone of proximal development, adapted from Educational Technology, by S. 
Kurt, 2020, retrieved from https://educationaltechnology.net/vygotskys-zone-of-proximal-
development-and-scaffolding/. 
 



TEACHER NOTICING AND KNOWLEDGE FOR TEACHING THE DERIVATIVE 
  

 61 
 

When learners come to complete tasks independently without the instructor's help, the 

learner moves from what Kurt refers to as his zone of current development (ZCD) through into 

ZPD and eventually towards achieving the learning goal (the zone of achieved development, 

ZAD), as represented in Figure 2. The change from "what I can't do" to “what I can do with 

help” to "what I can do alone" indicates that learning has occurred, and the learner has achieved 

cognitive development. 

Vygotsky (1978) describes scaffolding as a critical concept for considering the actions 

that facilitate learners’ growth through purposeful and meaningful interactions with others. 

Through scaffolding, a more knowledgeable other (instructor or a more knowledgeable peer) 

works collaboratively with a learner to provide the support they need in order to enable them to 

operate within their ZPD so that learning may occur. In the beginning, the instructor offers more 

facilitation and closer guidance, but over time, as learners become increasingly independent in 

their problem solving, scaffolding is removed. This process continues until their development is 

no longer potential but achieved.  

The Value of a Sociocultural Perspective for this Study 

This study was interested in the instructional experiences of PMTs as they developed 

teacher knowledge through video-mediated discussions and in constructing a model of this 

knowledge development. As PMTs viewed videos of students' problem solving, they were asked 

to share their opinions, ideas, claims, and justifications about what they saw in relation to 

content, pedagogy, and curricular materials. Alongside the PMTs, the researcher, as the more 

knowledgeable other, scaffolded their engagement by facilitating discussions that directed their 

attention and elicited their conceptual and pedagogical thinking. Mediated by artifacts such as 

problem-solving videos, the researcher collaborated with PMTs to orchestrate a productive 
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discourse as they analyzed student thinking. Through the researcher's interventions, PMTs would 

progress toward robust understandings of content and a reform-oriented pedagogical model that 

could support effective teaching of the derivative.  

Situated Learning Perspective  

Situated cognition theory, also referred to as situated learning, is a learner-centered 

instructional design model developed by Brown et al. (1989). As a learning theory, it rejects the 

proposition that knowledge is “an integral, self-sufficient substance, theoretically independent of 

the situations in which it is learned and used” (Brown et al., 1989, p. 32). Instead, this 

perspective posits that there is no division of knowledge and practice. Simply stated, knowledge 

is embedded in the context, the activity, and the culture in which it is developed (Brown et al., 

1989; Lave, 1991). 

From a situated perspective, knowing involves doing. Novices are immersed into a 

community of practice, and through observing, doing, and reflecting, they gradually develop 

situated expertise (Brown et al., 1989; Lave, 1991). Professional learning communities operate as 

a community of practice when they share a concern or a passion for something they do and learn 

how to do it better as they interact regularly” (Wenger, 2009, p. 1). Through their participation in 

a community of practice, novices, or ‘newcomers’ (Lave, 1991), interact and relate with 

oldcomers (experienced practitioners) as they participate in activities through which they master 

knowledge and skills. Thus, they acquire new identities as full participants in the community of 

practitioners. As an example of a community of practice, the mathematics teachers in a 

department at one school may gather regularly after school to have conversations and reflections 

around the student-centered teaching of mathematics. As they do so, they develop their 

professional knowledge and improve their teaching practice. Borko et al. (2008) posit that 



TEACHER NOTICING AND KNOWLEDGE FOR TEACHING THE DERIVATIVE 
  

 63 
 
professional development activities need not only occur in K-12 classrooms: “An alternative is to 

bring ideas and events from the classroom into the professional development setting through the 

use of tangible artifacts such as lesson plans, curricular materials, student work, and video of 

lessons" (p. 418).  

From a situated perspective, cognition is fundamentally understood to be a product of 

individual-environment interactions within a context. Figure 3 below depicts these interactions 

and their role in moving apprentices along a trajectory of expertise from legitimate peripheral 

participation as novices to more central participation in the community of practice through their 

interactions with experts (practitioners) of a given field. Thus, situated learning involves not only 

knowing through participation and collective social practice, but also identity formation to 

become experienced and reliable members of a community of practice. Learning through a 

contextualized trajectory of participation is thus a process of becoming, as learning and identity 

account for each other. 

Figure 3 

Interactions in a Situated Learning Theory 

 

Note: A situated learning theory, adapted from Educational Technology, by S. Kurt, 2020, 

https://educationaltechnology.net/vygotsky-zone-of-proximal-development-and-scaffolding/ 
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Contribution of Situated Learning to this Study 

This study explored PMTs’ development of knowledge for teaching the derivative concept by 

analyzing students’ thinking as it unfolded in the video of their problem-solving. Thus, framing 

learning as knowing through participation in the discourse of a community of practice, and as a 

process of becoming along a contextualized trajectory of participation (Lave & Wenger, 1991), 

enabled us to imagine how PMTs could develop knowledge for teaching the derivative through 

such a learning trajectory. The situated perspective informed this image by forefronting the 

intellectual power of spaces in which people engage in discourse as a community as they share 

their ideas and refine their ways of thinking (Lave & Wenger, 1991).   

Instructional design informed by a situated perspective situates learning in the context of 

relevant and authentic experience. Learning in this case is conceived as the development of 

practice, particularly professional noticing and the knowledge and skills relevant to it. Movement 

along a trajectory of participation is facilitated by the researcher, positioned as the expert, who 

apprentices the PMTs – the novice participants – to develop their noticing skills. Mediated by 

interactions among the researcher, the problem-solving videos, and the PMTs, their practice 

evolved over time. So does the way they participated, from legitimately peripheral participation 

– like noticing superficial qualities of students’ problem solving – towards more central 

participation characterized by sophisticated analyses of student thinking and responsive practice 

associated with ambitious teaching. 

Finally, given the situated nature of learning and the researcher’s intention to support the 

development of PMTs’ dynamic and integrated base of teacher knowledge, I considered the 

authenticity of what they would observe in the problem-solving videos. In that regard, these 

scenes were authentic, because they depicted actual students solving typical calculus problems. 
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As Sherin (2004) asserts, "Video allows one to enter the world of the classroom without having 

to be in the position of teaching in-the-moment" (p. 13). As such, those participated in analyzing 

students’ problem-solving videos had "the opportunity to develop a different kind of knowledge 

for teaching––knowledge not of 'what to do next, but rather, knowledge of how to interpret and 

reflect on classroom practices" (p. 14). Thus, if the researcher scaffolded PMTs’ video analysis 

"as if" they were interacting with the students in the videos (as noticing work tends to do), then 

the researcher's claims about the PMTs' movement along a trajectory of knowing become more 

viable. This is because the videos depicted approximations of practice (e.g., Howell & Mikeska, 

2021), and a situated perspective held that learning that occurs in one context is more likely to be 

transferred to another when the two situations are similar (Brown et al., 1989; Lave, 1991). A 

trajectory of participation accounted for contextual elements (as is warranted by a situated and 

sociocultural perspective), such as the mediating roles of arguably authentic tools and tasks in 

students' problem solving and both the researcher’s and PMTs' inferences about the students' 

knowledge. Thus, as PMTs developed contextualized knowledge to become more expert-like, to 

teach more and more meaningfully. Hence the gap between theory and practice is bridged.  

In conclusion, situative theorists (e.g., Greeno, 1998; Lave & Wenger, 1991) perceive the 

context and activities in which individuals engage within a learning milieu as critical and 

constitutive determinants of their learning. And while the situated perspective is sensitive to the 

range of participant interactions with the social, material, and conceptual resources of a learning 

environment, the sociocultural perspective offers a lens with which to analyze the nature of those 

mediating interactions. Thus, the particular elements of a context in which the researcher 

mediated PMTs' analyses of video recordings of students' calculus problem solving were 

accounted for, and viable claims could be made about a PMTs' situated and constructed knowing 



TEACHER NOTICING AND KNOWLEDGE FOR TEACHING THE DERIVATIVE 
  

 66 
 
and its actual relation to teaching. For that reason, situated and sociocultural perspectives were 

suitably selected for a study that aimed to analyze PMTs’ learning while accounting for the 

video-mediated interactions that supported it. 

Chapter 3: Methodology and Methods 

This chapter will describe the methods and methodology I used to investigate PMTs’ 

development of knowledge for teaching the concept of the derivative and a theory of how such 

knowledge developed. In particular, I begin by describing the problem that this research aimed to 

address and then I describe the methodology. Next, I explain the methods I used to collect and 

analyze data and ultimately answer my research questions. Finally, I address how trustworthiness 

of this study was established.  

Research shows that mathematics teachers lack sophisticated skills for noticing student 

thinking (Sherin & Han, 2004). This is a concern because teachers need to learn how to assess 

student thinking so that they can design or redesign instruction in response to their students’ 

understanding. Furthermore, static models of teacher knowledge developed outside of actual 

classrooms – or of approximations of actual classrooms – to be theoretical and thus may not 

address the authentic challenges of teaching mathematics. In contrast to these static models, a 

dynamic model of mathematical knowledge for teaching developed by analyzing teachers' 

practice in naturalistic settings may prove to be more relevant to classroom teaching.  

For the sake of convenience, I remind the reader that this study aimed to 1) develop a 

model that supported PMTs to enact the knowledge for teaching and develop expertise to notice 

students’ understanding of the derivative, and 2) identify the forms of interactions that supported 

their development in the video-mediated professional learning setting. These are the questions 

that guided this research:  
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1. How does teacher knowledge specific to noticing students’ mathematical thinking in 

the domain of the derivative develop through video-mediated professional learning? 

2. What forms of video-mediated interactions support this development? 

To answer these questions, I conducted a design experiment (Cobb et al., 2003) together with 

semi-structured interviews (Clement, 2000; Merriam & Tisdell, 2015).  

Design Experiment Methodology 

The Design Experiment (Brown, 1992) is a research methodology that aims to engineer a 

particular form of learning and develop domain-specific theories about how such learning 

develops and how its development can be supported (Cobb et al., 2003). As such, I used it to 

answer research questions related to the development of PMTs’ noticing of students’ 

mathematical thinking and to theorize how such learning occurs in a video-mediated setting.  

A crosscutting feature of design experiments is “to develop a class of theories about both 

the process of learning and the means that are designed to support that learning” (Cobb et al., 

2003, p. 10). Cobb et al. (2003) provide an example: In the case of a one-on-one design 

experiment, for example, “the broader theoretical goal might be to develop a psychological 

model of the process by which students develop a deep understanding of particular mathematical 

ideas, together with the types of tasks and teacher practices that can support that learning” (p. 

10).  

As such, design experiments entail both a "pragmatic bent"– in that they entail 

engineering a form of learning, and a "theoretical orientation"– in that they entail developing 

domain-specific theories through the analysis of those forms of learning and how they can be 

supported (Cobb et al., 2003, p. 9). These theories are humble (Brown, 1992) in the sense that 

they are entirely accountable to the activity of the design. This means that they are also 
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pragmatic because they speak directly to problems that teachers experience in practice. Thus, 

design experiments have the "dual goals of refining both theory and practice" (Collins et al., 

2004). Unlike other philosophical orientations, such as constructivism, humble theories provide 

clear pathways for designing and organizing instruction.  

Researchers undertaking design experiments test and refine their conjectures through 

iterative cycles of "progressive refinement" (Collins et al., 2004, p. 18). A conjectured design "is 

put into the world to see how it works. Then, the design is constantly revised based on 

experience until all the bugs are worked out" (p. 18). These theories are thus justified when their 

designs impact learning, when they work in the real world. That is, a design is effective if it 

impacts theory and practice. As such, both practice and theory are mutually informing as 

conjectures are subjected to an “iterative design process featuring cycles of invention and 

revision” (Cobb et al., 2003, p. 10). Through an iterative process, conjectures are generated, 

tested, and maybe refuted. Consequently, new conjectures are framed and tested.  

Design experiments are highly interventionist in engineering and studying new forms of 

learning (Collins, 1992). Design research takes place within the naturalistic setting (Brown, 

1992) of a learning ecology whose elements may include “the tasks or problems that students are 

asked to solve, the kind of discourse that is encouraged, the norms of participation that are 

established, the tools and related material means provided, and the practical means by which 

classroom teachers can orchestrate relations among three elements” (Cobb et al., 2003, p. 9). The 

inquiry is not purely naturalistic, though. The researcher yields some control in engineering a 

specific form of learning.  

Research Setting  
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The study was conducted at Ntiba University (a pseudonym), a public Research Doctoral 

University and Hispanic-Serving Institution (HSI) in the Northeastern United States. This site 

was selected because "it is not in any way atypical, extreme, deviant, or intensely unusual" 

(Patton, 2015), and thus it follows the typical structure of an undergraduate mathematics 

education program that may be found at other various universities. These considerations were 

essential because I intended mathematics teacher educators to use the instructional model for 

developing teacher knowledge that emerged from this study in similar settings.  

During the Fall 2021 semester, the Department of Mathematics offered a math methods 

course (MATH 470) for secondary preservice mathematics teachers (PMTs). MATH 470 aims to 

prepare PMTs to teach mathematics meaningfully by exploring how to remain committed to 

mathematics throughout planning and instruction, providing cognitively demanding learning 

opportunities, supporting PMTs as they engage in inquiry to develop teacher knowledge, and 

determining effective methods for assessing and evaluating students. PMTs taking this course are 

mostly in their senior year. The mathematics of the course is consistent with middle- and high-

school content. 

Meetings with research participants were held outside of class and spread throughout the 

week, depending on PMTs' availability. As stated above, I hypothesized that PMTs would 

develop their capacity for noticing student mathematical thinking and further develop their 

understanding of derivatives as they viewed and analyzed videos of students solving derivative 

problems. Thus, this project complemented what PMTs learned in this class while also offering 

them additional opportunities to develop their knowledge of content and pedagogy. These 

opportunities served as incentives for their participation in the study. 

Participants  
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The size of the research team and the participants in a design experiment depends on its 

type and purpose (Cobb et al., 2003). When the number of participants is relatively small, a 

single researcher can conduct and record the teaching sessions in a one-on-one design 

experiment. I was the sole researcher in this study, and I recruited six participants to form three 

pairs of students. The rationale and criteria for selecting six participants are provided below.  

As the study aimed to support the development of the content and pedagogical 

knowledge of prospective teachers of secondary mathematics, the participants should possess 

knowledge foundational to those knowledge domains. Therefore, the selection criteria ensured 

that the purposefully selected participants were information-rich (Patton, 2015) and “from which 

the most could be learned” (Merriam & Tisdell, 2015, p. 96). In this regard, I considered 

preservice mathematics teachers currently enrolled in a secondary math methods course.  

Since the study explored the development of knowledge for teaching the derivative, I 

selected participants who had completed Calculus I, which would ensure that they were prepared 

to analyze videos of students solving problems related to the derivative. In addition, students in 

this course were enrolled in a Mathematics degree program leading to K-12 teaching 

certification, implying they had already made up their minds to become math teachers. The final 

criterion was their tendency to express their ideas aloud, since I would need to rely on those 

expressions to analyze the trajectory of their participation in the design experiment sessions. 

Recruitment  

I recruited participants from those enrolled in a secondary math methods course in the 

Fall 2021 semester. Eleven PMTs were enrolled in the course. Students in this class must spend 

fifteen hours on an independent project outside of class. The course instructor had agreed that 

these students could participate in my study to satisfy that requirement. Therefore, I recruited six 
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students to participate in the study. The remaining five non-consenting students would complete 

a similar project but through an asynchronous, unfacilitated sequence of modules. In the 

subsequent paragraphs, I provide the criteria and rationale for recruiting six participants.  

To recruit participants, I visited the class early in the semester and explained the purpose 

of my research and the activities I would like them to perform. Then I gave them time to ask me 

questions. Next, I distributed the consent forms. Since my research depended on being able to 

elicit students’ mathematical thinking, I sought to recruit participants who tended to share their 

ideas in class. To meet that criterion, I attended the first two in-class sessions to monitor and 

document their participation. I ensured that the six students who consented to participate in my 

study were viable based on my observations.  

I recruited six participants for this study. Patton (2002) asserts that since qualitative 

research centers on describing, understanding, and interpreting how individuals view the world 

around them instead of aiming to make generalizations, the recruitment of only a small number 

of participants is appropriate. That said, it was reasonable to expect the kinds of variation in 

these students’ ways of thinking that would allow me to develop a viable theory of knowledge 

development. To manage the efficacy of tracking each participant's learning during the 

discussions, I divided the six participants into three pairs based on their availability during the 

week. Accordingly, I conducted three teaching experiments, each with one pair of students 

whom I met each week. In total, I met with each pair eight times during the study.   

The Episodes of a Design Experiment  

I conducted eight design experiment sessions with three pairs of PMTs, with each episode 

lasting around 45 minutes. I met each pair of PMTs weekly via videoconference. I had identified 

eight videos of students solving problems related to the derivative. My criteria for video 
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selection are provided in the next section. During each session, pairs of PMTs viewed an entire 

video uninterrupted in order to achieve a broad overview of the arc of students’ problem solving.  

A second rationale for the initial viewing was to determine how PMTs noticed student 

thinking without the researcher’s facilitation and scaffolding. That enabled me to discern a full 

breadth of the trajectory of PMTs’ noticing of student thinking over time. Next, we viewed brief 

segments of the videos that were determined according to what I had deemed ripe opportunities 

for noticing. Following each segment, the PMTs were asked to respond to the prompts in my 

semi-structured interview protocol, as provided in Table 1 below. I also paused and even 

rewinded the video as they wished so that I could assess what they found worthy of attending to. 

In addition, I asked PMTs to take notes as they viewed videos of students solving problems to 

maintain their attention and hold onto their in-the-moment reflections. I made copies of these 

notes and added to the data corpus. 

Semi-Structured Interviews 

I conducted semi-structured interviews (Clement, 2000) with the PMTs during the design 

experiment sessions. Semi-structured interviews involved “a subject (the problem solver) and an 

interviewer (the clinician), interacting with one or more tasks (questions, problems, or activities) 

introduced to the subject by the clinician in a preplanned way" (Clement, 2000, p. 519). Then, I 

analyzed these interactions (verbal, non-verbal actions, and behaviors) to make inferences about 

students' mathematical meanings and their problem solving (Clement, 2000; Goldin, 2000). The 

value of these interviews is that they provided the researcher with an opportunity “to expose 

hidden structures and processes in the subject's thinking that could not be detected by less open-

ended techniques" (Clement, 2000, p. 547). In my case, the semi-structured nature of interviews 

afforded me the opportunity to facilitate participants’ noticing-related engagement with the 
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problem-solving videos during the design experiment episodes. I say more about what occurred 

in these episodes in the following section. 

The questions of a semi-structured interview were determined ahead of time, and they 

tended to be rather open-ended (Merriam & Tisdell, 2015). The order of questioning was not 

predetermined. Instead, they were asked flexibly in response to the dynamics of the research 

situation. With the same intention, follow-up questions were determined in situ. Merriam & 

Tisdell (2015) refer to these responsive questions as the “probing questions” of a semi-structured 

interview, since they enable interviewees to elaborate on their thoughts and ideas.  

The capacity to responsively interact with participants by asking follow-up questions 

made the researcher an instrumental tool of real-time formative assessment during the design 

experiment episodes. For example, when an idea contributed by a participant is unclear or 

incomplete, the researcher may ask the participant to clarify or elaborate. Also, in the case where 

a participant hits an impasse, the researcher may branch the question sequence, offer heuristic 

strategies, or return the discussion to earlier, relevant points.  

In general, my intent was to explore and advance the ways that PMTs attended to student 

strategies, interpreted them, and responded to them. These moves served to discern the 

interrelatedness of the attend-interpret-response components of one’s noticing skills. Table 1 

shows some of the prompts that appeared in the semi-structured interview protocol to guide the 

interactions during the sessions. A purpose for each prompt is also included. 

Table 1 

Excerpts from the Protocol for Semi-structured Interviews 
 

Prompts  Purpose  
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• Would you tell me how these 
students are solving the 
problem? 

• What strategies did they use to 
solve the problem? 

• Would you explain to me how 
you would solve this problem?  

• Help to understand PMTs’ ability to attend to 
student thinking 

• Focus PMTs on attending to episodes in which 
student thinking is elicited 

• Given what you said about 
students’ approaches, what 
mathematics do they 
understand? 

• What mathematics do you 
think the students do not 
understand? What makes you 
think so? 

• Let's take a look at how Alex 
(pseudonym) solved this 
problem. Would you explain 
why you think she chose that 
method? 

• To help understand how PMTs interpret 
students’ thinking 

• Given what the student did 
there, if this were a student in 
your class, how would you 
respond? 

• What would you hope to 
accomplish with that response? 

• You have said that the student 
does not understand something 
about the mathematics (maybe 
a specific concept). How 
would you support the student 
to learn it?  

• Access PMTs’ ability to respond to the 
students’ thinking 

• Determine their ability to orchestrate 
instructional strategies likely to support 
students’ learning 

A table showing the prompts that were used to facilitate a discussion during the design 
experiment. 
 

Broadly speaking, my objective in using these prompts was to support the use of 

problem-solving videos to develop PMTs’ capacities for professional noticing, that is, their 

abilities to attend to, interpret, and respond to student thinking (Jacobs et al., 2010). As an 

example, after PMTs watched a segment of a video of students solving a problem related to 
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derivatives, I would ask questions such as these: Would you summarize what the student(s) did? 

Would you explain why you think they did that? What strategy did they use? What do you think 

that strategy says about what they know? If you were their teacher, what might you do next? 

Why? Other scholars (e.g., Sherin & van Es, 2002) have used more general prompts, like "What 

did you notice?" These would be useful early on as I assessed what the PMTs attended to, 

however, I conjectured that generic prompts may not direct PMTs' attention to the students' 

ideas, thoughts, and actions. Instead, they may focus on other events (e.g., the tasks) unrelated to 

the phenomena under investigation in this study.  

To assess PMTs' ability to interpret students' thinking, I asked them to re-watch video 

segments to explore their responses further or focus on a particular moment that I thought was 

worthy of their attention. Then, I would use the essential "Tell me more about that” prompt to 

ask them to explain what they thought one or both students understood. I also used “funneling 

questions” (Herbel-Eisenmann & Breyfogle, 2005) to shift PMTs’ analyses towards interpreting 

students’ mathematical actions. Funneling questions developed depending on the in-the-moment 

responses of the participants. Probes encouraged PMTs to elaborate if I sensed they had more to 

learn or that their responses could benefit from further clarification (Patton, 2015).  For instance, 

to direct their attention to specific episodes that were rich in student thinking, I said, “Let's take a 

look at how Alyssa solved this problem. Would you explain why you think she chose that 

method?” Such prompts helped me to elicit responses that revealed how PMTs made sense of the 

students' conceptions of the derivative. Moreover, when a PMT explained an episode of student 

thinking without citing evidence from the video, I asked: "Where do you see that [in the video]?" 

(van Es, 2011, p.137). The reviewed literature shows that such probes support PMTs to shift 
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from making evaluative statements to providing evidence from the videos supporting their claims 

and engaging in knowledge-based reasoning (Sun & Van Es, 2015). 

To assess how PMTs' responded to student thinking based on the inferences they made 

from their problem-solving behavior, they were asked, “Based on your understanding of the 

student thinking, describe some ways you might respond to this student. Would you explain how 

you chose to respond in those ways?” Other possible prompts included, “Given what the student 

did there, if this were a student in your class, how would you respond? What would you hope to 

accomplish with that response?” Explaining why they chose to respond in a particular way 

allowed me to assess how that response attended to aspects of student thinking. For example, 

PMTs suggested productive ways to respond to a misconception or how to scaffold the problem 

solving to students who seemed to be stuck. 

Interview Protocol Adjustments 

In this subsection, I describe some of the adjustments that I included in the interview 

protocol based on the observations that I made as PMTs analyzed students’ thinking in the 

experiments. In Session 1, I followed the protocol as provided in Table 1. As the results reveal in 

Chapter 4, the PMTs’ analysis, in terms of describing, interpreting, and responding to student 

thinking was superficial. That is, their analysis did not fully capture the thinking of the students 

as they problem solved. As such, in Session 2 I made a few changes to the protocol. I played 

shorter clips and I replayed them until I was convinced that the PMTs understood the students’ 

problem solving, which required more reviews than I had offered them in Session 1. As 

evidenced by the greater depths in the PMTs’ analyses, this change to the protocol made the 

analysis more manageable for them. For instance, in Session 2, I chose the video segment in 

which Alyssa explained the concept of an increasing rate of change (timestamp 1.18-2.14). I 
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played that segment three times until I was assured that the participants understood Alyssa’s 

reasoning. I had analyzed her reasoning prior to the episodes and found her arguments to be 

mathematically justifiable. After repeatedly watching and discussing the same clip three times, 

one PMT (Mia) said, “I think I understand what she is saying now.” Her subsequent descriptions, 

interpretations, and responses to the student’s problem solving confirmed that she did indeed 

understand “what she is saying.” As a result, I applied this same contingent “review and discuss” 

strategy in the subsequent sessions.  

I made a second modification to the protocol in Session 3 when I observed that the 

participants were not as responsive as they had been in Session 2. I had asked them to discuss the 

students’ thinking as they solved a problem related to the instantaneous rate of change (see 

Video 3 in Appendix C). In Episode 1 of Session 3, the discussion was characterized by 

intermittent moments of silence as the PMTs tried to remember the concepts. Leah commented, 

“It’s been so long since I did this [kind of] math.” In response, I found myself providing more 

scaffolding to maintain participation and engagement than I was used to, because the PMTs were 

struggling with the content underlying the posed problem. This hadn’t been an issue before. 

Accordingly, I adjusted the protocol, and in Episodes 2 and 3, I played the video and then 

engaged the students in a discussion focused exclusively on the relevant mathematics and 

disconnected from the students’ problem solving. These brief mini-lessons were somewhat 

successful in reminding students of the mathematics they had learned and developing it to the 

extent that they could at least attend to the students’ thinking about that mathematics. I then re-

played the video and asked them to analyze the students’ problem solving. The instances in 

which these side discussions of the mathematics enabled PMTs’ subsequent participation 

confirmed the value of those discussions and the modification to the protocol.  
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 As a final point, I note that by Sessions 7 and 8, the frequency with which I replayed 

video segments and my need to provide prompts and highlights had diminished. At that point the 

PMTs assumed greater control over the analyses of students’ problem solving and it became less 

necessary for me to facilitate. The discussions were continuous (unpunctuated by moments of 

silence) and more productive than they had been in Session 1, 2, and 3. The steady withdrawal of 

my scaffolding is evidence that the PMTs had achieved greater fluency in noticing by the end of 

the experiment. 

Sequence of Design Episodes  

In the very first session of each design experiment, I began by explaining to PMTs the 

tasks they were expected to accomplish before viewing the video of students solving those tasks. 

Then, I had them view an entire video uninterrupted for the first time in order to get a sense of 

what the video is about. Then, they would analyze student thinking using prompts such as those 

that appear in Table 1 above. Next, we collaboratively discussed the video as PMTs responded to 

the probing questions.  

Finally, I would allow PMTs to re-watch segments that I felt were worthy of further 

analysis. In the “Problem-Solving Video” section below, I explain what I mean for segments to 

be worthy of the PMTs’ analysis. Repeated viewing of the problem-solving video or re-viewing 

a segment of the video helped me direct the PMTs’ attention to student actions suitable for 

making inferences about their thinking so that we could take the time to reflect on them more 

deeply. Table 2 below provides a tentative schedule of activities for the episodes of the design 

experiment.  

Table 2 
 
 Schedule and Activities for PMTs and the Researcher 
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clarify that since I conducted design experiments with three pairs of students, I conducted each 

of these eight sessions three times per week, for a total of 24 data-collection sessions. I explain 

what these problem-solving videos were about later in this chapter.    

Cobb et al. (2003) underscore the importance of both prospective and reflective aspects 

of a design experiment. By “prospective,” Cobb et al. mean that the imagined design of the 

learning process is a hypothetical one. Thus, it’s critical that the researcher remain open to “other 

potential pathways for learning and development by capitalizing on contingencies that arise as 

the design unfolds” (p. 10). The “reflective” aspect implies that the design is an initial conjecture 

that can be revised and refined – or even refuted and replaced –as data suggests during the 

experiment sessions. Thus, one should expect that the protocols for subsequent sessions were 

revised to some extent throughout the experiment. Such is my rationale for breaks between 

sessions that would allow me to conduct retrospective analyses of collected data. Findings from 

these analyses were used to inform and reform the subsequent sessions. Next, I describe the 

methods for collecting data for this study.  

Data Collection 

All interactions during the design experiment episodes were video recorded using Zoom 

and with one external video camera. I shared my screen to present the problem-solving videos to 

PMTs, and the Zoom recording served as screencasting software. I also placed a microphone on 

my table to obtain a quality audio recording. I provided each student with a google doc in order 

to capture the notes that PMTs took as they viewed the videos. I also asked them to do sketches 

on paper when problems call for it and then digitally scan them at the end of the session.  

I completed a Contact Summary Form (Walters, 2017) after every session (see Appendix 

A). A contact summary form is a set of reflective prompts that l used to record my reflections 
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about what seemed to be the main ideas and events that occurred during each episode of the 

experiment. I also took field notes (Maanen, 1988) during the sessions, although I expected that 

doing so could distract me from the flow of the discussion. The contact summary form facilitated 

a routine for documenting "detailed descriptions of activities, behaviors, [and] actions" (Patton, 

2015, p. 14) that emerged as PMTs attempted to make sense of students' thinking. In addition, I 

kept a research journal to document and reflect on salient moments that contributed to theory 

development, such as connections between meaningful moments for the PMTs and what in the 

videos may have provoked them.  

Problem-Solving Videos  

Although I have already alluded to them above, in this section, I more deeply describe the 

problem-solving videos that I had hypothesized would mediate PMTs’ learning to notice. These 

videos show students engaged in mathematical problem solving on problems related to the 

concept of derivatives. The videos come from the NSF-funded project, The Calculus Video 

Project (https://calcvids.org), which investigates student learning and sense-making from 

instructional calculus videos. Their purpose is to conduct design research to generate knowledge 

about how students engage with, make sense of, and learn from videos that address foundational 

calculus concepts. The project also provides animated instructional videos explaining how 

students should approach the problems that appear in the videos to help students make sense of 

and understand the core concepts of calculus. They are available for free so that calculus 

instructors can use them in their teaching. I used them to provide opportunities for noticing 

interactions. 

In contrast to the objectives of my study, which proposed to use these videos as resources 

for teacher learning by attending to, interpreting, responding to the thinking and reasoning 
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elicited by Julian and Alyssa, The Calculus Video Project intended for them to be used as a 

resource for student learning of calculus concepts using principles of quantitative and 

covariational reasoning. I refer to them as problem-solving videos, alluding to the activities 

involved in these videos and setting them apart from other forms of videos (e.g., classroom 

videos) described in Chapter 2. In the following paragraphs, I provide my rationale for their 

selection by describing the features that I conjectured would support PMTs in developing teacher 

knowledge.  

The videos I chose from the entire collection showed two students, Julian and Alyssa, as 

they worked through various problems related to the derivative. The problems covered the big 

ideas of calculus including constant rate of change, average rate of change, instantaneous rate of 

change, the limit definition of the derivative, and Riemann sums. In animated videos that 

demonstrated strategies for solving the calculus problems that Julian and Alyssa attempted to 

solve, the developers drew from a quantitative reasoning framework relative to coordinating 

amounts of change of co-varying quantities (Carlson et al., 2002; Moore et al., 2009).  

I selected eight problem-solving videos in their entirety to be used in the design 

experiment. Two criteria were used to make these selections. First, I selected videos that could 

be viewed and analyzed within the 15 hours available to each participant. I conjectured that the 

number of videos should be reasonable so as not to overwhelm the participants, since each could 

be explored in depth. Secondly, I chose videos that could stimulate meaningful discussions and 

provoke thoughtful reflections during the design experiment sessions. To do that, I wrote up a 

descriptive overview of every problem-solving video. I identified what I deemed to be 

opportunities for noticing work, which is when students in the videos are either crafting and 

implementing a strategy to solve a problem or they were explaining how one could be used (see 
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Appendix B for an example). I referred to these opportunities as "rich segments" in the clips that 

I conjectured offered the material resources for a productive “noticing” conversation regarding 

the student thinking elicited in the videos. 

This overview is provided in the form of a table with timestamps and brief descriptions of 

what is happening in the clip (see Appendix B). To ensure that the videos were serving their 

intended purpose, I added to the “Interactions” column of that table after every session with 

notes and reflections in response to the actual discussions during the sessions. The participants in 

this study were preservice mathematics teachers who I assumed to be novices at noticing student 

thinking based on where they were in their coursework. Therefore, I believed that viewing eight 

problem-solving videos with rich segments for students' thinking in interaction with a 

knowledgeable researcher would provide the social, material, and intellectual resources needed 

to investigate how one’s noticing of student thinking seemed to change over time in a video-

mediated situation.  

Problem-Solving Videos used in the Design Experiment Sessions 

 In this section I describe the problem-solving videos that PMTs analyzed during the 

design experiment episodes. As I do so, I reveal my conjectures about how the eight videos could 

potentially offer the PMTs the opportunity to enact knowledge related to teaching the derivative 

as they analyzed the reasoning of the student problem solvers. The results concerning how PMTs 

enact knowledge to teach the derivative and their development of noticing in all eight sessions 

are presented in Chapter 4.  

Session 1: The Constant Rate of Change  

 In this session, PMTs worked in pairs as they viewed and collaboratively analyzed the 

video, “Constant Rate of Change: Student Problem Solving” (see Video 1 in Appendix C), which 
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features two students, Julian and Alyssa, solving a mathematical problem related to the concept 

of constant rates of change. The participants were asked to notice (i.e., attend to, interpret, and 

respond to) the students’ mathematical thinking as they solved the problem. The video provided 

an animation in which water is being poured into a cup. The students were asked to determine 

the relationship between the height and volume of water as it is poured into the cup. A screenshot 

of the animation and the task for Session 1 is provided in Figure 4 below.  

Figure 4 

A Screenshot of the Task in Session 1 

  
Session 2: Increasing Rate of Change  

The participants in this session watched a 3-minute video, “Increasing Rate of Change: 

Student Problem Solving” (see Video 2 in Appendix C). In this problem-solving video, two 

students, Julian and Alyssa, attempt to describe the relationship between the volume and height 

of water being poured into a beaker. The students problem-solving activity illuminated ideas 

about whether the rate of change of height with respect to volume is constant, increasing, 

decreasing, both increasing and decreasing, or changing in some other manner. The screenshot 

below comes from the animation that accompanied the task that was given to the students.  

Figure 5 
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Screenshot of Session 2 Task 

 

Session 3: Approximating Instantaneous Rate of Change 

The PMTs viewed the video, “Approximating Instantaneous Rate of Change: Student 

Problem Solving” (see Video 3 in Appendix C), centered on ideas about the instantaneous rate of 

change in this session. In the video, the two students, Julian and Alyssa, were shown a photo of 

Blue Jays’ pitcher Marcus Stroman (see Figure 6) and asked to approximate baseball speed when 

the photo was taken.  

Figure 6 

Screenshot of the Mathematical Task 
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Session 4: Limit Definition of the Derivative 

In this session, the participants watched and analyzed the video, “Limit Definition of 

Derivative: Student Problem Solving” (see Video 4 in Appendix C), in which the two students, 

Julian and Alyssa, were solving a problem related to the limit definition of the derivative. A 

screenshot appears in Figure 7. The task involves approximating the rate of change in the amount 

of ibuprofen in a person’s body with respect to elapsed time at a particular point in time.  

Figure 7 

Screenshot of a “Limit Definition” Task 

 

Session 5: Using Limits to Compute Derivatives  

In this session, the PMTs watched the video titled, “Using Limits to Compute 

Derivatives: Student Problem Solving” (see Video 5 in Appendix C). In the video, two students, 

Kelly and Maria, use the limit definition of the derivative concept to solve a problem related to 

the rate of change. I asked participants to consider the students’ thinking and reasoning about the 
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problem and articulate ways the students could be supported to solve similar problems. A 

screenshot of the problem appears in Figure 8.  

Figure 8 

Rate of Change Task for Episode 5 

 

Session 6: Slopes of Secant and Tangent Lines  

 In session 6, I showed the 4-minute problem-solving video, “Slopes of Secant and 

Tangent Lines: Student Problem Solving” (see Video 6 in Appendix C). Julian and Alyssa are 

tasked with computing derivatives using slopes of tangent lines. As they sketch tangent lines at 

various points on a graph (see Figure 9), their problem-solving elicits their thinking about what a 

tangent line is. As the PMTs viewed the video, I asked them to consider how the students 

expressed their understanding of tangent lines and their slopes and deliberate about the validity 

of their reasoning.  

Figure 9 

A graph for which Julian and Alyssa must Find Derivatives at Each of the Labeled Points 
Using Tangent Lines 
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Session 7: Graphing the Derivative  

In this session, Kelly and Maria appeared in the 5-minute video, “Graphing Derivative: 

Student Problem Solving” (see Video 7 in Appendix C). They were shown an animation of a 

football being thrown and were then asked to graph its speed over time. The participants were 

asked to examine the students’ thinking, assess its validity, and interpret the obstacles they 

encountered as they constructed the graph. The screenshot in Figure 10 shows the height of the 

thrown football (blue trace) and a graph of the vertical distance (or height) of the football over 

time.  

Figure 10 

Graph Showing the Height of a Football Over Time 

 

Session 8: Interpreting Derivatives 
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In this session, two students, Kelly and Maria, worked together to solve the following 

problem in the nearly 6-minute problem-solving video, “Interpreting Derivatives: Student 

Problem Solving” (see Video 8 in Appendix C):  

Courtney is going on a road trip. The function 𝑓(𝑡) measures the amount of fuel 
Courtney’s car has consumed (in gallons) where t is measured in hours since Courtney 
left her hometown. Explain what 𝑓′(5) = 2.5 means.  

 
The students’ problem-solving illuminated ideas about interpreting the derivative in context. As 

PMTs viewed the video, I asked them to pay close attention to students’ reasoning. 

Data Analysis 

In the context of this study, three integral elements of the learning ecology interacted to 

engineer an opportunity for teacher learning. These were the researcher, the PMTs (participants), 

and the problem-solving videos. Figure 11 depicts the possible interactions among these three 

elements. As I explained within the presentation of my theoretical framework, situated and 

sociocultural perspectives offered viable lenses with which to analyze these mediating 

interactions. In particular, I analyzed the enactment of teacher knowledge and noticing skills as 

they were mediated by social (e.g., researcher-PMT interactions), material (e.g., problem-solving 

videos), and conceptual (e.g., mathematics) artifacts. 

Figure 11 

Three Elements of the Teacher Learning Ecology 
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Figure 11 depicts the possible interactions between the elements of learning ecology in my 
design experiment.  

 
As depicted in this figure, the researcher interacted with both the problem-solving videos 

and the PMTs. The PMTs interacted with the problem-solving videos and the researcher, as well. 

These interactions were conjectured to facilitate the PMTs’ enactment of knowledge for teaching 

the derivative and mediate the development of noticing related to it. Thus, understanding the 

nature of these interactions provided an opportunity to account for how the PMTs’ knowledge 

for teaching and noticing student thinking was developed.     

 Whereas Research Question 1 is concerned with the kind of knowledge for teaching the 

derivative that was evoked and how it was enacted, Research Question 2 is concerned with the 

forms of interactions through which that knowledge was further developed. In other words, I was 

not only interested in features of problem-solving videos that mediated the focusing interactions 

of noticing (Lobato et al., 2013), I was also interested in how focusing interactions directed 

PMTs’ attention to specific segments of the videos and provided them with opportunities for 

knowledge development. Next, I provide the analytic methods in relation to each of these two 

questions.  

Data Analysis for Research Question 1 

 Each of my research questions called for different analytic approaches. In this section, I 

provide the analytic methods I used to answer Research Question 1, which is as follows: How 

does teacher knowledge specific to noticing students’ mathematical thinking in the domain of the 

derivative develops through video-mediated professional learning? 

The study employed qualitative methods and entailed collecting and analyzing data in 

order to yield detailed descriptions of how PMTs developed their noticing abilities, a key feature 
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of responsive teaching. Bearing in mind that RQ1 was concerned with the kind of knowledge for 

teaching the derivative that PMTs enacted as they observed student thinking, the intention was to 

examine the process through which they assessed and modeled their thinking and discern a 

trajectory of knowledge generation across the episodes of the design experiment. Specifically, I 

explored the knowledge for teaching associated with noticing students’ mathematical thinking in 

the derivative domain that PMTs leveraged and enacted, along with the contingent processes that 

explain the emergence of this knowledge.  

Since I intended for the analysis to be open so as to develop a theory grounded in the 

data, I used a grounded theory analytic approach (Glaser & Strauss, 1967) to respond to 

Research Question 1. Grounded theory is a method for analyzing qualitative data to develop new 

theories and concepts based on data (Corbin & Strauss, 1990). Thus, this method was compatible 

with the aims of this study, which were to 1) engineer the design of professional learning in 

which PMTs develop knowledge for teaching the derivative, 2) construct a theory that explains 

how that knowledge is developed, and 3) identify forms of interactions that mediate those 

developments. This theory and those forms were inductively derived from the data corpus 

through open, axial, and selective coding, which I describe below. For now, I provide a summary 

overview of my analytic intentions. Then, I return to the generic features of a grounded theory 

analysis. 

After transcribing audio- and-videotaped data verbatim, I started with open coding 

(Glaser & Strauss, 1967; Strauss & Corbin, 1990) through an initial pass of the data. Open 

coding is "the process of breaking down, examining, comparing, conceptualizing, and 

categorizing data" (Strauss & Corbin, 1990, p. 61). This process occurred during breaks between 

sessions, which means that analysis was ongoing throughout data collection.  
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The specific aim of my open coding process was to identify noticing phenomena and then 

label, categorize, and describe them (Glaser & Strauss, 1967). In my first pass through the data, I 

looked for moments where PMTs enacted knowledge for teaching the derivative and applied 

descriptive codes to label the process involved (i.e., what accounts for the enactments). The 

reviewed literature on models of teacher knowledge provided base codes for the forms of 

knowledge for teaching that PMTs brought to bear on their video analyses (e.g., knowledge of 

content and students, or KCS; Ball el al., 2008). In addition, I used the components of the 

professional noticing framework (Jacobs et al., 2010) as base codes (i.e., attend, interpret, and 

respond), as well. Of course, I also remained open to emergent codes. This ad hoc analysis was 

particularly necessary for coding the ways in which that knowledge was enacted was developed. 

Then, I combined these codes conceptually to characterize PMTs’ noticing.   

 In addition, given my dynamic perspective on knowing, I expected to identify forms of 

enactments that don’t have their groundings within the literature review. By remaining 

unconstrained by the forms of teacher knowledge identified in the literature, this approach 

allowed me to remain open to discerning emergent patterns in how PMTs assessed and modeled 

student thinking. These newly identified knowledge-eliciting processes were given new codes 

and eventually collapsed to form themes. For example, the ‘attending’ and ‘describing’ codes 

were collapsed to form the describing category. These themes denoted the processes through 

which PMTs modeled student thinking and suggested ambitious instructional moves to support 

student learning. I used them to construct a theory of knowledge development related to noticing 

students’ derivative thinking that was abstracted from the design experiment.  

In general, my analytic process for Research Question 1 was as follows. Once first-pass 

codes related to enacting knowledge for teaching were labeled in the transcript, I conducted a 
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constant comparative analysis (Glaser & Strauss, 1967), which involved “(1) comparing 

incidents applicable to each category, and (2) integrating categories and their properties” (Kolb, 

2012). Specifically, I grouped together data (e.g., quotes from the transcript) labeled with the 

same code and recorded them in a codebook, or an inventory of codes, along with their 

descriptions and exemplars from the transcript. These were important during the analysis, 

because they ensured the application of codes was consistent, thus ensuring their integrity, by 

which I mean that they helped me demonstrate that the results and conclusions were grounded in 

the data. Table 3 provides this analytic process: 

Table 3 

The Coding Process for Research Question 1 

Levels  Analytic Process Activities  
1 • Open Coding  • Read the transcript  

• Interpret each piece of data (words, sentences, paragraphs) 
• Label pieces of data with codes (e.g., attending to students’ 

problem solving) 
• Lines that express the same idea to be labelled with the same 

code 

2 • Axial Coding  • Identify connections between level 1 codes  
• Group codes that express same meanings together (e.g., 

attending to student thinking) 
• Develop broader categories based on their conceptual 

connections 

3 • Selective coding  • Establish the connection between categories  
• Group the connected categories together 
• Develop overarching categories (e.g., responding to students’ 

derivative understanding) 
• Establish distinct categories  
• Review categories and codes 
• Remove those that lack enough supporting data 
• Write narrative to describe overarching categories (models of 

teacher knowledge) 

A table explaining the codes in an analytic process based on the principles of grounded theory 
(modified from Strauss & Corbin, 1990, 1998).  
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In the next phase of analysis, I conducted axial coding (Corbin & Strauss, 1990). Open 

coding breaks down the data into smaller components whereas axial coding collates them back 

together at a conceptual level––based on how ideas and concepts are related. Then, I examined 

the relationships between codes in open coding through the constant comparative method (Glaser 

& Strauss, 1967) to form categories (Corbin & Strauss, 1990). To do that, I looked across the 

knowledge codes to discern relations among them in order to form categories. Codes expressing 

similar ideas and having a conceptual relationship were assigned to the same category.  

The last step of the analytic process was selective coding (Glaser & Strauss, 1967). Here, 

the categories developed were connected to form themes. In developing these themes, one may 

consider the categories that emerged through axial coding or they may construct new themes by 

connecting those categories. Finally, to respond to Research Question 1, I described these themes 

as the four-element framework that supported PMTs’ learning to notice student thinking. The 

four-element framework is presented in Chapter 4.  

Next, I describe how I analyzed data to respond to the second research question, which 

was as follows: What forms of video-mediated interactions support such development? I adapted 

Lobato et al.’s focusing framework (2013) as an analytic tool to answer this research question. 

Before stating the analytic methods that I used to answer the question, I present key elements of 

that framework. 

Focusing Framework 

Lobato et al. (2013) developed their focusing framework as both a conceptualization of 

students' mathematical noticing and as a tool to analyze its development. In this section, I present 

their framework. I use it in an adapted form as a tool with which to analyze the development of 

PMTs’ mathematical noticing. Lobato et al.’s (2013) focusing framework has four components: 
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centers of focus, focusing interactions, mathematical tasks, and nature of mathematical activity. I 

will explain each of these components and further demonstrate how they were adapted to analyze 

data in this study.  

Centers of Focus are “properties, features, regularities, or conceptual objects that students 

notice” (Lobato et al., 2013, p. 814). Since what students notice cannot be accessed directly, 

centers of focus are identified in their verbal responses, gestures, and written work. In the context 

of this study, I considered centers of focus as aspects of students’ thinking (conceptual objects) 

that PMTs attended to as they analyzed videos of students’ problem solving. These included the 

students’ strategies, concepts, heuristics, and misconceptions. The remaining three components 

of the focusing framework helped to discern what contributed to the emergence of these centers 

of focus during the design experiment.  

Focusing Interactions are teachers’ “discourse practices (including gesture, diagrams, 

and talk) that give rise to particular centers of focus” (p. 814). One such discourse practice is 

highlighting (Goodwin, 1994), which includes labeling and annotating particular features so as to 

make them prominent, thus shaping how they are perceived (Lobato et al., 2013). I extended 

focusing interactions to include the discourse practices of the researcher in the design 

experiment. For example, the researcher used prompts to draw PMTs’ attention to observable 

moments of student thinking in the video. In so doing, the researcher highlighted that segment of 

the video to draw PMTs’ attention to it. These examples aim to reify the conjecture that 

highlighting directed PMTs to attend to students’ reasoning and thereby generated centers of 

focus for their collaborative consideration and contemplation. The researcher’s focusing 

interactions were also used to center PMTs’ focus on pedagogical moves, like deliberating how 

they could support a student to resolve a misconception or become unstuck.  
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Mathematical tasks are the material resources that afford or constrain what the students 

attend to (i.e., their centers of focus) and thus their features affect what the students notice 

(Lobato et al., 2013). For example, a task that calls on students to graph the relationship between 

two quantities provides them with an opportunity to attend to how those quantities co-vary. In 

the context of this study, videos of students solving problems formed the central concern. They 

formed “the backdrop of discourse practices,” (p. 814) because they provided occasions for 

PMTs to notice students’ thinking. In addition, the affording and constraining features of these 

problem-solving videos were also subject to analysis here, since this study aimed to discern the 

forms of video-mediated interactions that supported PMTs’ learning. In particular, I was 

interested in analyzing the interplay between the discourse practices (focusing interactions) and 

the moments of problem-solving video that offered PMTs opportunities for noticing students’ 

mathematical thinking.   

The nature of mathematical activity refers to the norms for student participation in 

problem solving and in classroom discourse more broadly. The expectations for the way students 

participate influence what become their centers of focus (Lobato et al., 2013). In the same way, 

in this study, the centers of focus for PMTs were determined through the norming of discourse 

practices in each design session. For example, these norms may regulate how and when the 

videos are paused, what gets re-viewed, and what counts as evidence for claims, thereby shaping 

PMTs’ noticing.  

In summary, these four elements of Lobato et al.’s (2013) focusing framework provided 

analytical tools in the open coding process: focusing interactions, mathematical tasks, the nature 

of mathematical activity, and centers of focus. Using these analytic tools, I established how an 
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increasing prevalence of PMTs’ centers of focus gave rise to shifts in their noticing capacity and 

knowledge for teaching the derivative.   

Research Question 2 aimed to discern the forms of interactions that informed PMTs’ 

noticing skills and their knowledge for teaching the derivative. With nominal modifications to 

the framework, l accounted for who was noticing and what they were asked to notice. I used the 

four elements of a focusing framework as analytic tools in the analysis in order to account for 

how artifacts and interactions (e.g., features of videos, features of tasks, discourse practices, 

norms) within the video-mediated environment fostered PMTs’ noticing skills and knowledge 

for teaching the derivative. In addition, I identified how noticing skills and teacher knowledge 

are linked to moments of student thinking that PMTs attended to.  

Data Analysis for Research Question 2 

In this section, I provide the analytic methods I used to answer Research Question 2, 

which is as follows: What forms of video-mediated interactions support such development? 

Specifically, this question was concerned with developing a theory of how mediated interactions 

with problem-solving videos supported the development of noticing skills in a video-mediated 

professional learning context. Thus, the nature of those interactions and the particular features of 

those videos were relevant in the construction of that theory.  

To address my second research question, I again engaged with the transcribed data. I used 

open coding (Strauss & Corbin, 1990) in the first phase of the analysis to code for the four 

components of Lobato et al’s. (2013) focusing framework. As these initial entering codes got 

refined, I not only identified centers of focus, for example, I also coded for how they were 

identified, in other words, the conditions that prompted their emergence. The distinction between 

a center of focus identified by the researcher and one identified by a PMT was key because the 
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latter signified more central participation (Lave, 1991) in professional learning. This analysis 

constituted an attempt to empirically assess the extent to which the centers of focus that PMTs 

attended to, and even shifts identified in what they attended to, were a product of the mediated 

discussions that had taken place within the socially situated environment of the experiment. 

It was crucial to identify the focusing interactions as well as the mediating interactions 

associated with each of the centers of focus in order to discern how those focusing 

interactions contributed to the emergence or shifts in centers of focus. Thus, it was important to 

code for these elements simultaneously because there was an interrelationship among them. 

Accordingly, in my next analytic pass at the data, I applied tripartite codes to capture 1) centers 

of focus, 2) the focusing interactions that gave rise to each one, and 3) the contributing role of 

problem-solving video interactions. The simultaneous and coordinated coding of these three 

elements enabled me to develop a conceptual connection between them that could illuminate the 

mediating interactions that supported the development of noticing.  

To analyze the focusing interactions that developed at the emergence of each center of 

focus, I used open coding (Strauss, 1987) to identify the discursive practices (e.g., gesture, 

diagrams, and talk) that enabled the centers of focus to emerge. The goal was to describe the 

form of interactions that seemed to influence the number and nature of the candidate centers of 

focus that emerged. Whereas for Lobato et al. (2013), centers of focus are “properties, features, 

regularities, or conceptual objects that students notice” (p. 814, emphasis added), in this study, 

the “students” were the PMTs and I was the teacher-researcher. And instead of considering the 

nature of mathematical activity as a component of the noticing framework, here the “activity” is 

viewing a video and analyzing student thinking.  
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In order to determine how the problem-solving videos mediated PMTs’ knowledge 

development, I applied codes to the video segments in which new centers of focus were 

identified or other moments that mediated learning and aligned them with the coded focusing 

interaction(s) they corresponded to. That way, I could coordinate the three constructs – centers of 

focus (or other moments that mediate learning), focusing interactions, and the corresponding 

features of videos – to realize how they interacted and facilitated PMTs’ noticing of student 

thinking over time. As with all other codes, the names given to these codes conveyed meaningful 

descriptions of these interactions. By identifying patterns in the interactions among these three 

constructs, I developed a theoretical claim about the nature of interactions by which teacher 

noticing was developed. The results that respond to this second research question are presented 

in Chapter 5. 

How Trustworthiness was Established  

In this final section of this chapter, I provide four means by which the trustworthiness of 

this study was established: credibility, dependability, confirmability, and transferability. 

Establishing trustworthiness is crucial for demonstrating that the data analysis has been 

conducted rigorously and transparently so that researchers can confirm the findings and 

practitioners can confidently act on them. 

Credibility 

This is an important criterion in qualitative research for establishing the trustworthiness 

of the research findings. Thus, it is important to demonstrate how it was established in this study. 

Credibility is concerned with the congruence of the participants’ actual perceptions of the 

phenomena under investigation and the researcher’s presentation of their perceptions and 
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perspectives. Essentially, credibility entails pointing out the correspondence of the study’s 

findings with the reality to make it possible to determine the truth of the findings. 

I used triangulation and prolonged and substantial engagement of PMTs to establish 

credibility (Lincoln & Guba, 1985). Triangulation involves using multiple methods, data sources, 

and theoretical perspectives to enhance a robust understanding of the phenomenon under 

investigation and ensure the study's findings are well-developed (Mertens, 2005). I used multiple 

data collection methods and sources, including video and audio recordings of semi-structured 

interviews, participants’ written work, and reflections that recorded at the end of every session. I 

coded these pieces of data in order to assess their consistency in terms of how PMTs developed 

noticing skills and knowledge for teaching. In addition, during the data analysis phase, my 

supervisor, Dr. Greenstein, reviewed my findings to determine if there were blind spots in the 

analytic process. This use of multiple analysts contributed to the robustness of the findings thus 

making them more credible. Furthermore, I employed two theoretical perspectives – the 

sociocultural and situated perspectives – to inform the research design, including the research 

setting, the data that was collected, and how the data was analyzed. 

Next, prolonged and substantial engagement with the PMTs is yet another means I used 

to establish credibility. Several design studies informed the duration of my study and the number 

of problem-solving videos that should be analyzed (e.g., Sherin & van Es, 2002; Steffe & 

Thompson, 2000). This study involved three pairs of participants, and each pair analyzed eight 

problem-solving videos, for a total of twenty-four sessions over fifteen weeks. This prolonged 

engagement provided an opportunity to explore the PMTs’ trajectory of participation and their 

development of professional noticing skills.  

Dependability 
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In qualitative research, dependability attempts to respond to the question, “How can one 

determine whether the findings of an inquiry would be consistently repeated if the inquiry were 

replicated with the same (or similar) subjects (respondents) in the same (or similar) context?” 

(Guba, 1981, p. 80). By doing so, dependability aims to establish “the consistency and reliability 

of the research findings and the degree to which research procedures are documented, allowing 

someone outside the research to follow, audit, and critique the research process (Moon et al., 

2016).  

To ensure dependability, Guba and Lincoln (1989) suggest a detailed documentation of 

research design, methodology, and methods. Similarly, Moon et al. (2016) add that the 

researcher should provide detailed information about data collection and analysis, such as 

memos and field notes. To establish dependability, I provided details about the methodology and 

methods I used, and I followed up by supplementing these with details about what actually 

happened as the data was collected and analyzed. To provide some examples, field notes were 

taken to document my ongoing reflections, a form was completed after every session to 

document thoughts and insights that developed during the session, and analytic memos was 

recorded to document how the codes, categories, and themes evolve throughout the analysis 

stage. 

Confirmability 

 In qualitative research, confirmability addresses the question, “How can one establish the 

degree to which the findings of an inquiry are a function solely of the subjects (respondents) and 

conditions of the inquiry and not of the biases, motivations, interests, perspectives and so on of 

the inquirer?” (Guba 1981, p. 80). It is concerned with ensuring that the results are linked to the 

conclusions, thus eliminating the researcher’s bias or influence. In other words, the results and 
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their interpretations should reflect participants’ experiences and preferences, not those of the 

researcher.  

Lincoln and Guba (1985) suggest that a researcher can establish confirmability by 

keeping a reflexive journal, which is what I did. In this journal, I recorded reflections about 

PMTs’ learning during the sessions and how my theoretical model of their learning evolved. 

These reflections played a critical role in data analysis and in the writing up of the study’s 

findings. 

Transferability 

Transferability is concerned with how the results from a given study can be applied to 

other situations or populations (Lincoln & Guba, 1985). However, it is important to emphasize 

that in qualitative research there is no intention to generalize the results. Instead, sufficient 

details about participants and settings are provided so that the reader can determine whether the 

findings can be transferred to another setting due to their shared characteristics. Accordingly, 

transferability is established by providing a vivid description of the research setting so that a 

reader can determine its similarity with other settings. Furthermore, transferability of the models 

is established through purposeful sampling (Patton, 2002) and a thick description of the study 

(Geertz, 1973). As such, in this study, the setting, participants, and the procedure for data 

collection and analysis were precisely described and thoroughly elaborated. 
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Chapter 4 Results: Trajectories of Knowledge Development  

In this chapter, I respond to Research Question 1, which is as follows:  
 

How does teacher knowledge specific to noticing students’ mathematical thinking 

in the domain of the derivative develop through video-mediated professional 

learning? 

Results for Research Question 1 express how I discerned the trajectories of PMTs’ learning 

knowledge for teaching the derivative and of noticing students’ mathematical thinking across the 

eight sessions of the design experiment. As the results will show, the participants developed 

situated skills and teacher knowledge for noticing in a researcher-supported, video-mediated 

ecology of professional learning.  

A framework of four processes depicts how PMTs' noticing developed over time as they 

explored and made inferences about students' understanding of mathematics and their own 

understanding of how to teach the derivative. These four processes are: describing, interpreting, 

responding, and comparing and contrasting. I describe these processes in this chapter in addition 

to the analytic means by which they were determined. Excerpts from the data are included as 

evidence that these processes supported the development of PMTs’ noticing.  

As I will illustrate, the participants’ processes of modeling student thinking incorporated 

various domains of knowledge for teaching the derivatives that PMTs enacted in their noticing. 

The two constructs, learning to notice and enacting knowledge for teaching, are intertwined and 

interdependent, thus making it impossible to consider them separately. Therefore, as I present the 

processes through which PMTs analyzed the students' mathematical understanding, I also 

describe the forms of teacher knowledge that these processes entailed, as well as the ways in 

which they supported the PMTs’ learning to notice. 
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I begin by presenting the coding that I used to identify the four processes through which 

the PMTs’ noticing developed. Then, I show how the participants engaged in these processes to 

notice student thinking as they analyzed students’ problem solving in the experiment episodes. 

Finally, I conclude the chapter with a proposal based on these findings for how PMTs can learn 

to notice students' thinking in a video-mediated environment of professional learning.  

Coding for the Learning Trajectory of Participants 

 Chapter 3 presents the analytic methods for Research Question 1 along with a rationale 

for their selection. That presentation provides a general overview of the analytic approach. In this 

section, I get more specific about the approach as it actually played out.  

I initiated the analysis of data through open coding (Glaser & Strauss, 1967; Strauss & 

Corbin, 1990). I read the transcribed video data to familiarize myself with it. I also examined the 

tasks given to the students in the videos, their work and their discursive actions, and their 

thinking as I inferred it from their written work and their discourse. As I proceeded through open 

coding, I looked for instances where the PMTs enacted mathematical and pedagogical 

knowledge to attend to, model, and respond to the students’ mathematical thinking. Across these 

instances, PMTs leveraged knowledge for teaching the derivative in various ways. For example, 

they enacted knowledge of content and students (Ball et al., 2008) to describe (action) the 

students’ (observable) work. It is important to emphasize, though, that I was not so concerned 

with what types of knowledge for teaching were enacted, as that was not a focus of Research 

Question 1. Rather, it is how knowledge specific to noticing students’ derivative thinking 

developed. This is why answers to this question are in the form of processes, not knowledge 

domains. 
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As I began to open code the data, I used the base codes of attending, interpreting, and 

responding, which are derived from the professional noticing framework (Jacobs et al., 2010). 

Concurrently, I remained open to the possibility of other codes emerging (Strauss & Corbin, 

1990). I assigned the same code to segments of data that expressed the same idea. In addition, I 

assigned new codes to the newly identified ways of enacting knowledge for teaching and 

described them. At the culmination of the initial round of analysis, the codebook consisted of 

seven codes: attending, interpreting, responding, comparing, describing, contrasting, and 

situation modeling.  

Attending codes were applied to segments of the data that were the objects of the PMTs’ 

attention (e.g., student misconceptions, heuristics), while interpreting was applied to PMTs’ 

inferences about students’ thinking from their observable discursive actions. For responding, I 

coded segments in which PMTs provided pedagogical moves that they proposed would help the 

student better understand a concept, make progress in their problem solving, or resolve a 

misconception. Describing is about narrating or recounting what the students did or the words 

they used at some point in their problem solving. 

Next, comparing involves identifying similarities in two students’ strategies, whereas 

contrasting involves discerning differences. Lastly, situation modeling was applied to segments 

of data where PMTs considered the context of a given task or proposed a context for a 

conceptually related task that might further support the problem solvers’ learning.  

Next, I conducted axial coding (Corbin & Strauss, 1990). Through constant comparative 

analysis (Glaser & Strauss, 1967), I analyzed the relationships among the Level 1 codes (i.e., 

those codes that emerged from open coding) and collapsed those with the same conceptual 

connections into categories. Five categories emerged from this process: describing, interpreting, 
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responding, comparing, and contrasting. As the attending code was concept-generic, it was 

merged into the describing code, because both relate to what the PMTs pay attention to as 

students problem solve. Similarly, the situation modeling code was merged into 

the responding category, as they both relate to designing instructional interventions for students 

in response to assessments of their thinking.  

Lastly, I applied selective coding (Glaser & Strauss, 1967). Comparing the conceptual 

connections among the developed categories (Kolb, 2012) enabled me to form overarching 

themes. These themes convey how PMTs can develop noticing skills by enacting knowledge that 

supports the teaching of the derivative. Although by definition, compare and contrast refer to 

distinct phenomena, these phenomena were not sufficiently distinguished in the data so as to 

warrant that distinction. On many occasions, PMTs both compared and contrasted students' ideas 

and approaches in a single response. As a result, I combined them into a single theme called 

comparing and contrasting. I also considered the other categories that emerged from axial 

coding and designated them as themes since they did not warrant further collapsing.  

At the end of the analysis, four themes emerged that depict the processes through which 

the PMTs’ knowledge relevant to noticing developed: describing, interpreting, responding, and 

comparing and contrasting. These four processes of learning to notice provide a third-order 

model of how PMTs describe and interpret student work, how they respond to it, and what they 

think about mathematics and mathematics teaching. A third-order model refers to a PMT’s 

perceptions of a student’s thinking from the perspective of a researcher through analyses of the 

PMT’s interactions with the student’s problem solving (Wilson et al., 2011; a second order 

model refers to the PMT’s perception of the student’s thinking). The third-order model, then, is 

my description of the way PMTs modeled student thinking. In the next section, I describe each of 
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the four themes in detail. Then I present exemplars of the ways in which the participants enacted 

each of these processes in their participation across their eight sessions.  

The Emergent Framework of Learning to Notice Students’ Thinking 

In this section, I present the four-element framework for developing noticing through 

video-mediated learning that emerged from this study. I also present the learning-to-notice 

trajectories for three pairs of PMTs that was enabled by their participation in the processes of 

that framework. These presentations depict the PMTs’ increasing sophistication in applying their 

mathematical and pedagogical knowledge for teaching the derivative to notice student thinking 

about the derivative.  

Learning to Notice through Describing  

By observing and analyzing videos of students’ problem solving, the participants used 

describing as a process to explain, recount, or detail aspects of the students’ mathematical 

activity. In describing, participants “listen” closely to students' discourse. Discourse can include 

students’ written work, their verbal expressions, the analogies they use, the representations they 

make, and their justifications for conclusions. All six PMTs enacted knowledge for teaching by 

describing students' mathematical activity. Next, I provide instances of “describing” activity 

from the data.  

Superficial Descriptions 

In the early episodes of the experiment, the PMTs evidenced their novice noticing skills 

as they demonstrated a relatively unsophisticated ability to describe the features of students' 

problem solving. Their summative accounts of students’ strategies and their attention to the 

mathematics in the words they used were understandably shallow. Several examples follow. 
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In Session 1, PMTs viewed a video (see Video 1 in Appendix C) in which students were 

given an animation of water being poured into a beaker. They were asked to describe the rate of 

change of the height of the water with respect to its volume (see Figure 4 on p. 80). The point of 

the task was to illuminate ideas related to the constant rate of change. After watching the video, 

PMT Mia commented, “It was not clear what [students Julian and Alyssa] were trying to 

accomplish.” She added that she was “confused for the first part of what they were discussing… 

[and was] unsure what they were actually trying to figure out.” These comments do not provide a 

response to the students’ thinking for which knowledge for teaching the derivative could have 

been enacted. This comment is characteristic of Mia’s novice noticing skills at the beginning of 

the experiment.  

Recall that I deliberately chose videos that offered opportunities for deep engagement 

with students’ mathematical thinking. Thus, due to the opportunities to notice that were offered 

to the PMTs, I argue that the length of time they spend describing their noticing is a measure of 

the depth of their engagement with mathematical thinking that can be observed in the videos, and 

thus an indication of their noticing capacities. Mia took only 38 seconds to describe what she had 

observed. Mia’s partner, Leah, had even less to say. She spoke for only six seconds when she 

commented that the students were “confusing themselves” and that she herself was “even getting 

more confused.” She remarked, “[Alyssa] did not even know the answer.” Such noticing is 

regarded as less sophisticated, because it is purely commentary and evaluative (van Es, 2011); it 

is an evaluation of whether the student was right or wrong and not a description of the thinking 

that Alyssa’s problem solving entailed. 

 At a similar depth of sophistication, Amelia (who partnered with Nova) shared, "I think a 

lot of the times I see this with students when they're trying to say something but can't find the 
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words, you know." This comment is meaningful in that it leverages Amelia’s familiarity with 

what students often do (i.e., her knowledge of content and students). At the same time, it does 

not describe what the students were discussing or the mathematical reasoning they demonstrated 

during problem solving. Doing so would have been regarded as more sophisticated, because it 

would have leveraged Amelia’s mathematical knowledge for teaching. 

Similarly, Nova, Amelia’s partner, limited her analysis to a description of a behavioral 

issue. She shared that she was confused by the students' representations: “I did get a bit confused 

with the diagrams, and I think they were confusing themselves, too.” Also, as she attended to the 

students’ thinking, her description could not be confirmed by the data: “They both felt free 

enough to talk to each other because [Alyssa] was saying, oh, like constant, and [Julian] was like 

constant.” Actually, both students did not agree on the constant rate of change. Alyssa identified 

a constant rate of change, while Julian identified a rate of change, which he said was “both 

increasing and decreasing.” Nova's noticing is therefore regarded as novice, given that while she 

did attend to aspects of students' thinking, her descriptions weren't based on evidence from the 

video.   

These comments indicate that when the PMTs entered the experiment, they could not 

draw on their knowledge for teaching the derivative, which would have enabled them to describe 

specific moments of student thinking during the design experiment. They are also indicative of 

PMTs struggles to describe the students' problem-solving in Session 1 when I invited to do so by 

the researcher. These results indicate that PMTs entered the experiment with novice abilities to 

describe student mathematical thinking. However, the quality of their describing improved over 

time, as I demonstrate next.  

Describing Students’ Problem-Solving Strategies 
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I now demonstrate that as a result of the discursive nature of the video-mediated 

discussions in the experiments, the quality of PMTs’ responses shifted from superficial 

descriptions of students’ mathematical activity to detailed and evidence-based descriptions of 

features of their problem solving. One instance in which a PMT’s response allows for a claim of 

such a shift was when Mia and Leah watched a video of students discussing the increasing rate 

of change in Session 2 (see video 2 in Appendix C). Mia commented, “Julian is more so talking 

about the water that's being poured from the pitcher. He's saying that the water is being poured at 

a constant speed. And therefore, he's equating that to the rate of change of height with respect to 

volume.” She also described Alyssa's approach to solving the problem, "She's talking about 

putting in the same amount of water each time. At the bottom, it would fill up a smaller height, 

but towards the top, it would fill up a larger height.” In both comments, Mia describes how both 

students deliberated about the problem. From them, I inferred that Mia drew on both knowledge 

of content and students and common content knowledge to describe what students did to solve 

the problem. Julian and Alyssa’s problem solving elicited their thinking about the concept of rate 

of change and provided Mia with an opportunity to assess it and then reflect on how they can be 

supported to learn that concept more meaningfully.  

In addition, Mia took 60 seconds to describe the students' work here, which is much 

longer than the time she took to do the same in Session 1. As she became more familiar with the 

process by which she was asked to engage with the students' problem-solving, it would appear 

that she became more attentive to their thinking. Compared to her comments from Session 1, 

which leveraged a much shallower depth of teacher knowledge, these comments show growth in 

Mia’s describing of the students’ discursive mathematical activity.  My conjecture is that the 

facilitated discussion of content knowledge related to the rate of change in Session 1 – and Mia’s 
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assimilation of a scheme for noticing first introduced in Session 1 – supported her changes in 

noticing student thinking by Session 2.  

A second instance that also occurred in this session offers evidence to justify the claim of 

shifts in the PMTs’ describing over time. Liam commented, “Like Alyssa said, the same amount 

of water will fill a different amount of height, essentially, as you go up, higher and higher… If I 

added another liter of water for the second time, the height would be a greater increase.” As 

Liam described Alyssa's approach, he was enacting both CCK (relative to an increasing rate of 

change) and KCS (relative to Alyssa’s thinking about that rate of change).  

A third instance comes from Nova in Session 4. She had watched a video in which a 

graph was given and the students were asked to approximate the instantaneous rate of change at 

time t = 4 as shown in Figure 12 below:  

Figure 12 

Screenshot of a “Limit Definition” Task 
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 Nova described the students' strategy, "At first, they were looking at time t = 3 and t = 5. 

Then, they were starting to say, stay as close to t = 4 as possible, so they chose values t = 3.9 

and t = 4.1." She added that they decided to use these values to get the “best approximation at t = 

4." Although Nova only attends to what the students said and did without providing her 

interpretations, her descriptions can be seen as a resource she draws on in an inference she makes 

later about the students' thinking. This inference entails a conclusion she made about the 

relationship between the students’ strategy and the thinking that must have informed it. At this 

moment, she describes students' observable actions with greater sophistication than she did in 

Session 1. Based on the examples I have provided, it appears that the participants' description of 

the students' work is more detailed in Session 2 than in Session 1. This suggests a change in their 

ability to analyze students' problem solving. A detailed account of the conditions that supported 

the participants to improve their description of students' work is presented in Chapter 5.  

Using Students' Own Words in Descriptions to Support Claims 

Instances in which the PMTs used the very same words and phrases as the students in the 

video to support their claims occurred during later sessions, indicating that the PMTs' 

sophistication in describing students' mathematical activity increased over time. [In using the 

students’ own words to support their interpretive claims, I acknowledge an overlap between 

describing and interpreting.] The PMTs describe what happened during problem solving using 

students' own words, which I find sophisticated because they used these words to make 

inferences about their understanding. Warrants for this claim of increased sophistication come 

from researchers who have conducted similar studies of noticing and argue that using evidence 

from a video to notice students’ thinking is a marker of noticing abilities that are more 

sophisticated than claims made that are lacking such referents (e.g., Sun & van Es, 2015, van Es, 
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2011).  As an example, in Session 6 the PMTs analyzed a video (see Video 6 in Appendix C) of 

two students, Julian and Alyssa, as they computed derivatives using slopes of tangent lines at 

various points on a graph (see Figure 9 on p. 84). In the video, Julian asked Alyssa questions 

about how to draw the tangent lines that Alyssa was unable to answer. Using Julian's own words, 

Nova invoked Julian's question (e.g., “What about if later on in the graph [the tangent] touches 

it?”) to inform and substantiate her interpretation that both students lacked some conceptual 

understanding of the role of slopes of tangent lines in relation to the derivative. By doing so, 

Nova provides a more vivid image of the students’ thinking as she uses their own words to 

describe and make inferences about their problem solving.  

  A second instance occurred in the same session, when (student) Julian drew multiple 

lines at Point A (see Figure 13 below) that (PMT) Amelia considered as she argued that Julian 

had some misunderstanding about differentiability at a cusp 

Figure 13 

The Artifact of Students’ Work on the Tangent Line Task 

 

To corroborate her claim, Amelia recalled the same question that Julian had asked his 

partner, Alyssa, “Don’t these other lines work, as well?” Mia, too, referred to Julian's questions 
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as he wondered about all different possible ways a line could hit Point A: “Why does it have to be 

just this horizontal line through [point] A? Why can't it be a diagonal line?” Mia used these to 

support her claim that Julian was considering alternative approaches to drawing a tangent line at 

Point A as he reasoned through the problem. I consider using students' own words to describe 

features of students’ problem solving to be vital to the construction of second-order models of 

mathematical thinking (Cobb & Steffe, 1983). Indeed, other researchers (Jacobs et al., 2010; van 

Es, 2011) also interpret these instances as a manifestation of an increased capacity to notice 

student thinking. In addition, the participants began describing students' work in Session 6 using 

the exact words they used in the video. This indicated their progress in describing students' 

problem solving as they continued to participate in the noticing activities.      

Learning to Notice through Interpreting  

In this section, I present an analysis which reveals that the PMTs moved beyond 

describing students’ words and actions to using those words and actions to interpret the thinking 

that underlies them. As one process in the four-element framework for learning to notice, I 

demonstrate that the PMTs used interpreting as a process to develop their capacity to model 

students' conceptions of mathematics related to the derivative.  

Using Analogies to Make Interpretations  

As PMTs’ interpretive activity became more sophisticated, they began to use analogical 

reasoning to support their analyses of students’ thinking. By analogical reasoning, I mean that 

the PMTs used situations analogous to the one in the given problem to support their claims or 

justify their arguments. Being able to provide a rate of change situation analogous to a given one 

is evidence of a conceptual understanding of the rate of change (Carlson et al., 2010), and thus I 

argue that this ability is tied to the sophistication of one’s capacity for interpreting. Given the 
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link between teacher knowledge and noticing, enacting concepts of mathematics or pedagogy to 

support inferences of students' thinking from their problem solving constitutes a new form of 

participation and thus a new moment of learning. An exemplar of this phenomenon follows.  

In Session 1, Mia enacted content knowledge of quantitative reasoning in a response 

about Julian’s reasoning: "It does not matter how fast the water is being poured, the height is still 

going to go up, and the volume is still going to go up, unless it's one of those problems where it's 

like you're pouring water into a pitcher that has a hole in it." Even though the analogous situation 

is not isomorphic to the given one, it works to validate the quality of her interpretation of Julian’s 

thinking. In addition, Mia then provided her own example of an analogous situation involving a 

constant rate of change of height with respect to volume: "If you had four cubic inches of volume 

and then you gained one inch of height, then for the next four cubic inches of volume you get [a 

total of] two inches of height." Here, Mia uses this analogy to further depict a mathematical 

situation of a constant rate of change. Earlier at the beginning of this session, Mia had 

demonstrated what I regard as novice noticing skills, she neither described nor interpreted the 

student thinking: “It was not clear what [Julian and Alyssa] were trying to accomplish.” At the 

same time, in contrast to her initial struggles to understand how the students were supposed to 

solve the problem in the beginning of the session, at this moment Mia leverages common content 

knowledge relevant to the problem situation. Using analogies to elucidate the substance of the 

problem and the students’ interpretations of it, it shows a change in Mia’s noticing abilities.  

Another example of analogical reasoning is found in Session 3. The PMTs were shown a 

picture of a ball in motion and were asked to approximate its instantaneous speed. As Amelia 

observed, Alyssa (student) had difficulty understanding the context of the problem. Alyssa had 

indicated that since the ball is not moving (as in the picture), there is no instantaneous speed. To 
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facilitate the understanding of the problem in context, Amelia used the analogy of a running 

person: “Think about you running fast. If someone took a picture when your body is moving 

forward, what happened while that photo was being taken?” She used that analogy to 

demonstrate that the picture shows a “snapshot of like, a time frame, but the ball [body] is 

moving.” By interpreting the problem through an analogy, in my view, may introduce a new 

perspective on the problem and better understand its context.  

The significance of this moment lies in the fact that it reflects a change in her 

participation as she interprets student thinking. This shift in participation (i.e., in noticing) is 

made evident from a situated perspective. The guided inquiry that I provided the PMTs (e.g., 

prompts and re-viewing the videos) enculturated norms that moved them along a trajectory of 

noticing. Analyses of the mediators of the PMTs’ learning are more fully provided in Chapter 5. 

Considering the Design of Tasks in the Interpretation of Elicited Thinking 

Although the focus of the PMTs’ analyses was on students’ problem solving, the PMTs 

also considered the design of the tasks that the students were solving to account for the 

mathematical thinking that the tasks made visible. According to the PMTs, task design can 

inform – and misinform – students' problem solving. Two exemplars of this phenomenon follow. 

In Session 1 (see Video 1 in Appendix C), Mia attended to the design of the mathematical 

task the students were solving and proposed that Julian was being misled by the animation that 

accompanies the problem statement. Instead of discussing how the height changes with volume 

as water is poured into a cup, Julian talked about how the height of water in the cup increases 

over time. Mia reasoned from her analysis of the animation that it probably accounted for 

Julian's misconception that time is a factor when considering how changes in height covary with 

changes in volume. Mia suggested that water being poured “faster” and then “slowly” into the 
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cup in the animation is “what made him start thinking about speed.” Relying on instances such as 

this one, I propose that interpretations of students’ thinking during problem solving should 

include considerations of the designs of the problems being solved, since it is the contingent 

strategies that students generate to solve these problems from which interpretations are made. 

This finding further establishes the value of assessing students’ interpretations of problem 

statements even before they embark on their problem solving. 

As a second example of PMTs’ considerations of task design in their interpretations, in 

Session 5, Gray and Liam watched students Kelly and Maria solve a rate of change problem 

using the limit definition of the derivative concept (see Video 5 in Appendix C). The students 

were asked to find the rate at which the side length of a square increases as its area increases at 

the point when the square’s area is 5 square units (see Figure 8 on p. 84). The students’ work, 

which the participants analyzed during their discussions, is shown in Figure 14 below.  

Figure 14 

Screenshot of the Students’ Work on a Rate of Change Problem 

 



TEACHER NOTICING AND KNOWLEDGE FOR TEACHING THE DERIVATIVE 
  

 118 
 

Gray considered the design of the task given to the students and wondered aloud, “Why 

would [the problem writers] label area, x? Like x is … x-axis.” Liam added, “Usually, when I see 

area, I just assume it's A. Like, that just make sense to me.” These comments were unprovoked 

by prompts or highlighting and therefore speak to the participants’ knowledge of students and 

curriculum as they suggested that using the variable x to represent area could confuse students. 

Next, Gray argued: “They shouldn't be using ∆𝐴, they should be using ∆𝑠. And then the same 

goes for like where the limit is. They have ∆𝐴 is approaching zero. So that's a mistake they 

made, I think.” Liam’s interpretation coincided with Gray’s, as he added the justification for 

Gray’s argument: “Because whatever you have in the parentheses (see the students’ work in 

Figure 14 above) should match whatever you have as your variable on the right side.” The 

students should have used “𝑓(𝐴), which is equal to √𝐴.” [The PMTs’ response to the identified 

students’ error is discussed in the following section.]  

I observed a number of noticings by Gray and Liam related to the students' problem 

solving in this session. In addition, while undirected, they also attended to the problem statement 

and discussed how the choice of variables might be the source of the students’ confusion. 

Contemplating sources of students’ thinking beyond their own mathematical activity may be a 

marker of Gray and Liam’s skills in noticing and designing learning activities for the students.  

Leveraging Content Knowledge to Construct Interpretations 

To construct their interpretations of students’ mathematical thinking, the participants 

drew on their content knowledge of concepts related to rate of change and change in a rate of 

change. As a case in point, in Session 1 I replayed a clip (from Video 1 in Appendix C) in which 

Alyssa claimed that for every 1 ml of water added to a cup, the height of water in the cup 

increases by the same amount. This covarying relationship constitutes a constant rate of change. 
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(PMT) Liam attended to her argument, leveraged his content knowledge to interpret it, and then 

made this comment in light of that interpretation: “The height changes as the volume changes… 

If I add more water… the volume increases, and the height of that cylinder, like where the water 

line level is, also increases.” Gray, Liam’s partner, drew a conclusion based on the same 

interpretation he made of Alyssa’s claim: “Changes of height and volume are a ratio of 1:1,” so 

the rate of change is constant. Reasoning quantitatively in this way is important in this problem, 

because in order to establish a rate of change, one needs to first determine the relevant quantities, 

then find out how they are changing, and then figure out the relationship between them (Carlson 

et al., 2010; Lobato & Siebert, 2002). Liam and Gray’s comments depict conceptions of 

quantitative and covariational reasoning that are essential to understanding the concept of the 

rate of change. Indeed, it was their grasp of this content knowledge that enabled them to notice 

Alyssa’s thinking as they interpreted and analyzed (Jacobs et al., 2010, van Es, 2011) the validity 

of her argument. 

Then, soon afterward, the participants applied their understanding of an increasing rate of 

change to assess Alyssa’s understanding. This occurs in Session 2 when Alyssa explains that 

because the beaker in the problem is narrowing at the top (see Figure 15 below), for equal 

amounts of water added to the beaker, the change in height of the water is increasing. In her 

drawing on the beaker as shown in Figure 15 below, the second vertical segment representing a 

change in height is longer than the first one.  

Figure 15 

Alyssa’s Illustration of an Increasing Rate of Change 
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approaches. Students (Kelly and Maria) were shown an animation of a football thrown and asked 

to graph its speed over time (see Video 7 in Appendix C). The students drew a rough sketch of 

what the speed-time graph should look like (see Figure 16 on p. 132), and then plotted a speed-

time graph together after discussing the problem (see Figure 17 on p. 142).  

Mia drew from her pedagogy and considered sketching a rough graph as “a great student 

strategy to start solving a problem.” Leveraging on her specialized content knowledge, Mia 

interpreted the students’ plotted speed-time graph: “Derivative starts increasing, and then it 

decreases [as the ball] comes to a full stop. And then it starts increasing again… when the ball is 

thrown.” An interpretation of the speed-time graph that the students plotted was essential to my 

understanding of her thinking, specifically how the height varies with time. Mia also sought to 

make sense of the students’ rough sketch (see Figure 16). Mia noted that the sketched graph was 

“increasing the whole time,” yet the ball stopped at some point. Her interpretation reveals a flaw 

in the graph (Figure 16) in that the ball stopped at some point and, therefore, the speed cannot be 

increasing continuously on that interval. Leah, her partner too focused on the behavior of the 

graph at time t = 4s: “The distance traveled is much more drastic. He let off the ball and now it’s 

traveling in the air.” Mia added that “the slope is positive…  It's a much steeper slope because 

the change in the distance traveled is greater than the change in time.” From these comments, 

Leah and Mia leveraged their mathematics to collaboratively interpret the distance-time graph 

drawn by the students, leading to the construction of fundamental mathematical idea, for 

example, “positive slopes” “increasing and decreasing derivatives” and so on.  

Liam too leveraged his content knowledge to interpret the students’ sketched graph and 

then described it as “less informative,” indicating that critical, explanatory features of the graph 

are missing when one constructs the graph in a point-by-point fashion. He noted that instead of 
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calculating slopes and then plotting them point by point, the students should have analyzed the 

distance-time graph more globally to "figure out where there is constant speed, where there is no 

speed, where there is a change in speed… just to visualize the whole slope, rather than just trying 

to figure out numbers that represent the slope." From Liam’s comments, we develop a 

conceptual understanding of how to plot a derivative graph, and thus indicating the way content 

knowledge was leveraged to develop mathematical ideas and problem-solving approaches.  

Identifying and Analyzing Misconceptions (in an Applied Context)  

In this section, I demonstrate how misconceptions revealed in students’ problem solving 

provided the PMTs with a unique opportunity to interpret student thinking, since these 

interpretations tended to be accompanied by conjectures made by the PMTs as to how those 

misunderstandings might have arisen. This excerpt comes from Session 3 when PMTs viewed 

a video in which the students, Julian and Alyssa, were shown a photo of Blue Jays’ pitcher 

Marcus Stroman (see Figure 6 on p. 81) and asked to approximate the speed of a pitched baseball 

at the instant the photo was taken.  

In the video, Alyssa reasoned that “It’s instantaneous. Like, there’s no time really 

happening [when the picture is taken] and, like, for speed… it’s like distance over time, but if we 

don’t have any time, we can’t really be moving.” When Julian shared that when the ball is 

pitched and “the batter’s swinging, there is movement and there is a change in time,” Alyssa 

responded to rebut Julian’s claim and argue that “We’re only seeing, like, [an] instantaneous 

moment.” I asked Mia what she could infer from Alyssa’s argument about her understanding of 

mathematics. In response, Mia suggested that Alyssa has a misconception about the meaning of 

instantaneous rate of change: “She's still confused with what instantaneous means. She thinks it 

has to be no time.” Leah, Mia’s partner, added, “If you divide [distance] by zero [in the formula, 
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speed = distance divided by time], you're not going to get an answer. It’s undefined.” In another 

session, Gray provided a similar interpretation of Alyssa’s reasoning: "She is assuming time is 

zero, which is wrong because there is a shutter speed. It doesn't take zero seconds for a camera to 

take a picture. And then, under that assumption, she assumes, well, if time is zero, then the ball is 

moving at zero mph, which we know is not true because we know a pitcher threw it. And balls 

don't float in the air." With these comments, Gray interprets Alyssa’s thinking and then leverages 

knowledge of cameras and baseball that he apparently believes “we” all know to justify that her 

reasoning is faulty. 

In these comments, the PMTs drew from their content knowledge to interpret Alyssa’s 

understanding of the concept of instantaneous rate of change in light of her efforts to determine 

the speed of a pitched baseball at the moment a photograph was taken. They also leveraged their 

everyday knowledge to challenge Alyssa’s claim that the ball’s instantaneous speed was zero 

because no time had passed. In doing so, they asserted that Alyssa must possess the common 

misconception that instantaneous speed is equivalent to no speed, because no time passes in an 

instant. Because the derivative is precisely an instantaneous rate of change, the PMTs’ 

interpretations of Alyssa’s thinking would be critical if they were her teacher. Thus, the 

knowledge they brought to their analyses demonstrates the value of the opportunity they were 

provided to notice a common misconception in order to develop their knowledge of content and 

students. In addition, this opportunity demonstrates the value of engaging PMTs in noticing 

student thinking in an applied context. The context of taking a picture of a moving ball (as time 

elapsed and the ball traveled some distance) was a productive venue for the students’ reasoning 

about well-connected derivative concepts. It also elicited quite a lot of everyday and 

mathematical thinking that the PMTs could use as they’re learning to construct reliable models 
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of students’ misconceptions that would make their instructional responses more viable. As an 

example, Amelia suggested using the analogy of a running person in order to help the students 

understand that in a snapshot of a moving body, time elapses and distance is covered. According 

to her, students need to understand that "the body moves while the photo is taken" and that "the 

distance and time taken cannot be zero." The understanding of these mathematical ideas is 

fundamental to the learning of the rate of change (covariation of quantities), as well as the 

broader subject of differential calculus. Thus, the PMTs’ activity in this instance suggests the 

educative value of doing noticing work in the context of students’ struggles in an applied 

problem-solving situation.  

Collaborative Analysis of Derivative Reasoning 

In this section, I depict the contribution that collaborative analysis afforded the PMTs as 

they did their noticing work in pairs. Although collaborative analysis is common to all of the 

vignettes presented here, its particular value has yet to be forefronted in these results. Thus, I 

share a prolonged vignette to demonstrate its value for the development of the PMTs’ 

noticing. This vignette was also chosen because the analysis is centered on the conceptual 

context of covariational reasoning, which researchers have argued is crucial for understanding 

the derivative as a rate of change (Carlson et al., 2010; Moore & Thompson, 2015). As the reader 

will observe, in this vignette the PMTs develop a shared understanding of covariational 

reasoning that they subsequently rely on to interpret the students’ actions and model their 

thinking.  

This vignette occurs in Session 4 as the PMTs are analyzing students’ problem solving on 

a task about the limit definition of the derivative. At this point in the students’ problem solving, 

they are given the task and the graph that appear in Figure 12 above. The task involves 
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approximating the rate of change in the amount of Ibuprofen in a person’s body at a particular 

point in time. In order to determine how Mia and Leah would interpret the graph, which would 

give me an indication of their capacity to engage the students’ graphical and covariational 

thinking, I asked them to look at it and describe how the two quantities are changing in relation 

to each other. Specifically, I asked them to describe how “the amount of Ibuprofen is changing 

with respect to time.” Mia responded, "As time increases, the amount of Ibuprofen in the body 

decreases. So, at time t = 0, it’s 400 mg, and then right away, it starts decreasing." Then, Mia 

further shared that the slope would be “negative.”  Leah agreed with Mia: “That’s right. That 

causes a negative correlation between the two [variables].” Then, Mia elaborated: “Yeah, one 

variable is increasing and the other variable is decreasing.” What this exchange reveals is that the 

intersubjective (Vygotsky, 1978) responses in the PMTs’ collaborate discourse yielded 

conceptual material (the covariational reasoning entailed in an interpretation of an indirect 

relationship) that they leveraged to construct a richer interpretation of the students’ problem 

solving than they may have achieved alone.   

In another episode with Liam and Gray, I also asked for their interpretation of the graph. 

Liam responded, “It is an exponential decay. From the moment you put Ibuprofen in the body, it 

is quickly deteriorating… The body is absorbing Ibuprofen over time.” He then added that the 

rate of change of Ibuprofen in the body was “decreasing.” I then asked, “So, is the rate of change 

positive or negative?” Liam said it was, "Negative, because you would always have a 

[decreasing] amount." Gray elaborated Liam’s analysis by referring to the interval on the graph 

from 𝑡 = 0 to 𝑡 = 4 as he demonstrated that the "Ibuprofen is getting lost out of the body faster 

and faster." Then Liam added that there is an "inverse relationship" between the amount of 

Ibuprofen and the time, because "the more time that has gone by, the lower amount of Ibuprofen 
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is in the body." These exchanges between Gray and Liam reveal what appears to be a shared 

understanding of the covariational relationship between the two quantities, the negative rate of 

change between them, and the representation of that negative relationship on the graph.   

In both Sessions 1 and 2, the pair of students in the video was given a task to determine 

how the height of water being poured into a container changes as its volume changes. Water is 

poured into a cylindrical beaker in Session 1 (see Figure 4 on p. 80), while in Session 2, the 

beaker narrows toward the top (see Figure 5 on p. 81). In response to Nova and Amelia’s own 

analyses of the rate of change in the narrowed beaker context of Session 2, I followed up: 

"You're saying the volume is increasing and the height is increasing. But the height is increasing 

even more rapidly as you increase volume because of what? Why?” In her response, Nova 

contrasted the task situations in Sessions 1 and 2: "I know since the original beaker was a 

cylinder [in Session 1], everything was fine because it's straight all the way through. But this one 

[in Session 2], since it does have like a wide part at the bottom and then it gets narrower, I do 

feel like it does have an impact on [the rate of change]." For Nova, this explains why, in Session 

1, the rate of change in height with respect to volume was constant, while in this session, it was 

increasing. Amelia then added a clarification: "Because of the shape of the beaker." This co-

constructed explanation conveys Nova and Amelia’s understanding of the differential impact of 

the shapes of the beakers on the rates of change in the two tasks. Moreover, it is grounded in a 

connection they made between the design of the tasks in Sessions 1 and 2 and the mathematics 

represented in the contrasting situations (constant rate of change for the cylinder, increasing rate 

of change for the narrowed beaker). This unprompted cross-task analysis undertaken by Nova 

and Amelia is sophisticated. It leverages their knowledge of content and curriculum (KCC, Ball 

et al., 2008) to interpret the students’ thinking in relation to the design of each task. More 
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importantly, I argue that it gets its particular power from the collaborative means by which it was 

constructed.  

The participants’ collaborative application of their quantitative and covariational 

reasoning to interpret graphs and evaluate the students' thinking during problem solving seemed 

to support their enactment of knowledge for teaching the derivative. The knowledge they each 

brought to their consideration of the shape of the beaker and its relation to the rate of change in 

the height of water with respect to volume enabled what at this point in the experiment was an 

extraordinary analysis of the students’ problem solving. Other participants brought other 

knowledge to their analyses, as well, including ideas about the connection between covarying 

quantities and their representation as slope. Although I emphasize the collaborative analysis of 

student thinking here, I would be remiss if I didn’t also emphasize that their content knowledge 

played a crucial role in their discussions of the underlying mathematics ideas and informed 

meaningful assessments and interpretations of student thinking. 

Making Sense of Students’ Struggles in Problem Solving  

 This section presents one example of an opportunity provided to the PMTs to make sense 

of struggles that the students encountered in their problem solving. In this example, we observe a 

variety of ways that the PMTs interpreted students’ thinking and made conjectures about how 

that thinking might account for the struggles they experienced as they sought to solve the 

problem posed to them.  

 In Session 6, the participants discussed ideas related to secant and tangent lines as they 

watched a video of students solving a problem (see Video 6 in Appendix C) where these ideas 

were central. They discussed the students’ understanding of a tangent line through the students’ 
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discourse and the sketches they made of tangent lines on a graph. Figure 13 above (on page 110) 

shows the students’ work at the conclusion of the video. 

 At one point in the discussion, Mia considered the students’ definition of a tangent line: 

“A tangent line touches a graph at only one point.” She said that the students “understand that the 

derivative is the slope of tangent line, but they don’t understand exactly how to draw tangent 

lines” and they seem to be “confused.” She elaborated on her assessment by suggesting that the 

students seemed not to know whether they could “extend the tangent line and hit other points of 

the graph” or if the “tangent line could intersect the graph” at any other point. Leah, her partner, 

agreed with Mia and followed up: “But I don't think they would be able to then answer any 

further questions about how a tangent line relates to the derivative, and how the slope of the 

tangent line relates to the derivative.” Thus, both Mia and Leah inferred that the students were 

unclear about what a tangent line is and how it is related to the derivative.  

Next, I replayed a video segment in which the students were drawing tangent lines at 

Point A on the graph (see Figure 13 above) in order to focus the PMTs’ noticing on Julian’s 

thinking. Mia responded, "I just remembered something about derivatives and tangent lines that I 

don't think they know. You can only draw a tangent line on a curve. There is no derivative at a 

sharp point. That’s why they’re struggling with drawing a tangent line at Point A” (emphasis 

added). Mia’s comment emphasizes the value of this study’s use of the dynamic perspective on 

knowing. One could assess Mia’s knowledge for teaching the derivative through some sort of 

decontextualized, summative assessment, but it was her in-the-moment enactment of knowledge 

in response to student interactions that revealed the pedagogical power of her knowing as she 

sought to make sense of the students’ problem solving. Making sense of those struggles 

leveraged multiple forms of knowledge for teaching the derivative, because it required that Mia 
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consider how the students’ problem solving could have gone better than it actually did. Thus, I 

argue that Mia’s noticing at this moment is at least somewhat predictive of what her noticing 

could look like in the “blooming, buzzing confusion” (Brown, 1992, p. 141) of an actual 

classroom.  

Moving on, Mia commented on some of the wonderings Julian posed: “You know, 

asking, ‘Why does it have to be just this horizontal line through [point] A? Why can't it be a 

diagonal line?’” Mia seems to interpret Julian’s questions as his efforts to justify and validate his 

reasoning, which she considers a crucial process in problem solving. She says “Julian is thinking 

about all possible ways a line could be drawn at point A. Even though his thinking is incorrect, 

mathematically, I think it’s good that he’s analyzing the problem and trying to think of different 

approaches.” In addition, her appreciation for Julian’s “why” questions may also indicate her 

own affinity for an inquiry-based learning (Franke & Kazemi, 2001), a form of pedagogy that 

supports students’ learning as being driven by their own knowledge and curiosity.  

In a similar moment in another session, Nova also considered Julian’s questions: “But 

what is a tangent line?” “What about if later on in the graph it touches it [another point]?” To 

clarify, Julian is interrogating Alyssa’s definition of a tangent line as one that “touches a curve at 

only one point” and wondering whether a line would still be considered a tangent line if it were 

tangent to a curve at more than one point. Nova pointed out that Alyssa was unable respond to 

these questions and concluded that something was missing from Alyssa’s understanding of a 

tangent line: "Drawing lines doesn't mean she knows why she's drawing them." For Nova, 

Julian’s questions were "valid… A teacher would have to explain [them] so that misconceptions 

aren't there." Nova seems to believe that the Julian's misconceptions and Alyssa’s inability to 
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respond to them may stem from derivative knowledge that is entirely rote and procedural (i.e., 

knowing how to draw a tangent line but not knowing “why she’s drawing them.”).   

Gray and Liam noticed flaws in the students’ definition of a tangent line, as well. Gray 

commented, "The first thing they did is, obviously, define a tangent line. But they did this 

incorrectly. And then they go ahead and experiment with that definition to see what their 

drawings of tangent lines would look like." Realizing that the students’ conception of a tangent 

line was incomplete, Gray added that in addition to understanding that a tangent line touches a 

graph at only one point, as it was defined by the students, the students should also understand 

that a tangent line "represents slope at a specific point of the graph." Liam, Gray’s partner, had 

the impression that the students "weren't quite sure how to draw a tangent line." Gray and Liam 

not only described what the students did, which is a viable approach for gaining insights into 

student thinking, they went further to infer from the students' work (of sketching tangent lines) 

that they may have struggled because of the way they defined a tangent line. This was the case 

for Mia, Leah, and Nova, as well. The quality of their noticings of the students’ thinking must 

have been sufficiently sophisticated to enable them to make conjectures about the source of the 

students’ struggles by leveraging common and specialized content knowledge and knowledge of 

content and (its relationship to) teaching. Understanding why students solve problems in a 

certain way provides PMTs with an opportunity to find out why they think in a certain way. This 

involves knowing what students do or do not understand. Through such understanding, as I 

demonstrate in Chapter 5, PMTs were able to orchestrate instruction that would eliminate the 

misconceptions identified and augment the students' understanding of specific concepts, for 

example, the differentiability at a cusp. 

Making Inferences about Students’ Thinking from (Multiple) Artifacts of their Work 
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  In this section, I discuss how PMTs analyzed artifacts of students’ work in order to infer 

their understanding of mathematics. I provide examples from the data to demonstrate how 

artifacts can provide a site in which PMTs develop their noticing skills through their interpreting 

activity.  

In Session 7, PMTs viewed and analyzed a video of students (Kelly and Maria) exploring 

derivative ideas as they constructed and interpreted graphs relating the distance, speed, and time 

of a thrown football. For their first task, they analyzed how the vertical distance (height) of the 

football changed over time and sketched the speed-time graph shown in Figure 16 below.  

Figure 16 

Kelly and Maria’s Sketch of Speed-Time Graph 

 

The PMTs’ first move was to attend to and interpret the graph. Mia noted that it indicated 

that the ball was “increasing [in height] the whole time,” yet the ball stopped at some point (as 

shown in Figure 10 on page 85), which means that the speed cannot be increasing continuously 

as the sketch graph indicates. This is the first instance in which Mia makes an inference about a 

student’s thinking from artifacts of their work, as opposed to their in-the-moment discourse. It 

was a first for Nova, as well. She noted that the sketched graph “looked similar to the [distance-

time] graph that was presented to them” earlier (in Figure 10 on p. 85) and concluded that the 

students must have “confused” them. This comment is significant, because it is an indication that 

Nova's ability to notice features the capacity to iteratively construct models of students’ thinking 
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from interpretations based on artifacts that are both inside and outside of her immediate 

perceptual awareness. Although it was not my intention to encourage the PMTs to consider 

multiple moments in students’ problem solving in order to develop more robust models of their 

thinking, Nova’s spontaneous act of doing so convinced me that the opportunities for sustained 

noticing over time (as opposed to making inferences from a single statement or action) would be 

useful for others, as well. Indeed, Gray and Liam exploited such an opportunity later in this 

session when their sustained attention to Kelly and Maria’s discourse about a speed-time graph 

enabled them to make sense of how the students understood the relationship between 

instantaneous rate of change, the slope of a tangent line, and the derivative. This moment is 

presented next. 

Gray’s first comment after viewing the video was to suggest that “[Kelly and Maria] 

seem a bit confused.” He noted that they did not deliberate about how the speed-time graph 

should look by considering pertinent questions, such as, “Where should it be decreasing? Where 

should it be positive? Where should it be on the x-axis?” Liam’s attention was similarly placed. 

He described the students’ sketched graph as “less informative,” meaning that critical features of 

the graph were missing. He suggested that a pointwise graphing approach could have helped the 

students determine how the plotted speed-time graph could foreground how the quantities of 

speed and time are changing. This, I argue, is a rather sophisticated act of noticing, as it 

leverages intertwined knowledge about covarying quantities, discrete and continuous change, 

and their representations in graphing contexts in order to interpret (and respond to) gaps in 

students’ thinking solely from artifacts of their work.  
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This concludes the presentation of findings related to the second of four kinds of 

opportunities for PMTs to learn how to notice student thinking, which is through interpreting.  

Next, I present findings related to the third kind of opportunity, which is through responding.  

Learning to Notice through Responding 

As demonstrated in the previous sections, as they described and interpreted students’ 

mathematical activity, the PMTs developed new understandings of their mathematics, which 

were integrated into their own knowledge, including their specialized content knowledge and 

their knowledge of content and student. As Wilson et al. (2011) propose, this restructured 

knowledge (p. 58) subsequently becomes available to them “in the ways [they] anticipate, 

interpret, and respond” (p. 58) to students’ mathematical activity. In this section, I will show how 

the PMTs’ enactments of their restructured knowledge enabled them to offer viable suggestions 

for how to further advance the students’ derivative understandings by responding to their in-the-

moment interpretations of the students’ current understanding. I will also emphasize that in 

contrast to the PMTs’ responses earlier in the experiment, which were rather superficial and 

based on general principles of teaching, these responses are relatively sophisticated and relevant 

to the specific content under consideration. As such, they offer evidence of the development of 

PMTs’ noticing, because they are grounded in students’ understandings of the derivative.  

Superficial Instructional Responses 

  The responses provided by PMTs in the first and second sessions of the experiment were 

generic and lacking in connection to student thinking. These I refer to as superficial instructional 

responses (SIRs). However, instances of SIRs diminished over time as the PMTs progressively 

learned to model the students’ understandings of the derivative and to make pedagogical 

decisions about how to respond them. Next, I present some exemplars of superficial instructional 
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responses and contrast them with later responses, which demonstrate the PMTs’ improvement in 

responding to student thinking over time.  

In Session 1, PMTs watched a problem-solving video of students illuminating ideas 

related to the constant rate of change and discussed what they noticed about the students’ 

thinking. The students were examining how the height of water in a cup changed with volume as 

water was being poured into the cup (see Figure 4 on p. 81). Leah noted that the students focused 

on the “speed of water” rather than how height changed with volume and inferred from their 

focus that the students may not have understood the problem. She suggested that if she were their 

teacher, she would ask them to “watch the animation again to understand the problem.” Gray 

said he would go back to the problem, underline the statement "height with respect to volume," 

and then ask the student to "read the question again." He explained that these moves could 

prompt the students to think about height and volume as the covarying quantities without 

considering time. Amelia said she would ask them to look at the question again: "I would say, 

let’s go back to our question and see if there’s maybe something we’re missing. Is there 

something we’re forgetting about?” She added that the intent of these questions is to get the 

students to come to the realization, "Oh, we have not talked about volume." I regard these 

responses as superficial because they direct the students to repeat what they’ve already done 

rather than helping them move their thinking forward. Further, these moves are generic; they are 

not responsive to student thinking.  

Other instances of superficial responding arose in Session 2. In this session, the PMTs 

watched a video of students solving a problem related to an increasing rate of change in the 

context of water being poured into a flask (see Video 2 in Appendix C). The students were asked 

to determine how the height of the water changed with respect to volume. In the video, Alyssa 
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explained, "Water would fill up more in the beaker because it is getting narrower at the top." 

Julian (her partner) took her statements to mean that "there is less volume to fill at the top" and 

that "volume is decreasing" as the beaker becomes narrower. To assess the quality of PMTs’ 

responsive noticing, I asked Gray and Liam how they might respond to Julian’s claim that the 

rate of change of height with respect to volume is “decreasing” in order to shift his focus to the 

quantities called for in the task. Liam commented, “I would kind of, like, reiterate the question, 

especially I would be like, so does that mean the rate of change of height with respect to volume 

is increasing or decreasing?” Liam added that his reasoning for asking this question would be to 

assess Julian’s interpretation of the problem and to determine which quantities Julian was 

referring to when he determined that the rate of change of those two quantities is “decreasing.” I 

would deem Liam’s instructional move as superficial because, rather than exploring Julian's 

elicited understanding, he suggested reiterating the question. His idea that "volume decreases" as 

more water is added to the beaker, for instance, would have been responsive to Julian’s thinking 

and therefore worth exploring. Taking into account that these superficial responses were elicited 

in earlier Sessions 1 and 2, I infer that PMTs had limited noticing skills when they began the 

experiments. This finding is consistent with findings from other research on noticing (e.g., 

Sherin & van Es, 2002; Sun & van Es, 2015).  

Conceptual Instructional Responses 

 I give the designation, Conceptual Instructional Responses (CIRs), to responding 

comments that are based on the models PMTs have constructed of the students’ understanding of 

a concept associated with the derivative. In other words, CIRs are teaching decisions specific to a 

particular concept. Sánchez-Matamoros et al. (2015) use conceptual actions in a similar sense, as 
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pedagogical moves that PMTs suggested would augment students’ learning and/or resolve their 

misconceptions.  

 CIRs were given by PMTs in every one of their eight sessions. And when PMT provided 

a CIR, they coupled it with a rationale for how it could potentially support the students’ learning. 

This added rationale is what’s missing from SIRs. Contrary to SIRs, CIRs address students’ 

thinking as it is interpreted by the PMTs and foreground the meanings of mathematical concepts. 

Next, I present exemplars of CIRs from the data to demonstrate how PMTs learned to notice 

students’ thinking about a concept associated with the derivative by responding to the students’ 

thinking about that concept. 

CIRs Related to the Rate of Change. In the video viewed in Session 1, students Julian 

and Alyssa were given a task to determine how the height of water being poured into a container 

changes as its volume changes. Rather than considering these covarying quantities, Julian instead 

considered how the volume of water changed over time. The PMTs noticed this in his discourse 

and inferred from it that Julian was focused on the speed at which water was being poured. So, I 

asked the participants about the instructional strategies they would use to support Julian to reason 

covariationally with height and volume if he was their student. CIRs emerged in response, which 

I present next.  

Amelia replied, “I would say something like, I see what you're saying: the water is being 

poured in at a constant rate. How does that impact how the volume is changing? Or what does 

that tell us about the height? What do we know about the volume?” Amelia suggested that these 

questions might shift Julian’s attention to how the intended quantities are changing in relation to 

each other. The instructional response suggested by Amelia’s partner, Nova, was similar: “I 

would probably say, ‘I see that the pour [of] water into the beaker, but we have to look at what is 
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happening in the beaker’… I think I would probably just get his attention closer to the beaker, 

because I think he's just looking at the water.” Both Amelia and Nova’s responses accounted for 

Julian’s thinking as well as the tasks’ intended quantities involved in a rate of change. This is 

what makes their responses conceptual instructional ones. Next, I provide a second CIR related 

to the rate of change. In this instance, the CIR is related to the instantaneous rate of change and a 

PMT’s response entails a concretizing experience for that abstract concept.  

In Session 3, the PMTs viewed the video of students solving a problem centered on ideas 

about the instantaneous rate of change. In the video, two students, Julian and Alyssa, were shown 

a photo of Blue Jays’ pitcher Marcus Stroman (see Video 3 in Appendix C) and asked to 

approximate the speed of the baseball over the small interval of time (1/2000 sec) in which the 

picture was taken. At this moment in the video, Alyssa asserted that the time it took for the 

camera to take the photo was zero, meaning that no time passed at the instant the photo was 

taken. Apparently, Alyssa has the common misconception that a measure of instantaneous speed 

requires that time is zero rather than that the elapsed time approaches zero (i.e., its limit is zero; 

it tends to zero).  

Gray interpreted Alyssa’s reasoning as follows: "She is assuming time is zero… And 

then, under that assumption, she assumes, well, if time is zero, then the ball is moving at zero 

mph, which we know is not true because we know a pitcher threw it. And balls don't float in the 

air.” I asked Gray and Liam, "As a teacher, and having noticed Alyssa’s mistake about the time 

duration, what would you do?" Gray said he would ask her to, "Take out your phone and take a 

picture." Then he would ask, "how fast that picture just happened. Is it zero seconds? … She'd 

be, like, well, I'm assuming it's not zero." Gray's responsive noticing entailed the enactment of 

specialized content knowledge to help Alyssa recognize (or re-cognize) her conclusion about the 
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duration of time at a particular moment. It also offered evidence of Gray’s capacity to orchestrate 

an experientially real (Gravemeijer & Doorman, 1999, p.11), conceptually relevant instructional 

intervention in response to a student's misconception.  

In a separate episode, Amelia engaged in analogical reasoning to provide a similar 

response. Whereas Gray had contextualized instantaneous rate of change in the situation of using 

a phone to take a picture, Amelia suggested the context of a person running, which is analogous 

to the thrown baseball context: "I would say, think about you running fast. If someone took a 

picture when your body is moving forward, what happened while that photo was being taken?" 

She added, "Hopefully, if she is like, ‘my body would keep going forward,’ [I would ask her if it 

would] be reasonable to assume that this ball is still going, and even though we're just taking a 

snapshot of like, a time frame, that the ball is still moving, there is motion there. We just don't 

see [that] in a snapshot of it.” Like Gray, Amelia suggested a conceptually relevant instructional 

intervention in response to Alyssa’s misconception that she apparently hypothesized would be 

more experientially real to Alyssa than the thrown baseball situation. Thus, in this instance, both 

Gray and Amelia enacted conceptual instructional responses that demarcate a noticing practice 

entailing capacities to describe and interpret students’ thinking, and then provide a conceptually 

relevant, experientially real instructional response to that thinking that aims to further support the 

students’ learning. 

CIRs Related to the Derivative as the Slope of a Tangent Line. In this section I 

demonstrate how PMTs provided CIRs based on their interpretation of students’ understanding 

of the derivative at a point as the slope of a tangent line. In this instance, the PMTs observed that 

the students had difficulty defining a tangent line and sketching them at various points on the 
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graph. In response to their observations, the PMTs were given the opportunity to determine an 

intervention to support the students’ learning of these concepts.  

In Session 6, the PMTs watched Julian and Alyssa computing derivatives using slopes of 

tangent lines (see Video 6 in Appendix C). As the students sketched tangent lines at various 

points on a graph (see Figure 13 on p. 111), their thinking about the meaning of a tangent line 

was elicited. I asked Mia and Leah how they would help the students understand that because the 

graph contains a cusp at Point A, a tangent line cannot be drawn there, which means that the 

derivative – or the slope of a tangent line at Point A – cannot be determined. Leah suggested 

asking the students, "If you can't draw a tangent line at Point A, or if it's not working out the way 

you think a tangent line should, what do you think that might imply about the derivative?" She 

proposed that this question could help the students realize what it means for the differentiability 

of a function at a point if a tangent line cannot be drawn to its graph at that point.  

At this point in the presentation of PMTs’ enactments of conceptually relevant responses 

to the students’ mathematical thinking, it’s worth pausing to offer a brief commentary on the 

responsive moves presented thus far. What’s worth noting is that the PMTs’ responses feature 

instructional moves that don’t involve telling students what to do (e.g., telling them to reason 

with other quantities, showing them how to evaluate a difference quotient, or providing them 

with an alternate problem-solving strategy). Instead, their responses are of a scaffolding nature 

that resonates with an inquiry pedagogy. This is more likely due to the instruction they’ve 

experienced in their coursework (where constructivist-oriented teaching is endorsed) than their 

experiences in the teaching experiment. The point is, responses of this kind are essential to a 

practice of teacher noticing if one takes the perspective that learning through inquiry develops 

mathematical knowledge that is both generative (Carpenter & Lehrer, 1999; Greeno, 1988) and 
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connected (Hiebert & Carpenter, 1992). If it had been the case that the PMTs’ proposals for 

responsive instructional moves had lacked this quality, I would have accounted for its absence in 

my facilitation schemes (e.g., prompting, highlighting).  

CIRs Related to the Graphical Representation of Instantaneous Speed. In Session 7, 

the PMTs watched a video in which students, Kelly and Maria, were shown an animation of a 

football being thrown as its corresponding graph (distance over time) was traced. They were 

asked to graph its speed over time (see Figure 10 on p. 86), which Kelly realized was “the 

derivative” graph. At this point, Kelly and Maria were constructing the graph by finding the 

speed of the football at times t = 1, 2, 3, 4, and 5, and then plotting those speeds as points with 

which to complete the graph (see Figure 17 below). To approximate the speed at time t = 1, they 

found the change in distance over what they referred to as a “small time interval” from t = 0.5 to 

t = 1.5. This gave them an average speed of 1 over that interval. They were aware that their 

calculations gave an average speed at a particular point, but they say they “don’t know about the 

points in between.” This statement (as well as their facial expressions) suggests that they believe 

their plotted points for speed are correct (they are indeed values of the derivative), but they’re 

concerned that their graph might not be accurate over the entire domain. 

Figure 17 

Speed-Time Graph Plotted by Students and Their Work 
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Mia expressed concern over how Kelly and Maria constructed their graph: “They’re 

assuming that because 1 is the [speed] between 0.5 and 1.5, they'll just put the derivative there.” 

She emphasized that the speed is “over the whole interval” from 0.5 and 1.5, not just at the point 

t = 1. Leah made the same observation and regarded this as an error in the students’ work. Then 

she proposed a CIR. She suggested that students would develop a “better idea of [speed] if they 

picked [shorter intervals] of distance and time.” I inferred from this instructional response that 

Leah believes that if Kelly and Maria had calculated the football’s speed over increasingly 

shorter time intervals, they would have seen that the average speed over those intervals comes to 

approximate the instantaneous speed, which is what they were struggling to represent.  

Amelia and Nova noticed these struggles and were aware of the students’ concerns about 

the behavior of the graph between their plotted points. Nova commented that the students "were 

supposed to find the derivative at a point." Yet, instead of finding the instantaneous speed, "they 

were thinking about the average speed." Then Amelia added, "[Alyssa] does say it later, ‘We 

have three points, do we actually know what's happening in between each of these points?’” 
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Nova said that if she were their teacher, she would "bring them back to that." In order to find 

better approximations of the instantaneous rate of a change at a point, she would offer the same 

suggestion that Leah offered, which is that they use smaller intervals. The ones the students are 

currently using are "too large," Nova added.  

Mia, Leah, Amelia, and Nova attended to and interpreted the students’ thinking about the 

average and instantaneous rates of change as they sought to construct a derivative, speed-time 

graph from a given distance-time graph. They then offered CIRs (leveraging specialized content 

knowledge and knowledge of content and students) to respond to the struggles the students were 

experiencing as they contemplated how to graphically represent instantaneous speed over an 

interval, not just at a finite set of points. These suggestions are responsive to the students’ 

thinking about the instantaneous rate of change. Moreover, they build from the graphing 

approach already taken by the two students, which means they’re accessible to the students and 

likely to be taken up by them.  

 Gray and Liam’s interpretations were somewhat more sophisticated, and this enabled 

them to propose a CIR that was even more responsive to the students’ mathematics. Gray 

attended to the students’ initial sketch of a speed-time graph (see Figure 16) and lamented the 

fact that they hardly deliberated about the shape of the graph: “Where should it be decreasing? 

Where should it be positive? Where should it be on the x-axis?” In response, he suggested an 

instructional approach that might meet the students where they are, one that is "less numerical 

and more just visual… [By] sketching, like looking at the slope." In other words, rather than 

constructing the graph point-wise by computing several values of the speed, Gray thought it 

would be useful for Kelly and Maria to take a more global approach by investigating how the 

slope of the graph changes over time. Liam agreed. He suggests that a more global approach to 
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constructing the graph by "figur[ing] out where there is constant speed, where there is no speed, 

where there is a change in speed” would give them the “visual” impression of the graph that a 

collection of points could not. Liam also suggested that the students could have “drawn tangent 

lines” on the distance-time graph to visualize the changing speed over time.  

According to Liam and Gray, and in contrast to the CIRs provided by the other PMTs, a 

pointwise sketch of the speed-time graph can only provide values of speed at certain points; it 

cannot convey the covarying relationship between speed and time the way that the array of 

tangent lines could. These comments leverage Gray and Liam’s common content knowledge to 

assess the students’ thinking. Then they leverage specialized content knowledge and knowledge 

of content and teaching to suggest a method that any student could use when sketching a 

derivative graph.  

As a final point, what’s unique about Gray’s noticing in this instance is that he interpreted 

the students’ work and then responded, yet he did not feel the need to describe the work before 

doing so. This finding could indicate that as PMTs develop noticing expertise, they may skip 

over the phase of describing students’ actions when doing this work in collaboration with others.  

Learning to Notice through Comparing and Contrasting 

 In his section, I demonstrate how the PMTs developed their capacity to notice by 

comparing and contrasting multiple students’ mathematical thinking as they sought to respond 

with instructional moves that they hypothesized would help one or more of those students 

resolve their misconception or learn the derivative concept more meaningfully.  

In Session 2, as the students were contemplating the rate of change in the height of water 

in a beaker with respect to its increasing volume (see Video 2 in Appendix C), Julian argued that 

the flow of water into the beaker is constant, so the rate of change of height with respect to 
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volume is constant, as well. Mia attended to his thinking and thought it would be worthwhile to 

compare it to how he was reasoning in Session 1. She commented, "I think there is a similarity to 

the last video clip we watched. Julian is focused on how fast the water is being poured." This 

comment refers to Julian's struggle to understand the rates of change in both Sessions 1 and 2. In 

Session 1, Julian considered changes in the height of water with respect to time instead of 

volume. In Session 2, Julian confuses an increasing rate of change with a constant rate. Mia 

further contrasted his thinking with Alyssa’s: “Alyssa was trying to bring [Julian’s] attention 

more to height versus volume… to determine exactly what it is they are trying to figure out." 

From her comment, I infer from this comment that Alyssa understood that the question called for 

finding the relationship between height and volume. Mia’s attention to the particulars of Julian’s 

thinking across multiple sessions, her interpretations of it, and her comparisons of it to what she 

had seen earlier enabled her to document changes in Julian’s thinking over time and discern a 

trajectory of his mathematical thinking. As a result of comparing and contrasting the work of the 

two students (Julian and Alyssa), Mia constructed a more robust model of their thinking that 

could form the basis of orchestrating instruction that meets the students’ specific needs.  

At another moment, in Session 3, after the PMTs watched a video in which the students 

were approximating the speed of a baseball when its photo was taken (see Figure 6 on p. 83), 

they noticed that the students had “two contradicting ideas.” Liam explained, “Alyssa is like, oh, 

if I look at just this moment, at this pitcher, nothing is happening. The ball is not moving. … 

whereas Julian is like, well, if I was at a baseball game, and I saw this happening, at that point, 

the ball is still moving." With these comments, Liam explains that Julian and Alyssa reasoned 

about the problem differently, and these reasonings are what he relied on to assess and contrast 

their thinking. Contrasting Julian and Alyssa’s ideas seemed to be useful to Liam as he assessed 
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how each of the students approached and solved the problem differently. Although the explicit 

link to a claim about the development of Liam’s noticing is absent here, given the link between 

teacher knowledge and noticing, I would argue that contrasting two students’ thinking leverages 

Liam’s knowledge and thereby provides an opportunity to develop it. Then, any subsequent act 

of noticing that leverages this newly developed knowledge is an act that is enhanced by that 

development. 

I replayed a video segment that I deemed worthwhile for offering the PMTs an 

opportunity to notice the contrast between two students’ thinking. In the short video segment, 

Julian responded to Alyssa’s argument that the time the ball traveled is zero by explaining to her 

that since the ball was in midair when the photo was taken, it must have covered some distance 

in that moment and therefore some time. Mia then described and interpreted Julian's thinking: 

"This example of a baseball is a real-world example. [Julian] was able to conceptualize and be 

like, well, I know that the ball has to be moving. It's in midair. From knowing that about the 

baseball, he was able to work towards a more productive solution." Leah followed up on Mia’s 

interpretation of Julian’s thinking: "And [Julian] was convincing [Alyssa], trying to explain why 

time couldn't be zero… because it's a moving ball." These comments indicate that Mia and Leah 

realized that it was Julian’s contextualization of the problem that enabled him to conclude that 

since the ball was in motion, the time it took to travel cannot be zero. They also provide a 

contrast between his thinking and Alyssa’s claim that the ball’s travel time is zero. Apparently, 

contrasting students’ thinking can offer insights into their reasoning that can support a teacher as 

they construct models of their students’ mathematical thinking.  

Conclusion to Chapter 4 
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Through the analysis presented here, this chapter responds to Research Question 1, which 

is concerned with the development of teacher knowledge related to noticing students' 

mathematical thinking in the derivative domain through video-mediated professional 

learning. The research intention was to discern how PMTs develop their skills of noticing student 

thinking by analyzing problem-solving videos in a facilitated, situated, social learning 

environment. Over eight design experiment sessions, as the PMTs viewed these videos and were 

supported to notice the problem solvers’ thinking, I examined their acts of noticing and inferred 

the teacher knowledge that was enacted as they attend, interpret, and respond to students’ 

thinking. My purpose in doing so was to construct a trajectory of their learning to notice over the 

course of the experiment. I concluded from that analysis that the PMTs’ noticing became more 

sophisticated over time, and this conclusion prepared me to propose a theoretical model of 

teachers’ learning to notice through their participation in video-mediated professional learning. I 

call this model the four-element framework of learning to notice. The four elements are PMTs’ 

opportunities to develop their noticing through describing, interpreting, responding, and 

comparing and contrasting students’ mathematical thinking in the domain of the derivative.  

The process of describing involves explaining, recounting, or detailing aspects of 

students' mathematical activity. As PMTs describe elements of students' problem solving, they 

orient themselves to students’ discourse (e.g., verbal, gestural, and written expressions), and 

these descriptions of their observations provide the source material for their subsequent 

interpretations of that discourse. Thereafter, they are prepared to ponder instructional responses 

to support the students' learning.  

In the earlier sessions of the design experiment, PMTs tended to demonstrate novice 

skills in describing student thinking. Their responses were often superficial and evaluative and 
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not contingent on the idiosyncratic heuristic and conceptual particulars of the students’ in-the-

moment actions. However, it wasn’t long before they began to draw on their common and 

specialized content knowledge and their knowledge of content and students to enrich their 

descriptions of students’ strategies using the students’ own words to support their 

claims. Eventually, some of the PMTs no longer felt the need to describe what they noticed about 

the students’ thinking and skipped ahead to offering their interpretations of it.  

Interpreting is the second component in the four-element model of learning to notice. In 

order to make sense of the students' mathematical work, the PMTs relied on their descriptions to 

interpret the meanings of the students’ actions. Guided by a disposition to wonder what the 

students would have to know or not know in order to act as they did, the PMTs sought to 

determine why they were solving the problem (or not making progress) as they were.  

At the beginning of the experiment, PMTs were more likely to misinterpret what the 

students were thinking. Then, supported by the researchers’ prompting and highlighting, they 

began taking more into account in order to construct more viable interpretations. They 

considered the design of the tasks that were posed, the requisite mathematical knowledge for 

solving them, the students’ strategies, and the mis/conceptions of that knowledge that were 

elicited as they carried out their problem solving. Leveraging multiple facets of their 

mathematical knowledge for teaching (MKT) in the derivative domain enabled the PMTs to 

construct those more robust interpretations. Importantly, the PMTs’ use of these facets of 

knowledge to interpret student thinking demonstrated the interconnectedness of the enactments 

of knowledge for teaching and the development of noticing skills. In addition, as they integrated 

the students’ understandings into their own understandings, they became better prepared to 

propose an instructional response to further support the students’ learning of the derivative 
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concepts that were central to the problem they were solving. That their proposals were 

conceptually relevant to these concepts indicates the PMTs’ increasing proficiency in noticing. 

Indeed, the responses they provided earlier in the experiment were not contingent on their 

emerging understandings of the students' mathematics. Rather, they were based on general 

principles of teaching and learning. Thus, I gave the label “Superficial Instructional Responses 

(SIRs)” to those proposals. 

 Soon after, the PMTs’ responses started to shift from superficial to more substantive 

ones, the latter of which I labeled “Conceptual Instructional Responses (CIRs).” These refer to 

conceptual actions proposed by a PMT and based on their constructed model of student thinking. 

They include CIRs related to the rate of change, to derivatives as slopes of tangent lines, and to 

the graphical representations of instantaneous speed. As another indication of the 

interrelationship between teacher knowledge and noticing, the PMTs enacted knowledge of 

content and teaching (KCT) and specialized content knowledge (SCK) to prepare and propose 

these CIRs.  

Lastly, PMTs developed their capacity to notice by comparing and contrasting the 

thinking of multiple students to refine their models of each student’s understanding of the 

derivative. In the instances where the two students took a different approach to solving the 

problem or where there were variations in their conceptual understandings, the PMTs were 

provided an opportunity to nurture their capacity to notice student thinking as they made 

contrasts and comparisons of the different ways of thinking and solving a problem.  

In conclusion, the findings presented in this chapter indicate and explain the broadened 

scope of PMTs’ enactments of knowledge for teaching the derivatives, as well as the progressive 

changes in the four processes they employed to notice student thinking. Moreover, these findings 
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establish the validity of the four-process framework that emerged from the analysis relative to 

the hypothesis that PMTs’ noticing would be nurtured through their engagement in those 

processes. Thus, these findings can legitimately be regarded as an effective response to Research 

Question 1, which seeks to determine how teacher knowledge and noticing in the domain of the 

derivative can be developed through video-mediated professional learning. 
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Chapter 5 Results: Mediators of Knowledge Development  

This chapter focuses on the findings for Research Question 2 (RQ2), which asks, what 

forms of video-mediated interactions support the development of teacher knowledge specific to 

noticing students’ mathematical thinking in the domain of the derivative? This question is 

concerned with developing a theoretical model of how the social interactions and the features of 

students' problem-solving videos contributed to the development of knowledge related to 

noticing in a video-mediated professional learning setting. As I explained in Chapter 2, I take a 

situated (Brown, 1989) and sociocultural (Vygotsky, 1978) perspective on the analysis of data, as 

these perspectives account for the social, cultural, and historical interactions that mediate a 

learner’s social and cognitive development. As I will demonstrate with these findings, the 

mediating roles of participant-researcher interactions and the features of the problem-solving 

videos played a fundamental role in the construction of a model of this development. Below is 

Figure 11 (also found in Chapter 3 on P. 87) demonstrating the mediating roles of social (e.g., 

participant-researcher interactions), material (e.g., problem-solving videos), and conceptual 

resources (e.g., mathematics) in teacher learning.  

Figure 11 

Three Elements of the Teacher Learning Ecology 
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Figure 11 depicts the possible interactions between the elements of the learning ecology in my 

design experiment. 

To respond to RQ2, I took an open coding approach (Strauss & Corbin, 1990) to code the 

four components of the focusing framework (Lobato et al., 2013) as they are provided in Chapter 

3. These components include: the centers of focus, focusing interactions, features of the 

mathematical tasks (which I refer to as features of problem-solving videos), and the nature of 

mathematical activity (which I refer to as the nature of a noticing activity). Thus, I organize the 

findings in this chapter according to these four constructs and include descriptions of the nature, 

processes, and patterns of interactions among them. The descriptions will provide a theoretical 

basis for how teacher noticing can be supported and achieved. Since these four components are 

interrelated (Lobato et al., 2013), I coded them concurrently.  

I initiated the analysis by looking for centers of focus (Lobato et al., 2013). Centers of 

focus refer to what the participants noticed in the videos as they discussed the students' problem 

solving. In my presentation of the findings of RQ1 in Chapter 4, I provided detailed accounts of 

what the participants noticed, although I did not label them ‘centers of focus.’ I also documented 

changes in participants' centers of focus (what they noticed), which I attributed to their increased 

level of participation in the act of noticing (Lobato et al., 2013; van Es, 2011). In response to 

RQ2, in this chapter I characterize the interactions that mediated the participants’ learning to 

notice and that contributed to the emergence of centers of focus that were presented in Chapter 4.  

Centers of Focus  

Lobato et al. (2013) describe centers of focus (CoFs) as the “properties, features, 

regularities, or conceptual objects that students notice” (p. 814). These are simply the 

mathematical features that attract students’ attention in a mathematics classroom. In taking into 
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account the purpose of this study, I made PMTs the subjects of noticing (rather than students) 

and I extended the definition of CoFs to include other elements that I expected to emerge as the 

objects of PMTs’ analyses in the design experiment episodes. In the context of this study, 

therefore, CoFs refer to what PMTs attended to, described, and interpreted, and to the 

instructional decisions they made based on those interpretations. Among them are the 

mathematics that underlie the tasks, students’ mathematics, features of the problem-solving 

videos, the design of the problems that structure those videos, and the pedagogy (i.e., the 

instructional decisions proposed by PMTs to support student learning). 

In the first analytic pass of the data, I identified and coded the centers of focus that were 

the objects of PMTs' noticings that were presented in Chapter 4. As such, determining the 

conditions that gave rise to the PMTs' development of noticing constituted the objective of the 

analysis for RQ2. As I conducted open coding, I identified other centers of focus related to task 

design and pedagogy, and coded them, as well. As I identified and coded these centers of focus, I 

also coded the corresponding focusing interactions, features of problem-solving videos, and the 

nature of the noticing activity that contributed to their emergence. By coding these four aspects 

of noticing together, I was able to construct a conceptual link between them that helped me to 

understand the mediating interactions that contributed to the development of PMTs’ noticing.  

 In the second analytic pass, I used the constant comparative method (Glaser & Strauss, 

1967) to group the codes related to the centers of focus into five categories: describing, 

interpreting, responding, task design, and the mathematics underlying those tasks. Respectively, 

these categories relate to PMTs' descriptions of students' work, their interpretations of students’ 

thinking, their responses to student thinking, how the framing of a task influenced students' 

problem-solving strategies, and the mathematics underlying each task.  
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Three categories of CoFs (describing, interpreting, and responding) are related to the 

aspects of students' understanding of the derivative that PMTs modeled. These CoFs are PMTs’ 

inferences about students’ thinking and the instructional suggestions they provide in response to 

these inferences so as to foster their learning. The concept of noticing student mathematical 

thinking (attending, interpreting, and responding) as presented in the literature review in Chapter 

2 underlies this broad category of CoFs. The other two categories of CoFs (the task design and 

their underlying mathematics) are related to the mediating role of the tasks in eliciting the 

students’ understandings. Table 4 below provides codes and examples for each of these five 

categories of the broad categories (i.e., super-categories) of centers of focus and mediating 

resources.  

Table 4 

Codes and Categories for Centers of Focus (CoFs) 

Super-categories  Categories  Codes (CoFs) Examples  
CoFs related to 
student thinking  

Describing CoFs Student 
misconception 

“The problem is asking them about 
the height and the volume of water 
in the glass. But Julian’s [a student] 
first response is to talk about the 
speed at which the water is being 
poured.” 

Interpreting CoFs Cause of a 
misconception 

“I think what makes it hard is that it 
might have been the animation for 
them that mess it up. They're still 
thinking about how fast and slow.” 

Responding CoFs  Instructional 
response to 
misconception  

“I would ask, if you're pouring in 
more water, volume is increasing, 
right? What does that say about 
height?” 
 
“Maybe give a little more detail in 
the actual asking of the problem. Be 
more explicit like the rate of change 
of the height of the water in the cup 
with respect to the volume of the 
water in the cup.” 
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CoFs related to 
mediating resources  

Mathematics CoFs Content: constant 
rate of change  

“In this case, it's increasing. It’s the 
same for every increment of 
volume. So, for like one increment 
of volume, we've got two 
increments of height. The next, one 
increment of volume, same two 
increments of height.” 

Task design CoFs Suggestion to 
modify the task 

“I think the animation really threw 
them off. Maybe I would actually 
have them like take a bottle of 
water and pour it into a cup like see 
it for themselves, instead of the 
animation, because I don't think that 
was helpful.” 

 
The centers of focus shown in Table 4 were the noticings that emerged through the 

PMTs’ participation in video-mediated professional learning. Because calculus students’ 

problem solving in those videos occurred in the context of the derivative, changes in the PMTs’ 

mathematical knowledge for teaching the derivatives and their noticing of students’ derivative 

thinking (presented in Chapter 4) can be attributed to PMTs’ engagement with these centers of 

focus.  

Next, I describe the roles of the three other components of Lobato et al.’s (2013) focusing 

framework in understanding the development of PMTs’ knowledge and noticing in the context of 

the derivative.    

Focusing Interactions  

Lobato et al. (2013) refer to focusing interactions as the “discursive practices (including 

gesture, diagrams, and talk) that can give rise to particular centers of focus” (p. 814). My 

analysis in this subsection demonstrates how focusing interactions (like highlighting a moment in 

the video) contributed to the emergence of CoFs, which are manifestations of socially structured 

teacher noticing. I describe how I coded for focusing interactions and then how the facilitator and 

participants' discursive practices contributed to the emergence of CoFs. 
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In a subsequent analytic pass of the data, I coded for focusing interactions, which I 

connected to centers of focus that were coded and categorized in prior passes (and appear in 

Table 4). These connections elucidate enabling conditions that may have supported the 

development of PMTs’ noticing, which I presented in Chapter 4. This analysis confirmed the 

value of sorting discursive practices that give rise to centers of focus into two categories that 

appear in the literature: highlighting (Goodwin, 1994, as cited in Lobato et al., 2013) and 

prompting (van Es, 2011). I then took a constant comparative approach (Glaser & Strauss, 1967) 

to sort instances of prompting into three categories: prompting related to (1) describing; (2) 

interpreting; and (3) responding. I provide evidence next to substantiate the claim that the use of 

these prompts promoted PMTs’ ability to describe, interpret, and respond to the students' 

observable actions, respectively.  

Highlighting and Prompting 

 According to Goodwin (1994), highlighting “makes specific phenomena in a complex 

field salient by marking them in some fashion” (p. 606). For Lobato et al. (2013), it refers to 

“visible operations upon external phenomena, such as labeling and annotating, which can shape 

the perceptions of others by making particular features prominent” (p. 814). And for Mason 

(2002), it is a marking (p. 33) or calling out (p. 64) through verbal, visual, or physical means to 

make specific features of the domain of scrutiny relevant and more visible. I used highlighting in 

this study to direct PMTs to salient video segments that would draw their attention to the 

students' spoken and written expressions, thereby making them more prominent. 

 By prompting, I simply mean asking PMTs questions to nurture their noticing ability by 

deepening their analyses of students’ problem solving. In this section, I provide exemplars from 

the data of the three categories of prompting in order to explain the emergence of CoFs and the 
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evolution of PMTs’ noticing. Whenever I highlighted a video segment of a worthwhile moment, 

I would also use prompts to direct PMTs’ attention to students’ thinking in that moment. For this 

reason, instances of highlighting and prompting are presented simultaneously. Thus, the 

exemplars presented here are of highlighting and prompting relating to (1) describing, (2) 

interpreting, and (3) responding.  

Highlighting and Prompting Relating to Describing. Prompts related to describing are 

those that ask PMTs to recount what students did or how they solved a problem. These prompts 

were usually posed to PMTs after they watched a highlighted video segment, because those were 

segments that I believe offered rich opportunities for productive discussions of student thinking. 

As I aim to demonstrate using this first example, the joint use of highlighting and prompting was 

critical for directing PMTs to salient moments of student thinking as an opportunity for them to 

model student thinking and generate knowledge for noticing in the process.  

In the following excerpt, which occurred in Session 1 (see Figure 4 in Chapter 3), I 

highlighted video segments in which Julian explained that the rate at which water was poured 

into a cup slowed down at the top of the cup, and thus the change in height was decreasing. Then 

I posed what I regard to be the essential prompt, “What do you think [student X] is trying to 

explain here?”: 

Facilitator:  [Highlighted segment timestamp 1.28-1.38]. So, what is Julian trying to 
explain here? 
 

Liam: He's saying that, because [the height] was getting slower with the pour, the 
rate of change for [the height] was decreasing. Like it's slower. That's 
what I picked up.  
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Next, I replayed a clip (timestamp 2.18—4.49) in which Alyssa was explaining that for 

every 1 ml of water added to the cup, the height increases by the same amount. Again, I followed 

with the essential prompt:  

 
Facilitator:     [Highlighted segment timestamp 2.18-4.49]. So, what do you think Alyssa 

is trying to explain here? 
 

Liam:             She is saying that… if I add more water to it, the volume increases, and that 
the height of that cylinder, like, where the water line level is, also 
increases.  

 
I highlighted the video segment and posed these prompts to direct Liam and his partner Gray’s 

attention to the concept of the constant rate of change as it was embedded in Alyssa’s 

explanation. I conjectured that doing so would provide them with an opportunity to deepen their 

understanding of that concept, since Alyssa’s explanation was mathematically accurate. In each 

of these excerpts, Liam responded to my essential prompt by describing what Julian and Alyssa 

said, although he did not elaborate on the mathematical meanings embedded in those statements. 

Thus, mediated by my prompt and by ‘rich’ video segments that were hypothesized as worthy of 

the PMTs’ attention, describing CoFs related to the students’ problem solving emerged. 

Although their potential was not realized in these instances, such centers of focus can offer 

insights into the students' understanding of the rate of change that would enable the PMTs to 

model their thinking and propose an instructional response to it.  

This same prompt was used in Session 2 in the context of students solving a problem 

related to an increasing rate of change (see Figure 5 on p. 82). To direct Mia and Leah’s attention 

to Julian’s reasoning, I replayed a video segment in which Julian is arguing that the water poured 

from a pitcher is being poured at a constant rate and thus the rate of change of height with 

respect to volume is constant. Then I asked the participants, “What is Julian trying to explain 
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here?” Mia described Julian’s thinking as follows: “Julian is more so talking about the water 

that's being poured from the pitcher. He's saying that the water is being poured at a constant 

speed. And therefore, he's equating that to the rate of change of height with respect to volume.” 

As is characteristic of a describing CoF, Mia relies almost entirely on Julian’s words to form her 

response. Other instances of a similar phenomenon (describing prompts and CoFs) appear in the 

data for Liam in Session 3 and Nova in Session 4.  

I should emphasize that I do not mean to fault Liam or Mia for not elaborating in their 

responses. I only mean to characterize the nature of a typical noticing response from PMTs early 

in the design experiment. Liam and Mia did precisely what I asked of them when I welcomed 

them into the study in their first session: “You will be watching videos of a pair of students 

solving mathematical problems and then try to analyze their mathematical understanding. I 

encourage you to think aloud, talk to your partner, share ideas, and so forth.” I also reminded 

them that we could pause and rewind the video in order to “understand what the student is trying 

to explain.” In their responses, Liam and Mia (and the other PMTs, as well) shared what they 

thought the students were ‘trying to explain.’ 

Highlighting and Prompting Relating to Interpreting. Prompts related to interpreting 

are those that help PMTs assess student thinking and offer evidence for their inferences. In the 

following excerpt, which occurred in Session 3, Mia and Leah viewed a video (see Video 3 in 

Appendix C) in which students were tackling a problem and sharing their ideas about the 

instantaneous rate of change. The two students were shown a photo of a pitcher hitting a baseball 

and were asked to determine the baseball's speed at the time of the photo (see Figure 6 on p. 

83). Alyssa argued that the ball photo was taken in zero time. This excerpt comes from my 

conversation (as a facilitator) with the PMTs and illustrates how interpreting CoFs emerged.  
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Facilitator 16.09:   I would like us to watch some segments of this video and then try 
to unpack what these students are trying to say. [I played a short 
video segment to highlight a moment in Alyssa’s problem solving]. 
So, what is Alyssa trying to explain in this case? What do you 
think she understands, or does not understand, in this case? 

 
Mia 17.35:  She's trying to say that she doesn't think the ball is moving at all, 

because she thinks that instantaneous is representing zero time. So, 
she's saying if you don't have any time, the ball can't be moving 
any distance. She doesn't think, consequently, that there can’t be 
any speed of how fast the ball is traveling. 

 
Leah 18.43:  She wouldn't understand, like, just what the question's asking. 

When she hears the word instantaneous, I feel like she thinks it's 
like the split-second kind of thing. But then we see that she later 
does, she is thinking about, like, the difference between the 
distance and the time, and that there needs to be a difference in the 
time. Because we know that the ball is moving, there's never a 
point when the ball is not moving until it's like caught.  

 
In this excerpt, I replayed a video segment in order to highlight Alyssa's thinking and 

prompted the PMTs to share what they understand about Alyssa’s conception of the 

mathematics. The prompts served multiple purposes: asking the PMTs to (1) describe what 

Alyssa was saying, (2) explain the mathematics that is fundamental to it, and (3) determine from 

their interpretations what she does or does not understand. In response to these prompts, both 

Mia and Leah offered their assessments of Alyssa’s understanding. Their assessments were 

imperfect, but nonetheless, they were still grounded in Alyssa's discourse. The more important 

point is that interpreting CoFs emerged for Mia and Leah in response to prompts relating to both 

describing and interpreting. In Mia and Leah’s responses, they did not describe what students 

did. Rather, they began by interpreting what students were thinking, a trend that emerged as 

participants continued to participate in noticing activities. These findings lend further credence to 

the claim that Mia and Leah’s movement along this trajectory is attributable in part to the 

researcher’s focusing of the PMTs' attention to worthwhile moments in the students’ problem 



TEACHER NOTICING AND KNOWLEDGE FOR TEACHING THE DERIVATIVE 
  

 160 
 
solving. It should also be stated that by Session 3, the moments hypothesized by the researcher-

facilitator as worthwhile are emerging as actually worthwhile. Other instances of this same 

phenomenon appear in the data for Amelia and Nova in Session 5, and for Mia and Leah in 

Session 6.  

In the cases above, I paired interpreting prompts with highlighted video segments in 

order to generate opportunities for interpreting on the part of PMTs. At other points in the 

experiment, I paired interpreting prompts with brief encapsulations of moments in the students’ 

problem solving. On some of these occasions, I replayed the video segment associated with an 

encapsulation. For example, in Session 6 with Amelia and Nova, I sought to deepen their 

noticing of Julian and Alyssa’s thinking, so I provided them with a summary of what Julian and 

Alyssa had discussed:  

Going by Alyssa’s definition, a tangent line touches the curve at only one point. Julian 
seems unsure about that definition in the case of Point A, where multiple tangent lines 
could be drawn to touch that point. So, he’s like, ‘Are all these tangent lines?’ And that’s 
what the question or rather the problem is. Let’s focus on how they are finding a tangent 
line at each of the points and then we’ll talk about it.  
 
My objective in focusing the PMTs on this aspect of Julian and Alyssa’s activity was to 

explore how their definition of a tangent line informed their noticing actions. This would allow 

me to assess the knowledge that Amelia and Nova could bring to their interpretations. I replayed 

video excerpts at each instance where Julian and Alyssa were drawing a tangent line at a 

different point on a curve and then asked Amelia and Nova, “What do you think about their 

reasoning there?” In response, Nova pointed out that Julian had asked, "But what is a tangent 

line?" Her subsequent interpretations suggest her conclusion that Alyssa did not possess a 

conceptual understanding that tangent lines represent the slope on a curve at a particular point: 

"Drawing lines doesn't mean she knows why she's drawing them... She can't make a connection." 
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Nova added that Alyssa did not respond to Julian’s earlier question about a tangent line, nor did 

she respond to one he posed later about whether a tangent to a graph at one point could also 

intersect the graph at other points: "What about if later on in the graph it touches it?" For Nova, 

these questions were "valid… A teacher would have to explain that so that misconceptions aren't 

there." With these comments, Nova suggests that students' misconceptions and their inability to 

respond to conceptual questions stem from their exclusively procedural understanding of 

mathematics (i.e., knowing how to draw a tangent line but not knowing “why she’s drawing 

them.”).  

Amelia had also suggested that the students’ struggles with tangent lines arose “from 

what they defined a tangent line to be.” She pointed out that whereas Alyssa defined a tangent 

line as “a line that touches a curve at only one point… Julian drew multiple lines at Point A and 

then asked her, ‘Don’t these other lines work, as well?’” Just as Nova had done a moment earlier, 

Amelia uses Julian’s own words as evidence to substantiate her analysis. By using Julian’s own 

words as evidence from the video to support their ‘interpreting’ claims, Nova and Amelia’s 

participation in noticing is regarded as more sophisticated than noticing acts consisting of 

interpretations without evidence (and these are regarded as more sophisticated than acts 

consisting solely of ‘describing’).  

By pairing interpreting prompts with highlighted video segments and capturing brief 

moments of student thinking that correspond to those segments, PMTs have more opportunities 

to assess student thinking and generate interpreting CoFs. In addition, providing the PMTs with a 

brief summary of their discussions serves to bring their ideas together and help them develop a 

connected understanding of the students' thinking. The pairing of prompts with these summaries 

gives PMTs an opportunity to further interpret students' thinking based on their shared ideas and 
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understandings. It appears that combining prompts with video segments or brief summaries can 

help PMTs pay selective attention to significant aspects of student thinking and engage in 

knowledge-based reasoning to model it. 

Highlighting and Prompting Relating to Responding. Prompts related to responding 

are those that direct the participants to determine an instructional move in response to their in-

the-moment understanding of a student's understanding as it was elicited in their problem 

solving. Determining a responsive move entails reflecting on a student’s current understanding 

and making a conjecture about the kind of learning experience that could revise or advance that 

understanding. It is necessary to leverage one’s knowledge for teaching mathematics in order to 

construct viable conjectures and enacting this knowledge in novel conceptual situations may also 

develop that knowledge further (Ball et al., 2008).  

The excerpt below provides an example of a responding prompt and the CoFs that 

emerged from it. This excerpt comes from Session 6, in which the PMTs viewed a video of 

students drawing tangent lines to various points on a graph and justifying their mathematical 

actions. I had just replayed a video segment in which Julian is contemplating the meaning of a 

tangent line by considering the case of Point C (see Figure 13 on p. 111). As he did so, he asked 

Alyssa, “Wouldn't it touch the graph later on down here, and wouldn't it touch it later on up 

here?” Then I used a responding prompt to maintain the focus of their noticing on Julian’s 

thinking and provoke them to contemplate how they would respond to him.  

Facilitator 40:59: So, what could you do to help these students understand the 
concept of a tangent line? What strategies would you employ to 
help in their learning about a tangent line? 

 
Amelia 41:32: I would probably want to stop [them] and [instead] start with a 

simple kind of parabola. You know, having points on it and getting 
tangent lines at each point or like some class activity that has 
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[students] do that. And then, like, class discussion about what's 
happening at each point, and why the tangent line at each point is 
different to kind of bring back that idea. And then maybe we could 
then go back to introducing these weird instances, like, when 
there's a cusp or absolute value or something like that. 

 
Amelia 42:37: I also think it would be important to go back and just make sure 

they understood exactly what a tangent line is. Because that seems 
like prior knowledge that's needed for this lesson.  

 
The responding prompt I posed to Amelia gave her a chance to imagine instructional 

moves she believed would enhance the students’ learning, thereby leading to the emergence of 

responding CoFs. In particular, the prompt directed Amelia’s attention to the students' struggles 

with tangent lines and called on her to respond to them by proposing a pedagogical move that 

could help them gain a better understanding. Evident in Amelia's responses is her appreciation 

for the need to understand what a tangent line is in order to apply that understanding in a 

graphing context. The activity she suggests would have the students explore and contrast tangent 

lines drawn at a variety of points on a parabola. Doing so, Amelia proposes, would enrich their 

understanding of a tangent line, which she suggests is too narrow or superficial to solve the 

problem they’re working on. Thus, the responding highlights and prompts led to the emergence 

of a responding CoF for Amelia, which centered on the design of an exploratory activity 

conjectured to develop the students’ thinking about tangent lines. The richness of Amelia’s 

proposed instructional response is worth foregrounding, even though that richness cannot be 

attributed directly to the responding highlights and prompts that actualized its emergence. I 

would argue that common content knowledge, knowledge of content and students, and 

knowledge of an inquiry pedagogy are among the forms of knowledge enacted in Amelia’s 

response. Thus, this finding speaks to the generative power of opportunities to respond to student 
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thinking for developing one’s capacity for noticing, and to highlighting and prompting as 

invitations to engage in such opportunities.  

I used a similar responding prompt back in Session 1 with Gray and Liam. At this 

moment, the two students in the video were asked to examine how height changed with respect 

to volume as water was being poured into a cup. Julian, one of the students, analyzed the rate of 

change in height with respect to time rather than volume. Gray and Liam interpreted his thinking 

to be a misconception. Below is the conversation that prompted their suggestions of instructional 

moves that could resolve what they deemed to be a misconception.  

Facilitator:  Considering how the students are solving the problem, if they were your 
students in your class, what strategies would you use to support them to 
understand the concept of the rate of change of height with respect to 
volume?  

 
Gray:  I would probably just walk over and underline ‘with respect to volume’ in 

the problem. I would just point at that and be like, I want you to, like, to 
read the question again.  

 
Liam:  I would point out that [Julian] has a good analysis. I would clarify, you’re 

analyzing both volume and height with respect to time. Now, can you 
analyze them with respect to each other? I would definitely start out by 
clarifying what he just did out loud, to hopefully make him realize that 
he’s analyzing with respect to time, and now he has to read the question 
again, and see that he needs to compare the two [variables]. 

 
The responding prompts I posed allowed the participants to imagine how they might step 

in and support Julian based on their assessments of his understandings. Through these prompts, 

the PMTs are given a real opportunity to contemplate a viable instructional response to a 

student’s mathematics. Eventually, they did provide instructional suggestions, and thus 

responding CoFs (i.e., restating the problem, validating the student’s work) emerged. That said, 

the responses they provided featured generic teaching moves that were not responsive to Julian’s 

thinking. Instead, they hoped to help Julian dismiss his current approach as they suggested one 
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they deemed more viable. This is in contrast to the quality of the responsive moves that appear in 

the previous example, which occurred later in the experiment. I suggest that the difference in 

sophistication between the two responses is evidence of the mediating role of CoF prompts and 

highlights in supporting the development of the PMTs’ noticing. In addition, I note that 

participation in this responsive exercise was distributed across the two PMTs, as Liam’s response 

consists of an implicit agreement with Gray’s response as well as an elaboration of it. This 

moment was not unique, as intersubjective meaning making through collaboration is an essential 

aspect of situated learning. What’s significant about it is that it offers an example of the 

mediating role of social resources – in the form of collaborative analysis within each pair of 

PMTs – in the development of noticing and of the knowledge that the practice entails.  

Features of Problem-Solving Videos  

This study aims to shed light on how videos of students’ problem solving can support 

PMTs in developing skills for noticing student mathematical thinking and knowledge useful in 

the teaching of derivative. So, in the first analytic pass through the data, I examined how the 

features of problem-solving videos were associated with changes in centers of focus. This 

involved looking for moments in problem-solving videos that were conjectured to invite and 

sustain PMTs’ participation in analyses of student thinking.  

During the design of the study, I had not considered features of the mathematical tasks in 

these videos to be the objects of PMTs’ analyses during the episodes. My focus was only on 

students' discussions as they solved those problems. However, PMTs attended to features of the 

tasks and argued that the students’ strategies could be attributed to these features. In addition, in 

the course of the study, I came to realize that the PMTs' content knowledge was constraining 

their noticing. In response, I would discuss the mathematical tasks with them to understand the 
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mathematics relevant to it in order to enable the PMTs to attend to and make sense of the 

problem solvers’ mathematical thinking. Essentially, the videos and the tasks that appear in them 

were “springboards” for analyzing and discussing mathematics teaching and learning (Borko, 

2011, p. 184). In Chapter 3, some of the features of these videos are described in greater detail.  

As my analysis will demonstrate, the result of these efforts was that PMTs became more 

engaged in the collective noticing activity because they found new opportunities in the problem-

solving videos to do so. Next, I share some of these moments and explain their contributions to 

the emergence of CoFs. 

Analyzing Students’ Problem Solving as an Opportunity for Decentering 

 In this section I describe how the problem-solving videos offered a venue in which PMTs 

could increase their content knowledge through discussions of the mathematics underlying the 

tasks, as well as their pedagogical content knowledge (PCK) through discussion of students' 

problem solving. Next, I use the concept of decentering to elucidate how PMTs considered the 

perspectives of the students as they analyzed and discussed their problem solving independent of 

how they themselves would think about it. Piaget (1955) introduced the concept of decentering 

to refer to an act of contemplating a child’s ideas from the child’s perspective and not their own. 

I also give examples from the data to corroborate the claims about the learning potential enabled 

by these videos. 

Each of the videos analyzed by the PMTs features a task and presents the students' 

problem solving for that task. In their analysis, PMTs could attend to the students' problem-

solving strategies and make inferences about the students’ understanding from those 

strategies. As such, their noticing activity is akin to what a teacher might do as they analyzed 

their students' problem solving and their explanations about it. Piaget (1955) used the idea of 
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decentering in this sense. Decentering is about attempting to understand the actions, thoughts, 

and perspectives of another irrespective of one’s own actions, thoughts, and perspectives.  

As the PMTs engaged in noticing the students’ mathematical thinking, they set aside their 

own understanding of the derivative in order to model the students’ understanding of the concept 

(i.e., by decentering). For example, as the students were interpreting a derivative problem in 

Session 8, Gray commented, "They are misunderstanding [the expression 𝑓′(5) = 2.5] for some 

sort of average rate of change. They think that 2.5 is the number of gallons being consumed per 

hour [at every hour]. From that table (see Figure 18 below), that is what they are showing." This 

is just one of the many instances in which a PMT decentered by assuming the point of view of a 

student in order to interpret and then characterize that student’s understanding of some derivative 

concept. Consequently, through decentering the PMTs further developed their knowledge for 

teaching. 

Figure 18 

Students’ Slope Calculations and Plotted Points 

 

On other occasions, the PMTs analyzed a posed problem, determined the mathematics 

relevant to it, and shared a first-order model (Steffe & Thompson, 2000) of their own 

understandings of that mathematics. For example, as the PMTs analyzed student work associated 
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with finding the instantaneous speed of a ball in Session 3 (see Video 3 in Appendix C), Mia 

explained how she would solve the problem: “When I think about rates of change, I think about, 

like, an initial point and a final point. What I would do is I would take, like, the whole length and 

then the starting point and the ending and do something with it.” In this instance, Mia has taken a 

personal perspective (as a mathematician) as opposed to a student’s to share the strategy she 

would take if she were the problem solver. As I have argued in Chapter 4, the PMTs' conceptions 

of mathematics played a critical role in their noticing. Operating from a personal perspective is 

also an opportunity for generative learning (Franke et al., 2001) as one reflects on their own 

understanding in the context of a problem that is new to them. On this point, Teuscher et al. 

(2016) argue that decentering and the construction of both first and second-order models (Steffe 

& Thompson, 2000) is essential to developing knowledge for teaching. In this study, videos of 

students’ problem solving offered PMTs that opportunity for professional learning.  

The Videos are Effectively Curated 

The problem-solving videos used in the study are short, with an average duration of 3 to 

5 minutes. Each one shows two student problem solvers, the mathematical task that has been 

posed to them, and written artifacts of their work. The background is white, as all other elements 

of the context in which they are doing their problem solving have been erased. As the pair of 

students solves each problem, we are able to observe their discussions. By editing the videos to 

present what their authors regarded as only the most essential elements of students’ problem-

solving activity, viewers of the videos are not distracted by elements deemed irrelevant to their 

problem solving. This editing made these videos useful for the purposes of this study, as well. In 

tandem with the researcher-facilitator’s uses of highlighting and prompting, the characteristic 

sparseness of the video contexts approximates practice (Howell & Mikeska, 2021) by 
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constraining the focus of PMTs’ attention to students and their problem solving so that the 

students' mathematics becomes the main subject of investigation. None of the other elements one 

is likely to encounter in the “blooming, buzzing confusion” (Brown, 1992, p. 141) of a typical 

classroom offer opportunities for distraction. The screenshot in Figure 19 is typical of what 

appears in these videos. 

Figure 19 

Students’ Reasoning About Constant Rate of Change 

  

The Videos can be Paused and Re-viewed Repeatedly 

As we viewed a video within each session, I was able to pause it and allow PMTs time to 

reflect on what they observed. I was also able to replay video segments several times so that the 

PMTs could do their best to understand the students’ mathematical activity. During Session 2, 

for instance, the PMTs analyzed a video of students discussing the increasing rate of height with 

respect to volume (see Video 2 in Appendix C). I replayed a short clip in which Alyssa explained 

that since the flask of water gets narrower with height as each addition 1 ml of water is added to 

it, the change in height increases (see Figure 15 for her illustration). PMT Leah was unable to 

understand Alyssa's thinking, especially when Alyssa was using specific values to demonstrate 
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the increasing rate of change in height. As a result of replaying the video segment two more 

times, both Mia and Leah were able to provide their interpretations of Alyssa’s reasoning about 

an increasing rate of change. This finding substantiates prior research (e.g., Sherin, 2004; Wilson 

et al., 2011) that finds that professional learning of noticing can be enhanced by problem-solving 

videos that can be paused and re-viewed repeatedly. 

The Videos Provide a Comprehensive and Appropriate Scope and Sequence  

The Calculus I topics that appear in the videos are organized sequentially based on how 

they build conceptually on each other. They range from the rate of change to the interpretation of 

derivatives. Eight of these videos were selected for analysis and were presented in the prescribed 

order. I deemed these worthwhile, particularly in terms of the sequenced building up of topics 

and the opportunities they presented for noticing.  Every PMT participated in eight experiment 

sessions, which enabled them to cover the entire conceptual scope of the derivative at the 

undergraduate level. The longitudinal nature of this professional learning experience satisfies 

calls from research for PD that is sustained over time (Garet et al., 2016). 

The order of topics in these videos reproduces that standard order that appears in 

conventional Calculus I textbooks. This sequencing proved helpful for developing PMTs’ 

understandings of the mathematics associated with each problem beyond their current 

understanding and also for making new conceptual connections among them. As a result, the 

PMTs developed content knowledge that enabled them to increase the sophistication of their 

participation in noticing.  

For example, in Session 1, the participants discussed students’ problem solving related to 

the constant rate of change (see Figure 4 on p. 81). Then they leveraged elements of these 

discussions and the ideas that they discussed in this session in their analyses of students’ problem 
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solving related to an increasing rate of change in Session 2 (see Figure 5 on p. 82). After Alyssa 

made her argument in Session 2 that there was an increasing rate of change in height with respect 

to volume in the case of the narrowing beaker, her partner, Nova, elaborated: “I want to make a 

concluding sentence. You know, the rate of change of height with respect to volume is increasing 

at an increasing rate.” With this statement, Nova enacted her understandings of both the rate of 

change and the change in the rate of change, concepts associated with the first and second 

derivatives in calculus. She continued, "I know since the original beaker [in Session 1] was a 

cylinder, everything was fine because it's straight all the way through. But this one, since it does 

have like a wide part at the bottom and then it gets narrower, I do feel like it does have an impact 

on [the rate of change]." Nova’s analysis conveys an understanding of the differential impact on 

the rates of change of the shapes of beakers in the two tasks. In Session 1, the cylinder is 

“straight and the same all through.” In Session 2, near the top of the beaker “is a smaller space.” 

For Nova, this explains why, in Session 1, the rate of change in height with respect to volume 

was constant, while in this Session 2, it was increasing. This example illustrates how the 

sequencing of topics in the videos could mediate enactments of PMTs’ mathematics to support 

the development of their noticing. 

Concluding Chapter 5 

This study examined how PMTs develop teacher knowledge related to noticing students' 

mathematical thinking in addition to the design of a video-mediated professional learning 

environment that can facilitate this development. Since this study aimed to engineer and support 

teacher learning through collaborative participation in a social learning context, I applied 

sociocultural and situated learning perspectives to the analysis of the data. This chapter 

addressed Research Question 2, which concerns the nature of interactions that help PMTs learn 
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to notice. This question is a follow-up to Research Question 1 (addressed in Chapter 4), which 

seeks to explain how PMTs' noticing developed across the design experiment sessions.  

Findings presented in this chapter describe the nature of interactions that appeared to 

have a mediating role in the development of PMTs’ professional noticing. I drew upon the 

focusing framework (Lobato et al., 2013) to respond to Research Question 2. This framework 

provides the social and situated conceptualization of professional noticing and, along with 

research that uses this framework, offer a means to analyze it. To understand how the PMTs in 

this study developed their noticing, I analyzed their enactments of the components of the 

focusing framework (i.e., describing, interpreting, responding) using the principles of grounded 

theory (Strauss & Corbin, 1990). This approach enabled me to identify mediators of knowledge 

development in the data. Then, using constant comparative analysis (Glaser and Strauss, 1967), I 

collapsed the coded components into two super-categories of CoFs (see Table 4 on p. 147): (1) 

CoFs related to student thinking and, (2) CoFs related to mediating resources.  

These super-categories of CoFs represent what PMTs noticed, including the students’ 

understanding (or lack thereof) of the derivative, the forms of knowledge they enacted in their 

noticings, proposals for how they would support student learning, and resources that mediated 

students’ learning during problem solving (e.g., concepts relevant to tasks). Other components of 

developing noticing that were analyzed (e.g., focusing interactions, features of problem-solving 

videos) accounted for how PMTs developed these CoFs through their participation in the 

experiment sessions.  

Two categories of social interactions that mediated PMTs’ noticing of student thinking 

emerged from the analysis of the focusing interactions: highlighting and prompting. In my role 

as facilitator of their professional learning, I would highlight video segments for PMTs to focus 
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on that would provide them with salient noticing opportunities. As a follow-up to highlighting, 

prompts are categorized according to the CoFs that they intended to generate: (1) prompts 

relating to describing CoFs, (2) prompts relating to interpreting CoFs, and (3) prompts relating to 

responding CoFs. As demonstrated through the results presented in this chapter, this variety of 

prompts facilitated social interactions that lead to the emergence of CoFs.  

This chapter also presented four features of problem-solving videos that were found to 

mediate the PMTs’ noticing and the emergent CoFs: (1) The videos offer images of students’ 

problem solving that could serve as an opportunity for decentering; (2) They are effectively 

curated; (3) They can be paused and re-viewed repeatedly, and (4) They provide a 

comprehensive and appropriate scope and sequence of derivative topics. Through their noticing 

activity in contexts offered to them by eight videos featuring these four properties, the PMTs’ 

existing networks of knowledge for teaching the derivative were elicited and newly developed 

knowledge was integrated into these existing networks to restructure (Franke & Kazemi, 2001) 

it. As a result, their capacity to notice student thinking was developed.  
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Chapter 6: Conclusion of the Study 

Introduction 

This study aimed to: (1) investigate how teacher knowledge related to noticing students' 

mathematical thinking develops and construct a model of how teachers can learn to notice, and 

(2) examine the nature of interactions that can support teacher learning in a video-mediated 

professional learning environment. The following research questions guided the inquiry: (1) How 

does teacher knowledge specific to noticing students’ mathematical thinking in the domain of the 

derivative develop through video-mediated professional learning? (2) What forms of video-

mediated interactions support this development?      

 In order to discern how PMTs developed knowledge for noticing and teaching the 

derivative, my response to Research Question 1 depicts the ways in which knowledge about 

teaching the derivative manifested itself in PMTs' discussions of students' problem solving and 

how they leveraged that knowledge to model students' mathematical thinking. My response to 

Research Question 2 depicts how video-mediated interactions between the participants, the 

researcher, and the problem-solving videos supported this development. I draw on these 

interactions to construct a theory of how a video-mediated professional learning context can be 

used to develop teachers’ professional noticing.  

Summary of the Findings 

This study investigated how PMTs enacted their knowledge for teaching the derivatives 

through processes that supported them to model and learn to notice students' mathematical 

thinking in a video-mediated professional learning environment. The study further examined the 

interactions constituent to these processes. Using a design experiment methodology, data was 

collected from preservice secondary mathematics teachers (PMTs) through semi-structured, 
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noticing interviews as they analyzed videos of calculus students’ problem-solving. That data was 

analyzed from situated (Brown, 1989) and sociocultural (Vygotsky, 1978) perspectives that seek 

to understand how social, material, cultural, intellectual, and historical interactions shape a 

learner's social and cognitive development. In addition, the teachers' professional noticing 

framework (Jacobs et al., 2010) was used to structure the PMTs’ noticing experiences and 

orchestrate a productive discourse about them (as they attended to, interpreted, and responded to 

students’ thinking).  

In this concluding chapter, I summarize the findings in relation to Research Questions 1 

(presented in Chapter 4) and 2 (presented in Chapter 5), establish their significance, and propose 

implications for research and practice. These are listed in Table 5. In Chapter 4, I presented a 

four-element framework I constructed through my analysis of the data. This framework 

illustrates how knowledge for teaching the derivative and how skills of professional noticing 

developed in a video- and socially mediated learning environment. In Chapter 5, I shared the 

social, material, and conceptual resources that mediated the PMTs’ learning of teacher 

knowledge (related to noticing student thinking).  

Table 5 

Summary of the Findings for Research Questions 1 and 2 

Research Question  Findings  
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RQ 1: Chapter 4: Trajectories 

of knowledge development  

Four-element framework 
• Includes 1) describing, 2) interpreting, 3) responding, 

and 4) comparing and contrasting 
Trajectories of knowledge development  

• PMTs come into the experiment with less sophisticated 
noticing skills. 

• PMTs increase their ability to analyze students’ problem 
solving over time. 

• PMTs leverage content knowledge to notice student 
thinking. 

The skills of noticing (attending to, interpreting, and 
responding) are interconnected. 

RQ 2: Chapter 5: Mediators 

of knowledge development  

 

 Centers of focus (CoFs) 
• CoFs related to student thinking 
• CoFs related to mediating resources  

     Focusing Interactions  
• Highlighting and prompting  

Features of problem-solving videos  
1. The videos offer images of students’ problem solving 

that could serve as an opportunity for decentering.  
2. They are effectively curated. 
3. They can be paused and re-viewed repeatedly. 
4. They provide a comprehensive and appropriate scope 

and sequence of derivative topics. 
 

 

To be specific, in Chapter 4, I respond to Research Question 1 by describing the 

processes through which PMTs enacted teacher knowledge and developed their capacity for 

noticing in terms of a four-element framework for learning to notice through 1) describing, 2) 

interpreting, 3) responding, and 4) comparing and contrasting. This framework proved useful 

for understanding how PMTs’ skills for noticing student thinking in a video-mediated 

professional learning context could be developed. Specific to this context, it illuminates an 
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approach to helping PMTs learn to attend to students’ conceptions of mathematics as they are 

elicited in real-time, helping them learn to assess and characterize those conceptions, and helping 

them to learn to respond to those assessments by devising instructional strategies to further 

support student learning. Also included in this chapter are vignettes from the data that depict the 

trajectories of PMTs’ learning to notice student thinking through their problem solving across the 

episodes of the design experiment.  

In Chapter 5 I respond to Research Question 2 by discussing the social, material, and 

conceptual resources that contributed to the emergence of centers of focus for the PMTs’ 

noticing. Next, I provided a summary of my findings in relation to each of the two research 

questions.  

Responding to Research Question 1: Trajectories of Knowledge Development 

 To respond to RQ1, I present a four-element framework for learning to notice. These 

elements are the processes of describing, interpreting, responding, and comparing and 

contrasting. By describing, the PMTs gave the details of features of the students' problem-

solving strategies and their discourse. In so doing, their engagement with the students' problem-

solving then enabled them to interpret and respond to it. In the early sessions, PMTs had novice 

describing skills, but their sophistication increased as they participated in the noticing activity. In 

the later experiments, they leveraged mathematical knowledge for teaching (e.g., KCS, CCK) to 

provide evidence-based descriptions that were more substantial and sophisticated than earlier 

descriptions, which were more shallow and superficial. Eventually, the PMTs offered their 

interpretations of students' thinking without even bothering to describe it. In Chapter 4, I argued 

that this behavior – this lack of a felt need to provide the sources of the PMTs’ interpretations in 
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the students’ problem solving – constituted advanced noticing and was evidence of its 

development. 

The PMTs used interpreting to make justified, evidence-based inferences about student 

thinking from their problem-solving activity. Although they entered the experiment with 

rudimentary skills for interpreting student thinking, they accumulated experiences that nurtured 

their tendency to leverage and apply their knowledge for teaching mathematics. These 

experiences included analyzing students' problem-solving discourse, strategies, and work 

artifacts; assessing their mis/conceptions of the derivative; and examining the designs of the 

tasks that were posed and the mathematics behind them. By taking up these participatory 

opportunities, PMTs developed robust interpretations of students' thinking, which then became 

the basis for responding to it.  

The PMTs restructured (Wilson et al., 2011) their knowledge for teaching as they 

described and interpreted students' thinking. Then they leveraged this knowledge to suggest 

instructional moves that would take students where they area and help them learn. Proposing 

instructional moves in response to what one notices about student thinking is called responding, 

the third component of the four-element framework.  

The responses PMTs proposed earlier in the experiment were based on general principles 

associated with teaching and learning, and not on students' elicited thinking about derivatives 

and their associated concepts. Responses like these are what I call Superficial Instructional 

Responses (SIRs). Later on, in contrast, they enacted Conceptual Instructional Responses 

(CIRs). CIRs are suggestions that are specific to a student’s thinking and that are grounded in a 

constructed model of that student’s thinking. The CIRs that were identified in the analysis are 

related to the rate of change, derivatives as slopes of the tangent lines, and the graphical 
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representations of instantaneous speed. As they suggested these conceptual actions, the PMTs 

enacted knowledge of content and teaching (KCT) and specialized content knowledge (SCK) in 

regard to the students' problem solving and the task they were posed.  

The fourth process of the learning to notice framework involves comparing and 

contrasting students' thinking to illuminate similarities and differences between them in the 

process of modeling their understanding of derivatives. For example, in the case where two 

students solved a problem using different strategies, PMTs could compare and contrast their 

strategies and the inferences they made from them to build more robust models of each student’s 

thinking. Consequently, comparing and contrasting provides PMTs with an opportunity to 

develop their knowledge for teaching and thereby develop their ability to notice.  

Evidence of Increasing Noticing Skills.  As the analysis demonstrates, PMTs entered 

the experiment with less sophisticated skills for noticing. Their initial assessments of the 

students' mathematical thinking and their initial reasonings about the phenomena they observed 

were rather shallow. Similar results have been reported in other studies (e.g., Jacobs et al., 2010; 

van Es, 2011). Nevertheless, the results also indicate that as the PMTs applied their conceptual 

and pedagogical knowledge to interpret and respond to students' thinking, the extent of their 

analyses increased over time as they moved toward more central participation (Lave, 1991) in 

noticing. Vignettes that offer evidence of PMTs’ movement along a trajectory of noticing student 

thinking about the derivative are provided in Chapter 4. The social, material, and conceptual 

resources that mediated them are discussed in Chapter 5.  

At one point along their trajectory of participation, the PMTs began to attribute features 

of the students’ interpretations of the problems they were posed and their strategies for solving 

them to the design of those problems. This was the case for their interpretation of (student) 
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Julian’s problem solving and his preoccupation with the rate at which water was being poured 

into a container at the expense of the need for him to consider the covarying relationship between 

the height of the water and its volume, as the task required. As the PMTs noticed Julian’s 

thinking, they attributed his confusion to the design of the animation accompanying the task and 

not to any qualities of Julian’s mathematical knowledge. This finding of teachers’ attributions of 

features of problem-solving activity to the design of the problem is consistent with Lobato et al. 

(2013). What is significant here is that the videos offered PMTs opportunities to come to this 

way of thinking and realize that a key consideration in making informed instructional decisions 

is ensuring the appropriateness of the mathematical tasks that appear in the curriculum and 

understanding the interactions between them and the ways that students go about solving them.  

Another finding concerns the role of common and specialized content knowledge in 

noticing student thinking. This was evident for (PMT) Mia, who initially struggled to understand 

(student) Alyssa’s argument about a constant rate of change in Session 1. It wasn’t until she 

leveraged her own knowledge of the derivative to understand an increasing rate of change in the 

context of another problem in Session 2 that she was able to make sense of that argument. This 

interaction between knowledge and noticing was evident at one point for (PMT) Amelia, as well. 

In Session 6, she observed students’ struggles to draw tangent lines, but her lack of knowledge 

about the concept of nondifferentiability at a cusp prevented her from interpreting and thus 

responding to those struggles. Other studies have yielded similar findings regarding the 

relationship between noticing competence and knowledge for teaching (e.g., Jacobs et al., 2010; 

Magiera et al., 2013; Thomas et al., 2017). Thus, it was a benefit to PMTs to come to this 

realization through their participation in this professional learning experience and be supported 

by a knowledgeable facilitator to negotiate it. 
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Professional noticing occurs when enacting mathematical knowledge for teaching results 

in sophisticated descriptions, interpretations, and responses to students’ mathematical 

thinking. However, as the results presented in Chapter 5 demonstrate, acquiring this (static) 

knowledge is necessary, but not sufficient for PMTs to enact (i.e., participate in) professional 

noticing. They must be provided with authentic opportunities to leverage this knowledge in order 

to cultivate their capacity to enact it. Their researcher-facilitated engagement with the curated 

selection of problem-solving videos provided them with those opportunities. I say more about the 

features of these videos in the next section.  

The findings also revealed the interconnected nature of the noticing skills (i.e., attending, 

interpreting, and responding; Jacobs et al., 2010), and therefore the need to offer professional 

learning opportunities that assume these interconnections so as to develop them in tandem. 

Attending to and describing the actions of students generates an authentic instructional 

opportunity to interpret those actions (i.e., make inferences about them) and respond accordingly 

and appropriately. The results show that the PMTs were provided with these opportunities. In the 

many instances in which PMTs attended to features of students’ problem solving and interpreted 

their understanding of the derivative in light of their actions, the PMTs proposed conceptual 

actions designed to foster those understandings. The quality of their decision making about these 

teaching strategies relied on the viability of their descriptions and interpretations of students' 

understandings.  

Responding to Research Question 2: Mediators of Knowledge Development  

To respond to RQ2, I explored the shifts in PMTs' enactments of knowledge (RQ1, 

presented in Chapter 4) and their development of noticing skills, as well as how elements of the 

learning ecology contributed to those shifts. I examined what PMTs noticed as well as the 



TEACHER NOTICING AND KNOWLEDGE FOR TEACHING THE DERIVATIVE 
  

 182 
 
discursive practices that elicited them as they viewed the problem-solving videos. I used Lobato 

et al.’s (2013) focusing framework to support my analysis of what PMTs attended to and how the 

social and conceptual components of their noticing activity revealed their knowledge and 

supported their learning. That framework also helped me conceptualize a mediating relationship 

between the instances of student thinking the PMTs observed (i.e., their centers of focus) and 

what conditions enabled them to do so. Next, I elaborate on the components of the focusing 

framework and how they mediated PMTs’ learning of noticing.  

The Centers of Focus. I identified two super-categories of centers of focus (CoFs) that 

seemed to capture PMTs' attention during the design experiments: (1) CoFs related to student 

thinking and (2) CoFs related to mediating resources. As PMTs notice CoFs that are new to 

them, they develop their knowledge about noticing and mathematics teaching. Discussions 

around the observed CoFs and instructional decisions provided an opportunity for the PMTs to 

enact mathematical and pedagogical knowledge pertaining to the teaching of the derivative.  

The CoFs related to student thinking are divided into three categories: describing CoFs, 

interpreting CoFs, and responding CoFs. These categories of CoFs emerged as PMTs described, 

interpreted, and responded to moments of student thinking. The PMTs further pointed to the 

design of the problems that students were given and to the mathematics that underlies those 

problems as mediating resources for students’ discourse while solving problems. These became 

CoFs for the PMTs’ noticing discourse throughout the experiment. As I elaborated in Chapter 4, 

task design informs the mathematics that students discuss and as well as the strategies they 

devise to solve those tasks. As such, the CoFs represent the knowledge that PMTs developed 

about teaching mathematics through the experiment episodes. In addition, the focusing 

interactions, features of the problem-solving videos, and the nature of the noticing activity 
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contributed to the emergence of CoFs (seen as manifestations of teacher knowledge). They shed 

light on how participants' noticing was socially orchestrated and situated within the context of 

analyzing students’ problem solving. I discuss the focusing interactions next.  

Focusing Interactions. When PMTs were asked to view a selected video in its entirety in 

the earlier episodes, essential prompts (e.g., What do you notice?) elicited general strategy 

descriptions and evaluative comments without evidence from the videos. This finding is 

consistent with other research that has reported similar findings when general prompts were used 

in video clubs (e.g., Sun & van Es, 2015, van Es, 2011). To support their learning to notice, more 

specific prompts were used by the researcher to help the PMTs get better at describing the 

students’ strategies, making inferences about their understandings, and deciding how to respond. 

Three categories of highlighting (of videos and specific student thinking) and prompting were 

implemented to support this learning: (1) highlighting and prompting relating to describing 

CoFs, (2) highlighting and prompting relating to interpreting CoFs, and (3) highlighting and 

prompting relating to responding CoFs.  

Highlighting and prompting were coupled for the purpose of directing the PMTs’ 

attention to moments in replayed video segments where student thinking was salient with respect 

to the students’ problem solving. These prompts called on the PMTs to describe, interpret, and 

respond to student thinking, a tripartite network of professional moves that was new to them. 

Over time, the scaffolding supports of highlighting and prompting were progressively removed 

as pairs of PMTs were able to sustain their discussion about student thinking in the later episodes 

without the need for so much support. One example that stands out is in Session 7 when Nina 

and Amber watched the video once and then engaged in a sustained and substantive discussion 

without my prompting. This finding is critical as it signifies that the video-mediated professional 
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learning experiences moved the PMTs along a trajectory of noticing from peripheral to more 

central participation in the community of practice, where central participation is characterized by 

sophisticated and unprompted analyses of student thinking and a responsive practice associated 

with ambitious (Kazemi et al., 2009) and responsive teaching.  

Features of the Problem-Solving Videos. The features of the problem-solving videos 

selected for the design experiment seemed to play a mediating role in fostering the emergence of 

CoFs. They served as a springboard for PMTs to analyze students’ problem solving and model 

their understanding of the mathematics related to the derivative. By enabling the PMTs to shift 

their vantage point from a student (in preservice teacher preparation) to a teacher in service, 

videos of real students solving real problems enabled the PMTs to approach problem solving 

more as a teacher of mathematics than as a student of mathematics (Stylianides & Stylianides, 

2010). As such, the videos provided opportunities for decentering (Teuscher et al., 2016), by 

which PMTs put their perspectives aside and assumed the students’ perspectives. In so doing, the 

PMTs developed an empathic stance that contributed to their capacity to make sense of students’ 

actions, model it, and respond to it.  

 Grounded theory enabled the identification of four features of the videos that contributed 

to the emergence of CoFs for the PMTs’ analyses. First is the composition of the videos (e.g., the 

task presentations and an exclusive focus on students’ problem solving). Secondly, the videos are 

effectively curated, showing only the interactions between two students and the real-time 

construction of artifacts of their work. The curation of videos is important so that they do not 

provide extraneous and non-essential information that may distract or overwhelm the PMTs’ 

attention (Walters, 2017). Third, since the videos are fluid––in the sense that they can be paused 

and re-viewed repeatedly––PMTs were able to re-watch “worthwhile” video segments and give 
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their sustained attention to the reasoning of the students in order enrich their analyses of it. 

Finally, the videos provide a comprehensive and appropriate scope and sequence of topics that 

build conceptually on each other. As such, they supported the PMTs to re/structure their 

knowledge for teaching mathematics by developing a parallel base of specialized content 

knowledge. Two moments in the PMTs’ experiences come to mind in this regard. One PMT 

leveraged an understanding they developed about the constant rate of change in Session 1 in 

order to understand an increasing rate of change central to the task in Session 2. And several 

PMTs used something they learned about the limit definition of the derivative in Session 3 in 

their analyses of students’ problem solving in Sessions 6, 7, and 8. This finding demonstrates the 

value of professional learning experiences that simultaneously rely on enactments of both 

common and specialized content knowledge in teaching situations that call for rich and focused 

analyses of student thinking. Table 5 below provides a summary of the findings of Chapters 4 

and 5. 

The Significance of the Findings 

The expertise that practicing teachers bring to their noticing activities is often lacking in 

prospective teachers (Krupa, 2017; Wilson et al., 2011). As professional noticing is a critical 

element of ambitious teaching, it is worthwhile to develop this practice among prospective 

teachers. Research finds that noticing is a learnable skill (Jacobs et al., 2010; Krupa et al., 2017) 

and that teachers can make progress on learning to notice even within a single semester (e.g., 

Star & Strickland, 2008). Simply learning the mathematics, how students tend to think about the 

mathematics, and a number of ways to respond students through instruction it is not sufficient. 

Supported by the research on professional noticing, I hypothesized that prospective teachers 

could develop their knowledge for noticing by formatively assessing students' understandings 



TEACHER NOTICING AND KNOWLEDGE FOR TEACHING THE DERIVATIVE 
  

 186 
 
through analyses of their problem solving in real-time. The videos of students’ problem solving 

provided the venue for this work and the results support the claim that my hypothesis could be 

supported. 

As the participants in this study engaged in noticing activity over the course of four 

months, with each pair of PMTs meeting once a week, they viewed these videos and analyzed 

the problem solving of students that appear in them. The problems posed to those students 

spanned the entire conceptual scope of the derivative. Through their participation, not only did 

the PMTs develop their capacity to notice, but the longitudinal extent of their engagement 

suggests that their capacity is likely to endure (Garet et al., 2016; Tunney & van Es, 2016). As a 

concluding remark on the results presented in Chapters 4 and 5, teacher noticing can be 

developed through video-mediated professional learning when particular social and material 

supports are provided.  

Limitations of the Study 

The study has three limitations that could be addressed in future research. The first is a lack 

of research on how to develop knowledge for teaching specific domains of mathematics (such as 

the derivative) that could provide a stronger foundation for this study. The literature on models 

of knowledge for teaching mathematics is extensive, but not specific to the teaching of 

derivatives. As such, there is no theoretical trajectory of knowledge development in video-

mediated professional learning that could ground this study. In light of this limitation, more 

research that focuses on developing knowledge for teaching specific domains of mathematics is 

warranted.  

Since I conducted this study during the Covid-19 pandemic, I collected data via Zoom to 

avert the spread of the virus, and this presented a second limitation. For example, I could not see 
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how the participants were representing or modeling situations, like graphing, on a piece of paper. 

Although they scanned and emailed the copies to me, I had missed an opportunity to seek 

clarification "in the moment" as they worked. To overcome this challenge, it may be more 

effective to conduct such a study in person, so that the researcher can interact with the 

participants in real time, seek clarifications, observe gestures, and make inferences from them. 

Lastly, I cannot say whether the participants in this study are representative of the population 

of undergraduate student who are pre-service high school mathematics teachers. Although the 

purpose of qualitative research is not to generalize the results to this population, future research 

with other participants could determine whether the themes and patterns that emerged from this 

study are consistent. 

Implications and Directions for Future Research 

This study has implications for both research and practice in mathematics education. 

Among the contributions of this study is the empirical development of a four-element framework 

that explains how PMTs learn to notice in a video-mediated learning environment. The 

framework may be useful in teacher education in precisely the same format as the one I used in 

my study. Alternatively, smaller-scale versions could also be useful. For instance, a teacher 

educator may provide PMTs with a one or more problem-solving videos in the conceptual 

context of their teaching along with highlighting cues and probing questions to guide PMTs in 

describing, interpreting, and/or responding to the problem solver’s thinking. This approach could 

address persistent problems of practice in calculus education by providing opportunities for 

teacher learning in contexts that approximate authentic practice. Calls for reform in calculus 

education advocate for a shift in pedagogy from a sole reliance on lecture (that dominates 

calculus teaching) to centering students' thinking as the basis for designing instruction. 
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Cultivating a calculus educator’s capacity for noticing would support such a shift, and the 

framework presented in this study would provide an empirically supported structure for that 

work.  

Despite the findings being primarily relevant to understanding how problem-solving 

videos can be used to facilitate teacher learning, they have implications for research on the use of 

video recordings in teacher education more broadly, and they contribute to the literature on 

frameworks of knowledge development through analyses of videos: learning to notice (van Es, 

2011), professional noticing of children’s mathematics (Jacobs et al., 2010), and the professional 

noticing of student thinking in the context of proportionality (Fernández et al., 2013). The 

designs of these studies differ from mine, but their findings have at least one thing in common: 

their participants made substantial progress in moving along a trajectory from superficial 

descriptions of students’ mathematical activity to substantive analyses of their meanings that 

formed the basis of more expert-like responsive instructional decision making.  

Problem-solving videos have been used in research and practice for a variety of purposes, 

including learning to notice (van Es, 2011; Wilson et al., 2011) and the deconstruction and 

interrogation of professional practices (Grossman et al., 2009). Researchers and teacher 

educators can use their analyses of learners’ engagement with these videos to make 

determinations about their learning. In my case, I found from my analysis of the PMTs’ analyses 

of students’ problem solving that the PMTs experienced changes in both their knowledge of the 

derivative and in their capacity to notice other’s thinking about the derivative. These changes 

enabled the future teachers to enact knowledge of the derivative that demonstrates an image of 

how it should be understood and how it could be taught. This image can be seen through a 

review of the PMTs’ discourse in Chapter 4. Since this study contributes to the development of 
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noticing and knowledge for teaching derivative among pre-service teachers, its findings have 

implications for teacher preparation.  

My analysis of the PMTs’ engagement with the videos identified features of the problem-

solving videos that provided PMTs with the opportunities to experience these changes in 

knowledge and noticing. Findings from this analysis can be shared in the form of principles for 

the design of problem-solving videos that are likely to induce similar changes. It also offers 

insights into the nature of interactions associated with the analysis of those videos in which 

knowledge for teaching related to noticing can be developed. The principles of task design, 

facilitation, and the associated interactions that contribute to the development of mathematical 

knowledge for teaching may be useful to researchers as they design related studies. Researchers 

could then use empirically generated trajectories of noticing competence and contexts developed 

in this study to examine the knowledge needed to teach specific mathematical concepts, and how 

that knowledge can be supported. 

This research has methodological implications, as well. Lobato et al. (2013) used the 

focusing framework to examine how students notice mathematics. I extended this framework by 

including pedagogical considerations, since knowledge for teaching has both conceptual and 

pedagogical dimensions. In addition to this modification to the framework, I also modified the 

definitions of both focusing interactions and features of the tasks to account for the pedagogical 

features that participants noticed and to also capture the goals of the study. With these 

modifications to the framework, I could account for both mathematical and pedagogical features 

and regularities in students’ problem solving that captured the participants’ attention and became 

the focus of their noticing interactions.  
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I suggest that when researchers analyze PMTs' discussions in noticing activities using the 

focusing framework, they can better understand how noticing as a socially situated practice 

occurs. They can also come to understand how it can be supported. By extending the focusing 

framework to include pedagogical elements, I was able to account for how noticing experiences 

influenced the development of knowledge for teaching around students’ mathematical reasoning. 

This elaborated framework is now available to other teachers and researchers who have similar 

objectives. My process for elaborating it is also available, should teachers and researchers with 

not-so-similar objectives wish to elaborate Lobato et al.’s framework or mine to suit their needs.  

Studies focusing on developing knowledge around specific areas of mathematics are few, 

and this study aimed to close that gap. Further research is warranted to identify other additional 

benefits that may be realized from developing teacher knowledge around specific domains of 

mathematics (e.g., geometry, algebra). In order to develop a pattern of knowledge development 

for teaching across the domains of mathematics, future research could focus on developing local 

theories that explain what knowledge and how it develops around specific mathematical ideas. 

By analyzing students' problem solving over time, the participants developed their 

understanding of derivatives, their knowledge for teaching the derivative, and students' likely 

understandings of derivatives. They also developed a professional vision for orchestrating 

pedagogical moves based on their interpretations of students' problem solving. Such a 

professional vision has implications for PMTs' future practice. As an example, the participants 

may design instructional activities based on their interpretations of students' thinking as they 

solve mathematical problems. Accordingly, a follow-up study could examine how the 

participants put their professional vision into practice. That study could help us assess the impact 

of the PMTs’ experiences in this study on their practice. 
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Appendices 

Appendix A: Interview Contact Summary Form  

Location: __________________ Interview Date: __________________ Today’s Date: 

__________________  

1. What were the main issues or themes that struck you in this interview?  

2. Summarize the information you got (or failed to get) on each of the target questions you had 

for this contact.   

• Noticing student thinking. How do PMTs notice student thinking? 

• Learning. What skills of noticing student thinking PMTs have learned? 

• Image of a learning trajectory. How is PMTs learning trajectory unfolding? 

• Interventions. Which interventions seemed to support PMTs to notice student 

thinking? 

3. Anything else that struck you as salient, interesting, illuminating, or important in this 

interview?  

4. What new (or remaining) questions have come up as a result of this interview? What changes 

to the protocol or problem-solving videos might you make in future interviews?  

 

Appendix B: Salient Episodes in the Problem-solving Videos  

Session 1: The constant rate of change  

Timestamp Episode  Interactions 
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0:54 J: Started off getting faster, then at some point, around here, is 

getting slower 

 

1:30 A: Is slower but increasing because we are not talking out water  

1.58 J: If its faster here, and then slower, is it like increasing and then 

decreasing there? 

 

3.30 A: If we add 1milimeter of water, then the height increases by 1cm. 

If we add another 1mm, the height increases by another 1cm. And 

then it makes it constant 

 

4.00 J: at t=1, it might have gone up one more step. At t=2, then with a 

faster pour it should have more water, and height should be like 3.5. 

 

Session 2: The varying rate of change 

0.42 Julian: I'm thinking if I wouldn't have to pour, in relation to like the 

water entering the flask, like the pour was constant the entire time. 

 

0.8 Julian: its constant   

1.04 Julian: it doesn't actually change like how much water is being 

poured in from the picture. 

 

1.09 J & A: it would expand somehow  

1.15 J: I'm thinking of like, constant rate.  

1.42 A: I agree that the pour is constant but that doesn't really take into 

consideration like the shape of the flask there. Like the area of that 

like, little slice of the flask is different than the base, this is a lot 

bigger. I mean, this up here this are a lot smaller. 
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2.04 A: I agree that the pour is constant but that doesn't really take into 

consideration like the shape of the flask there. Like the area of that 

like, little slice of the flask is different than the base, this is a lot 

bigger. I mean, this up here this are a lot smaller. 

 

2.09 what I was saying was like down here, you need more water to 

make the height go up higher than up here which would make it 

increasing. But you think that... 

 

2.35 there is less volume up here…you need less water  

3.02 A: I mean I get what you are saying that like there's less volume up 

here so the rate of the volume is decreasing as we add more water, 

is that how you looking at it? 

 

3.12 A: I guess that makes sense. I'm not sure though, cause it doesn't 

really talk about the height that much 

 

Session 3: Approximating the Instantaneous Rate of Change Transcript  

 

00.53 A: Yeah, that's like, like distance over time, but if we don't have any 

time, we can't really be moving. 

 

01.00 J: I just I think what I'm struggling with is like in a baseball game, 

you know, the pitcher is throwing the ball from the lounge to the 

capture. So, it's like from point A to B and that's how the ball like 

swing. 

 

01.17 J: like there is movement and like, there is a change in time  



TEACHER NOTICING AND KNOWLEDGE FOR TEACHING THE DERIVATIVE 
  

 208 
 

1.24 A: But we are only seeing like that one little, like, like instantaneous 

moment 

 

1.42 J: But I think maybe like to show, two seconds to show the change 

of time and the change of position. I guess the picture should, in my 

opinion, have some blur, like some motion and it like have that 

motion, right? 

 

1.56 A: I mean it's kinda hard to see right now cause probably still in, but 

we definitely need to know like how long it took the camera to take 

the photo. 

 

2.01 A: Cause that will give us like the time aspect that we need  

2.15 J: I'm taking we also need to like again, the point of A to B, so I'm 

assuming the first blurry scene or last part blurry scene, so 

everything is blurry. Just go end to end. 

 

2.57 A: we don't want to take like, like, so this point here is like the size 

of the ball, so we wouldn't want to take like that, like very end of 

the blur. I think we need to take out the length or the diameter of the 

ball. Is this a better word? So that we can get it from like, like, um, 

so we can get like the distance but not like... 

 

 

3.10 

A: our speed is going to be like change in distance over change in 

time. 

 

3.21 A: to find the change in distance we take the length of the blurry 

minus the diameter of the baseball. 

 



TEACHER NOTICING AND KNOWLEDGE FOR TEACHING THE DERIVATIVE 
  

 209 
 

3.30 J: At the moment the picture was taken, the ball was travelling 65 

miles per hour. 

 

3.46 A: I don't think it's like at that moment, because we did say it was, 

um, like we did incorporate like the change in time, so it's not at that 

moment, it's still like that interval even if it is like such so small. 

 

3.51 A: I guess it's the velocity over the interval  

4.10 A: I think our best approximation for the moment the photo was 

taken because we have such a small interval, because like we said 

before we can't really have like a change of time over like in 

instantaneous moment. 

 

4.17 J: so that is approximately 65 miles per hour because of the interval  

 

Session 4: Limit Definition of Derivative 

 

1.15 J: let's take a T that is one smaller and then a T that's one bigger, 

and do like the change of Y and change of X. S 

 

1.35 J: if we use this kind of formula, we can do T equals 3 and T equals 

5… And then get that slope 

 

 

2.10 A: I think that will be good approximation… but like, like could we 

make it better by making it like a smaller… like intervals maybe 

like you do like three to four. 
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2.21 A: I'm not good at drawing science but I guess that looks like way 

to steep now 

 

2.30 A: I guess it'd be the same like four and five, but it'd be less steep  

 A: so like, how can I get a more accurate, like approximation  

2.58 J: without having it to be… so steep or…  

3.10 J: So, we've said so far that T equals three and T equals five, but we 

also said T equals three and T equals four. 

 

3.16 J: And we want get, like we want to be as close to four as possible  

3.29 J: could we possibly do something like, like, I guess like T equals 

3.9 

 

3.50 J: it's like, we will do like T one equals 3.9 and then T two equals 

4.1, because then that would get us something like there. And then 

we would get... 

 

3.51 A: be a lot closer  

4.10 J: Yeah, which we got us this line here, which, which seems a little 

bit more accurate than I guess the larger intervals. So, it's like, the 

smaller the intervals the more accurate it could be... 

 

4.16 A: Yeah, like how small do we need to make it, to make it  

4.19 J: Like do we have to go smaller than this? We might.  

4.22 A: I mean, like we could always make it go smaller  

 

Using Limit to Compute Derivative 
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00:41 Maria (M): we want to find the rate of change of the side length 

with respect to the area. So it's a derivative. 

 

00:46 Kelly (K): So, we are looking for a derivative  

00.50 M: and we know that we are looking at when the area is five  

00.55 and we know the area is just the side squared. I know a lot of 

things... 

 

01.03 K: Sort of, area equals side square, we know that the side is equal to 

root A 

 

01.10 M: Hmm that's true. Then the limit of the change in area as opposed 

to zero. 

 

01.17 K: And then its S of five plus delta A  

01.22 M & K: minus S of five  

01.24 K: all over delta A  

01.59 M: I feel like that we know. So, let's see if we can replace any of 

these. So, we know the area, when or if we have S of five plus delta. 

That's just asking what is the side, when the area is five plus delta A 

 

02.09 So, we are looking at the limit of delta A. Um, we know S of five is 

just gonna be root five, right? 

 

02.55 M: I feel like we are just kinda stuck with the delta A  

Slope of Secant and Tangent lines 

00.29 A: well I remember derivative is, uhm the slope of the tangent line.  
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00.32 J: can you remind me what a tangent line is again?  

00.36 A: Yeah, so it is a line that touches the graph at just one point.  

00.46 A: for like uhm this point A, it goes through that one point and then 

not touch any of the other points. 

 

 

01.02 J: But what, like why can't it go through like there or like there? 

Like it's not touching the graph. 

 

01.18 A: Yeah, it's true. Uh, maybe it's like the other one. Uh, so like for 

B to go through the point, the tangent line will be like that I think 

 

01.34 J: I think like, my only like question is like, if it hits here, that also 

hits along the entire thing is it still a tangible line? 

 

03.10 J: So even though it's like, like this is actually going through the 

graph, but it's going through the graph at t. So, is that still a tangent, 

if it goes through the graph? 

 

03.23 J: Cause like, this one doesn't go through the graph, like A and C 

don't go through the graph 

 

 03.26: But D is actually like intersecting other points  

Graphing the Derivative 

00:18 K: That's the speed of the football for all moments in time  

00:45 M: we have distance over time, uhm isn't that just drawing us the 

speed already? Well, you'd have distance divided by time, uhm, so I 
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guess that wouldn't, wouldn't technically be the speed because you 

have to calculate what the distance is over time.  

00:47 M: the speed would be different from what's on that line.  

00:51 K: Wait, isn't speed the derivative?  

00:57 M: Okay. So, we are just finding the derivative of this thing?  

01:00 M: so, I guess we are just trying to graph a derivative  

01:13 K: I think that it's just like slow and then speeds up and then he 

releases the ball 

 

01:18 M: that's just kind of showing that it's a slow rate at the beginning  

01:22 M:And then it goes up, and it's always positive. So that works.  

01:27 K: so I guess that works but I don't really know how precise it is… 

it's just not really precise enough 

 

01.42 M: Okay, I think that if we were to pick a couple of points in time  

01:45 K: and say calculate the speed that would give us a more precise 

graph 

 

01:57 M: So, if we, if we take like at one second... The distance is about 

half. So, half over one second would be half speed 

 

01:59 K: because speed equals distance over time  

02:07 M: That's what I'm thinking. So, we are looking for distance over 

time if that’s one second. It's a half, it'll be like here 

 

02.24 K: you know what, that's the change in distance over the change in 

time and we are only doing a point. 
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02.28 M: So instead of D over T you want to do delta T over delta T?  

2.34 so for Delta T we just want like a small-time interval? 

 

 

03.36 M: So now let's do two. So, we get zero… it's kind of like a flat… 

it's like a plateau there 

 

03.39 Right, cause we are finding the slope… when we are taking the 

average rate of change  

 

04.25 M: So right now, if I were to just connect the points, I'm not sure 

what it'd look like connecting from zero, like what it just connects 

the origin to that, I guess  

 

04:31 K: I guess so, because from like zero to point five is kind of flat like 

we were talking about with the slope 

 

04.36 M: So is this kind of what our speed look like or the derivative of 

that function 

 

04.42 M: I mean it makes sense for the points we've plotted anyway but I 

don't know about the ones in between 

 

 

Interpreting derivative 

00:34 M: At five, so we are looking at five hours after she left home  

00.42 M: Does that just mean that she used 2.5 gallons since she left 

home? 
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00:49 K: No, I think that would just be f of five cause... f of t is the 

amount of fuel her car has consumed 

 

00:54 M: That makes sense. So, f of t or f of five, would be she has used 

2.5 gallons, essentially? 

 

01:14 M: But this is describing the rate at five hours, so is it saying that at 

exactly five hours, she's using 2.5 gallons so like the instant rate of 

change would be 2.5 gallons? 

 

01:43 K: You just like reading. Instead of reading the derivative of, 

instead of reading the derivative at five is two point five, I think you 

are just reading it as the instantaneous rate of change... 

 

02:04 K: Uhm, then maybe at every hour she has had two point five 

gallons consumed. So, the amount of fuel consumed increased by 

two point five after each hour 

 

 

02.11 M: So, you are saying like at hour one, two, three, four, five, how 

much.... how many gallons did she consume? 

 

02.18 K: Two point five, and then two point five. Then for three, two 

point five, and for four, two point five and five, two point five 

 

02.27 M: So, in the span of five hours she used, ten, eleven, twelve point 

five gallons? 

 

02:31 M: That sounds like a lot of gas  
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02.48 K: Oh, you know what, that would mean she is travelling at a 

constant speed. We didn't know that she's on constant speed. 

 

02:52 M: Okay. So, she could be using more gallons  

02:55 M: or less like per hour  

02.58 K: Like we are just concerned with our five  

03:03 M: so, we just care about t equal five. We can't say what happened 

before that. 

 

03.35 M: And that also makes sense because I feel like for our last guess, 

so when we were concerned about the gallons consumed overall, 

our answer would have been in just gallons and not like gallons per 

hour which I think is the rate we want in the end 

 

04:00 K: Oh however, that would say that she would have to travel at a 

constant rate at hour five. So, if we had like a timeline down here 

when we have hour one, hour two, three, four and five, that would 

mean between hour five and six she would have to use the constant 

rate. Well, like if she drove for five minutes after hour five... 

 

04.04 K: and then didn't drive again until five minutes before our six  

04.18 M: maybe if we didn't say over the next hour but we said... like an 

average, are you looking for like an average 

 

04.32 K: Maybe not an average, but instead of saying Uhm, over the 

course of the next hour maybe we say like over the course of the 
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next five seconds she was going to use two point five gallons per 

hour  

 

05.06 M: you are using two point five gallons... per hour. So, I suppose, is 

that...can we say that? 

 

 

 

Appendix C: A List of Problem-solving Videos. 

1. Constant Rate of change Student Problem Solving: Pouring Water into a Cylinder 

2. Varying rate of change Student Problem Solving: Pouring Water into an Erlenmeyer 

Flask 

3. Approximating instantaneous rate of change Student Problem Solving: The Stationary 

Baseball 

4.   Limit definition of the derivative:  Student Problem Solving: Rate of Absorbing 

Ibuprofen 

5.  Using limits to compute derivatives: Student Problem Solving: Using Limits to Compute 

Derivatives 

6. Slopes of secant and tangent lines: Student Problem Solving: The Imprecision of 

Tangents 

7. Graphing the derivative: Student Problem Solving: Graphing the Speed of a Baseball 

8.  Interpreting derivative: Student Problem Solving: Interpreting Derivative 
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