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Abstract 

 
ASSESSMENT OF PHYTOPLANKTON ASSEMBLAGES AND  

HARMFUL ALGAL BLOOMS IN NEW JERSEY 

by Yaritza Acosta Caraballo 

Urbanization, industrialization, and climate change have played a major role in the pollution of 

waterways, leading to a global increasing trend of harmful algal blooms (HAB) while 

jeopardizing water quality. Phytoplankton and HAB were evaluated within the highly urbanized 

and historically polluted state of New Jersey to help provide statewide baseline data for HAB 

and water quality management. A total of three studies were included in this dissertation. In the 

first study, phytoplankton communities were characterized in freshwaters of New Jersey during 

the cyanobacterial HAB season and their relationships to water quality at both statewide and 

ecoregion levels were examined. This information was critical since there existed little 

knowledge of freshwater phytoplankton in New Jersey. Results showed that cyanobacteria were 

present in most of the selected waterbodies with urbanized ecoregions having higher nutrients 

and cyanobacteria. Furthermore, results showed that the fluorescence of phycocyanin could be 

used as a proxy for cyanobacterial HAB conditions. Continuous cyanobacterial HAB monitoring 

efforts should extend to include colder seasons to help improve management strategies. The 

second study documented cyanobacteria and cyanotoxins in selected source waters of five New 

Jersey drinking water treatment plants. Results showed that cyanobacteria were present in all 

source waters along with high total phosphorus concentrations exceeding the New Jersey Surface 

Water Quality Standards, and suggesting these waters are susceptible to future cyanobacterial 

HAB events. Active monitoring of New Jersey source waters is crucial to lessen the public 
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health’s risk of exposure to cyanobacterial HAB. Lastly, in the third study, water quality and 

HAB were evaluated along the five rivers and two bays across the Hudson-Raritan Estuary 

(Estuary). Results showed that most rivers in the Estuary have more favorable water quality 

conditions for phytoplankton and HAB to grow. To improve management strategies of the 

Estuary, focus should be placed on addressing water quality and pollution in these rivers and 

bays while conducting long-term monitoring. Overall, the results of this study provide insight 

into the statewide phytoplankton and HAB conditions as an attempt to address eutrophication 

factors and water quality degradation in the highly urbanized state of New Jersey. 

Keywords: phytoplankton, New Jersey, water quality, harmful algal blooms, cyanotoxins, 

management 
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Chapter 1: Introduction 

Phytoplankton are commonly described as microscopic photosynthetic organisms that 

drift in water and have the ability to affect many ecosystem processes such as nutrient cycling, 

energy flow, and food web dynamics (Santhanam et al., 2019). These organisms have been 

documented to occupy a wide variety of habitats and salinity gradients, from freshwater to 

saltwater (Harris, 2012). Due to their role as primary producers, they comprise an important part 

of aquatic ecosystems and have been estimated to generate half of the atmosphere’s oxygen 

(Falkowski, 2012; Paerl & Justić, 2011; Reynolds, 2006). They play a crucial role in the Earth’s 

carbon cycle since, through the process of photosynthesis, phytoplankton transform inorganic 

carbon in the atmosphere and water into organic compounds (Reynolds, 2006). While 

phytoplankton are critical to biogeochemical cycles, some can form blooms and impact humans 

and other organisms (Chorus & Welker, 2021). Phytoplankton are capable of forming algal 

blooms when their biomass concentration increases through biological and physical processes 

(Shumway et al., 2018). Some taxa such as Aphanizomenon, Dolichospermum, Nodularia, and 

Cylindrospermopsis have the capability to fix nitrogen and access nitrogen supplies in nitrogen-

limited conditions, providing a competitive advantage over non-nitrogen fixing phytoplankton 

(Cottingham et al., 2015).  

1.1 Harmful Algal Blooms 

While cyanobacterial blooms have existed for billions of years, there is a documented 

increasing global trend in cyanobacterial dominance over the past 200 years, with the most rapid 

increase occurring after 1945 (Taranu et al., 2015). Harmful algal blooms (HAB) occur when 

phytoplankton grow in excess, become dominant, and cause harmful effects on people, flora, and 
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fauna (Sellner et al., 2003).  HAB can produce toxic effects through toxin production of some 

phytoplankton species, such as cyanobacteria (cyanotoxins), dinoflagellates (dinotoxins), and 

diatoms (diatom toxins) (Granéli, 2006). Furthermore, algal biomass overabundance can have 

non-toxic effects through increased turbidity, blocking out sunlight needed for other organisms 

to grow, and clogging fish gills which can lead to respiratory failure (Bruno et al., 1989; 

Meriluoto et al., 2017; Potts & Edwards, 1987; Weiss et al., 2016). Anoxia can also occur when 

oxygen consumption is greater than production due to decomposition of large amounts of 

biomass and organic matter (Zingone & Wyatt, 2005). When the algae die and decompose, they 

consume oxygen in the water leading to hypoxic or anoxic conditions, further affecting fish and 

bottom-dwelling organisms (Lester et al., 2016; Weiss et al., 2016). Hence, HAB can have 

deleterious effects on aquatic environments, affecting food webs, habitat and trophic structures, 

ecological integrity, and ecosystem services (Havens, 2008; Kleinteich et al., 2012). Adverse 

impacts on wildlife include but are not limited to illness and death (Anderson et al., 2012). 

Cyanobacteria such as Aphanizomenon, Cylindrospermopsis, Dolichospermum, Microcystis, 

Nodularia, and Planktothrix are commonly reported as dominating cyanobacterial HAB 

(Huisman et al., 2018).  

1.1.1 Economic Impacts  

In addition to human health and ecological impacts, HAB also produce substantial 

economic impacts. However, quantifying the true economic impact of HAB is difficult due to 

complications when estimating their effects on human health and ecosystem services (Kudela et 

al., 2015). Impacted human activities that can be quantified include tourism, fisheries, drinking 

water supply, health care, desalination plants, aquaculture, etc. (Kudela et al., 2015). Other costs 

relating to HAB monitoring, mitigation, and research are important to estimate and should be 
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included in the operation budget since they help reduce annual economic losses (Kudela et al., 

2015). Annual expenses related to HAB impacts on US freshwaters have been estimated at $4.6 

billion in 2014; costs used to estimate this number included those related to recreational 

activities, drinking water utilities, real estate, and recovery of endangered species (Bernard et al., 

2014). These costs are expected to rise considerably due to inflation and the increasing global 

trend of cyanobacterial HAB. Other estimates of HAB have reported that global impacts on 

human health cost over $4 billion per year (Berdalet et al., 2016; GESAMP, 2001). Annual 

estimated losses related to HAB in the US have increased from $50 to $82 million dollars per 

year; costs are generally attributed to public health, commercial fisheries, tourism and recreation, 

and HAB monitoring and management (Anderson et al., 2012; Hoagland & Scatasta, 2006).  

1.1.2 Ecological Effects  

When compared to other phytoplankton groups, high cyanobacteria presence can further 

reduce the energy flow to upper trophic levels due to their poor nutritional value (Brett et al., 

2000). During a HAB event, algae and cyanobacteria that have aggregated towards the surface 

block the sunlight that other aquatic organisms need to grow and survive (O’Hare et al., 2018). 

The reduction of light in the littoral zone can affect prey who need ample light for detecting 

predators, even influencing habitat choice and weight in some organisms such as larval pike 

Esox lucius (Engström-Öst & Mattila, 2008; Ferrari et al., 2010). Food web dynamics are further 

influenced by cyanobacterial blooms since they have poor nutritional value, produce toxins and 

can interfere with large zooplankton feeding (Vanni & Lampert, 1992). This in turn excludes 

large zooplankton and can lead to a shift in the community towards small zooplankton taxa such 

as cladocerans which have different food sources like picoplankton (Gilber, 2022; Karpowicz et 

al., 2020). Overall, heterotrophic biomass is decreased and the efficiency of transfer between 
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phytoplankton and zooplankton is reduced (Karpowicz et al., 2020; Moustaka-Gouni & Sommer, 

2020). Furthermore, cyanobacterial blooms can negatively affect fish dynamics. In the presence 

of cyanobacteria dominated HAB, if the dominant fish do not feed on cyanobacteria, such as 

cyprinids, it can lead to a high quantity of cyanobacteria biomass present at the end of a bloom, 

which decays and releases dissolved organic carbon (DOC) (Moustaka-Gouni & Sommer, 2020). 

This availability of DOC increases bacterial growth leading to a shift in the carbon and energy 

sources of organisms atop the food web (Work et al., 2005). Overall, in the absence of 

cyanobacteria-feeding fish, the food web can extend and lead to a lower ratio of fish production 

to primary production (Sommer et al., 2002).  

Cyanobacteria dominated HAB effects on waterbodies can fluctuate throughout the day. 

During the daylight, high photosynthetic activity by cyanobacteria can exhaust the dissolved CO2 

concentrations causing increases in pH and dissolved oxygen concentrations (Ibelings & 

Maberly, 1998; Verschoor et al., 2013; Vos & Roos, 2005). This diurnal increase in pH has been 

documented to impair chemoreception in aquatic organisms such as Physa acuta, affecting 

individual fitness (Turner & Chislock, 2010). At night, they switch to respiration and reduce 

water pH and dissolved oxygen concentrations which can cause kills of fish and invertebrates 

(Griffith & Gobler, 2020). When HAB die, microbial decomposition of cyanobacteria generates 

either hypoxic or anoxic conditions resulting in unsuitable environments for most organisms to 

survive, ie. Dead zones (Vos & Roos, 2005).  

One of the world’s largest dead zones is located in the Gulf of Mexico where benthic 

hypoxia can reach an area up to 23,000 km2 (Rabalais & Tuner, 2019). Hypoxia in the Gulf of 

Mexico is promoted by strong temperature and salinity-driven stratification and decomposition 

of organic matter (Rabalais et al., 1991). This organic matter originates from the Mississippi 
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River and phytoplankton blooms which are promoted by river nutrients (Eadie et al., 1994; 

Turner & Rabalais, 1994). Agricultural nutrient pollution, urban runoff, and wastewater are the 

main contributors of excess river nutrients in the Mississippi River (Rabalais & Turner, 2019). 

Hypoxia/anoxia conditions have caused large mortality events due to lack of oxygen required for 

survival of some aquatic organisms (Rabalais et al., 2001a; Diaz & Rosenberg, 2008). Other 

organisms such as fish, crabs, squid, and shrimp, have been known to move towards higher 

oxygenated waters inland waters, deeper waters, or higher in the water column (Rabalais et al., 

2001a). The organisms that can survive in low oxygenated conditions are then reduced which 

can ultimately affect ecosystem structure and function, ie. lower secondary production (Rabalais 

et al., 2001b). Additionally, hypoxia/anoxia can also affect human health through toxic blooms 

and the economy from fishery production losses (Diaz, 2001; Diaz & Rosenberg, 2011).  

Due to these hypoxia impacts in the Gulf of Mexico, water quality improvement efforts 

have gone underway. While water quality has been improved in some areas of the Mississippi 

River through conservation practices, other areas experience increased nutrient loads (Rabalais & 

Turner, 2019). Initiatives like the Mississippi River Nutrient/Gulf of Mexico Hypoxia Task 

Force (2001) proposed to reduce the size of the hypoxic zone to 5000 km2 or less in 5-years by 

2015. However, this goal was not reached and, consequently, has been extended to 2035 with a 

20% reduction of nitrogen and phosphorus loads in areas surrounding the Mississippi River 

(Mississippi River/Gulf of Mexico Watershed Nutrient Task Force, 2015). Overall, the dead 

zone in the Gulf of Mexico has not experienced a significant improvement as of 2019 and no 

solution is available to help create significant change (Rabalais & Turner, 2019). 
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1.1.3 Climate Change  

Waterbodies worldwide are under threat due to the impending effects associated with 

climate change trends and increasing surface temperatures which are predicted to have long-

lasting negative impacts on recreational activities and water quality (Woolway et al., 2020). 

HAB incidents have seen an increased trend over the past years in freshwater, brackish and 

marine systems, stimulated by anthropogenic nutrient pollution and climate change trends 

(Taranu et al., 2015). Similarly, New Jersey reports indicate that there has been an increase in 

frequency and duration of HAB events in recreational waters over the last four years (NJDEP, 

2022a). Humans substantially contribute to the eutrophication of waters through fertilization of 

agricultural crops, industrial and sewage waste, etc. (Hamilton et al., 2016).  

Climate change can be an additional catalyst for the expansion of HAB due to 

contributing factors such as increasing global temperatures, sea level rise, drought, and changing 

precipitation patterns (Paerl & Huisman, 2009; Paerl & Paul, 2012; Paul, 2008). At higher water 

temperatures, some cyanobacteria are capable of rapid growth since they have the capability to 

increase the abundance of photosynthetic proteins and shift state transitions (Mackey et al., 

2013). Additionally, increased water temperatures can prolong thermal stratification which can 

decrease the presence of competing phytoplankton and increase internal phosphorus loading 

from sediments (McCarthy et al., 2007; Woolway et al., 2021). Studies have suggested that HAB 

can increase the water surface temperature of individual waterbodies, creating a positive 

feedback loop that favors cyanobacteria dominance (Paerl & Huisman, 2008). Moreover, 

increased water temperatures in the spring season have been associated with phytoplankton 

utilizing nutrients earlier which can facilitate nitrogen limitation and subsequently support 

diazotrophic cyanobacteria (Stal, 2009). Extreme rainfall events are predicted to increase in 
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frequency which increase runoff and therefore discharge large amounts of nutrients from 

anthropogenic sources into coastal and marine waters (Fong et al., 2020; Paerl & Huisman, 2009; 

Paerl & Otten, 2013; Paerl et al., 2011). Nutrient enrichment combined with increased residence 

time can lead to greater nutrient sequestration, cyanobacterial dominance, and reduced 

biodiversity (Paerl & Huisman, 2009; Paerl & Otten, 2013; Paerl et al., 2011). Moreover, rising 

sea levels, droughts, and freshwater usage have contributed to a global increase in salinization 

(Paerl & Otten, 2013). Freshwater cyanobacterial taxa that dominate HAB such as Anabaena, 

Anabaenopsis, Microcystis, Nodularia, and Lyngbya are salt-tolerant and are often found present 

in brackish waters (Moisander et al., 2002; Paerl & Fulton, 2006; Tonk et al., 2007; Whitton & 

Potts, 2007). This creates concerns for brackish water and marine organisms, and humans due to 

their possible exposure to greater cyanotoxin concentrations (Paerl & Paul, 2012). Excess 

nutrients lead to increased growth and dominance of these taxa in brackish water systems (Paerl 

& Otten, 2013). In addition, some cyanobacteria taxa such as Cylindrospermopsis, 

Aphanizomenon, and Lyngbya have been documented to expand their geographical range due to 

climate change trends (Conley, 2009; Padisak, 1997). Cylindrospermopsis can only grow and 

proliferate in warm waters above 20°C which indicates a possible link to global warming 

trends (Cirés et al., 2013). Similarly, some Aphanizomenon species possess akinetes which are 

suggested to be activated by temperature increases (Conley, 2009).  

1.2 Health Impacts of Cyanotoxins 

Cyanotoxins can be intracellular, i.e. produced and retained within the cyanobacterial 

cells, or extracellular i.e. when toxins are released during cell death and lysis (USEPA, 2015a-e). 

These toxins can be classified by their toxicological targets: the nervous system (neurotoxins), 

liver (hepatotoxins), both neurotoxic and hepatotoxic effects (cytotoxins), or the skin 



NEW JERSEY PHYTOPLANKTON AND HARMFUL ALGAL BLOOMS  

 

8 

(dermatoxins) (USEPA, 2015a-e). Toxins such as hepatotoxins (i.e., microcystins) and 

neurotoxins (i.e., anatoxin-a) can produce both acute and chronic health effects (Paerl & 

Huisman, 2009). For example, microcystin-LR can cause a wide range of health effects such as 

abdominal pain, diarrhea, vomiting, and pneumonia (USEPA, 2021). The neurotoxin anatoxin-a 

can cause effects such as numbness, drowsiness, and respiratory paralysis leading to death 

(USEPA, 2021). Further, some cyanobacterial taxa such as the commonly reported North 

American freshwater cyanobacterium Dolichospermum contains several species capable of 

producing a variety of toxins including anatoxin-a and saxitoxins (neurotoxins), microcystins 

(hepatotoxins), and cylindrospermopsin (cytotoxins) (USEPA, 2015a-e). Other cyanotoxins, such 

as the amino acid β-N-methylamino-L-alanine (BMMA), are of particular interest due to ongoing 

investigations of its possible health risk on human neurodegenerative diseases such as 

amyotrophic lateral sclerosis/parkinsonism dementia complex (ALS/PDC) (Ra et al., 2021). 

Common recreational activities associated with HAB exposure include swimming, 

boating, bathing, water sports, etc. (Dietrich et al., 2008); humans can be exposed to cyanotoxins 

in recreational waters through the inhalation or ingestion of HAB-impacted water, or through 

skin exposure (Backer et al., 2010; Carmichael & Boyer, 2016; De Figueiredo et al., 2004; 

Hudnell, 2010; USEPA, 2021). Stewart et al., (2006) reported that cyanotoxin exposure through 

ingestion and inhalation of aerosolized toxins could produce respiratory symptoms, such as 

pneumonia. Furthermore, the ingestion of cyanotoxins could cause damage to internal organs 

such as non-alcoholic liver disease (Zhang et al., 2015). Skin exposure has been reported to 

cause skin irritation and allergies (Dionysiou, 2010). Among the most commonly reported 

symptoms related to cyanobacteria exposure are gastrointestinal symptoms, skin rashes, and 

fever (Stewart et al., 2006). Giannuzzi et al. (2011) reported a case of acute intoxication of a man 
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after being submerged in a recreational lake which had a bloom with 48.6 ug/L of microcystins. 

Symptoms after exposure ranged from abdominal pain, fever, and pneumonia to hepatotoxicosis 

and multiple organ failure (Giannuzzi et al., 2011). In a survey study of illnesses related to 

cyanobacteria dominated HAB events in 15 US states, results suggested that 3,194 illnesses 

occurred when cyanobacterial toxins were detected (Backer et al., 2015). Most of these illnesses 

occurred through ingestion of seafood that had been exposed to cyanobacteria dominated HAB 

and 176 events occurred due to recreational activity exposure (Backer et al., 2015). It is 

important to note that there are limitations in assessing recreational exposure to cyanobacteria 

and their toxins due to the variation of exposure in terms of intensity and duration, HAB toxicity, 

and cyanotoxins present and their concentrations (Koreivienė et al., 2014). In addition, reports on 

HAB exposure in recreational waters are limited due to their typically low sample size of 

exposed humans and their range of sensitivity to the cyanotoxins (Koreivienė et al., 2014). 

Animal deaths have been reported within minutes to hours of exposure to cyanotoxins, 

with 368 verified cases of pet dog deaths in the US between 1920 and 2012 (Backer et al., 2015; 

Carmichael & Boyer, 2016; Foss et al., 2019). Microcystins have been associated with wildlife, 

cattle, and dog deaths (Foss et al., 2018; Puschner et al., 1998). Bengis et al. (2016) reported 

several mortality events of white rhinoceroses, zebras and wildebeest that occurred during 

confirmed HAB events with high microcystin concentrations. Sublethal effects of saxitoxins and 

anatoxin-a on Daphnia similis and Daphnia magna were documented to produce both 

physiological and behavioral changes, respectively, such as decreased swimming speed (Bownik 

& Pawlik-Skowrońska, 2019; Ferrão-Filho & da Silva, 2020).  
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1.3 Cyanotoxin Advisories 

The World Health Organization (WHO) has proposed drinking water advisories for 

microcystin-LR at 1 μg/L for lifetime drinking water and 12 μg/L for short-term drinking water 

(WHO, 2020). Recreational guidelines of cyanobacterial mass indicator values from the WHO 

are categorized into three alert levels: vigilance level (1–4 mm³/L biovolume or 1–12 μg/L 

chlorophyll a with dominance of cyanobacteria), alert level 1 (4–8 mm³/L biovolume or 12–24 

μg/L chlorophyll a with dominance of cyanobacteria), and alert level 2 (scum or transparency 

<0.5–1 m) (WHO, 2021). The WHO has also proposed recreational guideline values for the 

following cyanotoxins: microcystin (24 μg/L), cylindrospermopsin (6 μg/L), anatoxin-a (60 

μg/L), and saxitoxin (30 μg/L) (WHO, 2021). The USEPA has developed drinking water health 

advisories (over a 10-day period) for cylindrospermopsin (0.7 μg/L for infants; 3.0 μg/L for 

adults and school-age children) and microcystins (0.3 μg/L for infants; 1.6 μg/L for adults and 

school-age children) (USEPA, 2015b, 2015c). In terms of recreational criteria for cyanotoxins 

over a 10-day assessment period, the USEPA has proposed total microcystins of 8 μg/L and 

cylindrospermopsin of 15 μg/L (USEPA, 2019). Within the US, states such as Ohio, 

Pennsylvania, Oregon, Minnesota, and Vermont, among others, have adopted their own guidance 

levels or regulations for cyanotoxins (USEPA, 2023). For example, Ohio set recreational 

advisory thresholds for microcystins (8 μg/L), cylindrospermopsin (15 μg/L), anatoxin-a (8 

μg/L), and saxitoxins (0.8 μg/L) (ODH, n.d.). Cyanotoxin testing is required in Ohio drinking 

waters with advisories for microcystins (0.3 μg/L for infants and people at higher risk; 1.6 μg/L 

for pets, livestock, and all people), cylindrospermopsin (0.7 μg/L for infants and people at higher 

risk; 3.0 μg/L for pets, livestock, and all people), anatoxin-a (0.3 μg/L for infants and people at 

higher risk; 1.6 μg/L for pets, livestock, and all people), and saxitoxins (0.3 μg/L for infants and 
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people at higher risk; 1.6 μg/L for pets, livestock, and all people) (ODH, n.d.). The Pennsylvania 

Department of Environmental Protection has an advisory system for recreational activities with 

two response levels: advisory and avoid contact (PE DEP, 2023). An advisory level has 

thresholds set for microcystins (8 μg/L), cylindrospermopsin (15 μg/L), anatoxin-a (80 μg/L), 

saxitoxins (0.8 μg/L), and cyanobacteria colony density (300 cells/mL). The avoid contact level 

thresholds include microcystins (20 μg/L), cylindrospermopsin (20 μg/L), anatoxin-a (300 μg/L), 

saxitoxins (3.0 μg/L), and cyanobacteria colony density (1,500 cells/mL) (PE DEP, 2023). 

Moreover, drinking water testing is optional in Pennsylvania and advisories are based on the US 

EPA values. 

The New Jersey Department of Environmental Protection (NJDEP) began implementing 

their HAB response strategy in 2017 (NJDEP, 2021). The recreational thresholds for freshwater 

HAB were based on cyanobacterial cell densities (>20,000 cells/mL) and/or microcystins (3 

μg/L), cylindrospermopsin (8 μg/L), and anatoxin-a (27 μg/L) concentrations (NJWSA, 2019). In 

2021 the NJDEP updated the recreational guidance for HAB, implementing a six tier (none, 

watch, alert, advisory, warning and danger) system, each tier being designated with specific 

criteria and recommendations (NJDEP, 2022b). Beach closures and/or advisories were 

recommended when cyanotoxins exceeded new threshold concentrations of 2 μg/L, 5 μg/L, 15 

μg/L, and 0.6 μg/L for microcystins, cylindrospermopsin, anatoxin-a, and saxitoxins, 

respectively (NJDEP, 2022b). In 2021, 63.6% (35 of 55 suspected) waterbodies surveyed in New 

Jersey had sites with a watch advisory or greater (NJDEP, 2022a). Of the 2021 reported HAB 

alerts, 70 were reported as Watch, 51 as Advisory, and 1 as Warning. Lastly, 12 waterbodies 

were confirmed with an alert level of Watch or above during December 2021 indicating the 
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persistence of HAB through winter months. Drinking water advisories in New Jersey treatment 

facilities are optional.  

1.4 HAB Impacts on Water Treatment Facilities 

Drinking water facilities that utilize surface water as a source experience a multitude of 

complications due to HAB including filter clogging, difficulty of cyanotoxin removal during 

high bloom events, and difficulty of cyanotoxin removal due to multiple cyanotoxins present (He 

et al., 2016). In addition to toxin production, highly-dense HAB can cause issues in both 

drinking and recreational waters through taste and odor issues with impacted water often being 

described as musty or earthy (Zamyadi et al., 2015). Most cyanobacteria produce compounds 

such as 2-methylisoborneol (MIB) and Geosmin, causing taste and odor issues and often 

significant economic cost (Srinivasan & Sorial, 2011; Burr et al., 2012). Drinking water 

consumers lose confidence in the water utilities to provide safe drinking water since they can 

detect taste and odor issues at a concentration as low as 10 ng/L (Zamyadi et al., 2015). 

Moreover, drinking water purveyors might encounter difficulties in supplying safe drinking 

water to their customers at a reasonable rate when high cyanobacterial densities and cyanotoxins 

are detected in their source waters. Seven drinking water sources in New Jersey were confirmed 

with an HAB alert level of Watch or above during 2021 (NJDEP, 2022a).  

While treatments for cyanobacterial and cyanotoxin removal exist, the costs are high and 

can potentially jeopardize water quality due to the low cyanotoxin removal efficiency which 

could be as low as 60% (USEPA, 2015; Zamyadi et al., 2012). For example, in an Ohio water 

treatment plant, treatment using powdered activated carbon cost greater than $200,000 per month 

(Cheung et al., 2013). Due to the high cost associated with HAB treatment, drinking water 

source management strategies need to incorporate a range of assessments to reduce the 
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probability of cyanobacterial cell lysing and cyanotoxin release (Hitzfeld et al., 2000). This could 

help alleviate costs associated with cyanotoxin removal (Hitzfeld et al., 2000). Management 

strategies include but are not limited to dominant cyanobacterial taxa, relevant water treatment 

system, and cyanotoxin location inside the cell (intracellular) or within the water column 

(extracellular) (Westrick et al., 2010). 

1.5 Objective 

Characterizing cyanobacteria assemblages and cyanotoxins in freshwaters is crucial for 

management and monitoring of HAB. The overall goal of this dissertation is to provide much 

needed data in cyanobacteria and phytoplankton communities across New Jersey. Three case 

studies are included in chapters 2, 3, and 4: 

Chapter 2: Summer Phytoplankton Assemblages and Harmful Algal Blooms in Freshwaters of 

New Jersey. Phytoplankton assemblages are of great importance as indicators of water quality. 

This study systematically surveyed waterbodies across New Jersey to document the distribution 

and occurrence of phytoplankton. Variations in phytoplankton communities among the five New 

Jersey ecoregions were also examined. The results of this study provide insight into the 

freshwater phytoplankton communities during the cyanobacterial HAB season and their 

relationship with water quality conditions in New Jersey. The manuscript of this chapter is 

currently under review by the Northeastern Naturalist journal. 

Chapter 3: An Investigation of Cyanobacteria, Cyanotoxins and Environmental Variables in 

Select Drinking Water Treatment Plants in New Jersey. Upward trends of cyanobacterial 

Harmful algal blooms (HAB) events in drinking water sources are impacted by eutrophication. 

These cyanobacterial HAB have the potential to impact human health primarily through their 

possible cyanotoxins production. This study examined cyanobacteria and cyanotoxins in both 
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source and finished waters at five drinking water treatment plants in New Jersey. To our 

knowledge, this is the first study that examines cyanobacteria and cyanotoxins in drinking water 

sources of New Jersey and documents water quality parameters. This study suggests that 

drinking water sources in New Jersey are vulnerable to forthcoming cyanobacterial HAB.  

Chapter 4: Phytoplankton Dynamics Across the Spatial and Temporal Gradients in the Hudson-

Raritan Estuary. Estuaries supply many ecological, environmental, and economic benefits. 

However, worldwide trends for estuaries suggest a decline in water quality partly due to nutrient 

over-enrichment and eutrophication. This study documents spatial and temporal changes in 

phytoplankton and cyanobacterial communities in the Hudson-Raritan Estuary. This study 

documented the relationship between the environmental gradients along the river-estuary 

continuum, and phytoplankton and cyanobacterial composition. 
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Chapter 2 Summer Phytoplankton Assemblages and Harmful Algal Blooms in Freshwaters 

of New Jersey 

2.1 Introduction 

Anthropogenic activities such as agriculture and industry can negatively impact waters 

through nutrient over-enrichment which can lead to the sudden overgrowth or bloom of 

phytoplankton such as cyanobacteria (Bergstrom & Jansson, 2006, Elser et al., 2009; Maberly & 

Elliot, 2012; Wolfe et al., 2001). Aside from water quality impacts, cyanobacterial harmful algal 

bloom (HAB) generally have detrimental effects on the economy and public health (Brooks et 

al., 2016; Hoagland et al., 2002; Hoagland et al., 2006; Sellner et al., 2003). These anthropogenic 

effects will be further worsened by climate change trends. The predicted increases of water 

temperature, duration of thermal stratification, and precipitation can promote HAB growth 

(Beardall & Raven, 2004; Elser et al., 2009; Griffith & Gobler, 2020; Richardson et al., 2018). 

Thus, phytoplankton and HAB are imperative to study due to increasing anthropogenic 

disturbances.  

Cyanobacteria form an important component of aquatic foodwebs and of the global carbon 

and nitrogen cycles (Kriss, 1954; Buford et al., 2020). However, HAB are of great public health 

concern since they can produce cyanotoxins that have a wide range of harmful health effects to 

aquatic and terrestrial biota. These toxins can affect the nervous system (neurotoxins), liver 

(hepatotoxins), or the skin (dermatoxins) and produce symptoms such ranging from mild rashes 

to death (USEPA, 2019). HAB can vary greatly in toxin production, with some blooms that have 

reported undetectable cyanotoxin levels (Bolch et al., 1997). Moreover, eutrophication can 

disrupt aquatic ecosystems by altering food webs, nutrient cycles, resilience and regime shifts of 

lentic systems, and lowering biodiversity (Cook et al., 2018; Karpowicz et al., 2020; Cottingham 
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et al., 2015; Sterner & Elser, 2003). In eutrophic lakes, HAB form dense layers at the water 

surface which could restrict sunlight and create a shift in the phytoplankton community towards 

a dominance of cyanobacteria (Feuchtmayr et al., 2009). Shifts in the phytoplankton community 

could be influenced by several cyanobacteria taxa through buoyancy regulation and vertical 

migration, which allow for access to sunlight and nutrients (Brookes & Ganf, 2001; Overman & 

Wells, 2022).  

Phytoplankton community composition can be influenced by both biotic and abiotic factors. 

Abiotic factors such as the geologic setting of an area impacts its land use and determines the 

hydrology of a system, e.g., an area with nutrient rich soils is often used for agriculture (Rimet et 

al., 2007). Hence, hydrologically and geologically similar waterbodies are likely to house similar 

compositions of phytoplankton (Abonyi et al., 2014; Rimet, 2009). The ecoregions concept, 

which classifies areas with similar environmental resources and ecosystems, is often applied 

while designing regional level integrated monitoring and management (Gerritsen et al., 2000; 

Omernik & Griffith, 2014). 

New Jersey freshwaters, encompassing roughly 1,900 lentic waterbodies, experience HAB 

and cyanotoxins which can impact human health (Brooks et al., 2016; NJDEP, 2020). Report 

estimates show a 26% increase in confirmed blooms between 2019 and 2020 (NJDEP, 2020). 

However, this could reflect the slight increase in the total number of waterbodies sampled from 

2019 (68) to 2020 (83) (NJDEP, 2020). Moreover, annual precipitation in New Jersey decreased 

between 2019 and 2020 from 51.55 in to 49.85 in, respectively, suggesting other environmental 

conditions possibly influenced this increase (ONJSC, n.d.). 

To better protect public health from the effects of HAB, the NJDEP developed a five-tier 

alert index based on cyanobacterial cell count and/or cyanotoxin concentrations with suggestions 
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on recreational uses for affected waterbodies (NJDEP, 2020). A watch level indicates a 

suspected HAB through visual survey, or a confirmed HAB defined by a cyanobacterial cell 

count between 20,000 and 80,000 cells/mL and no cyanotoxins detected (NJDEP, 2020). 

According to the HAB alert index, a total of 47 (of 83) waterbodies surveyed were confirmed as 

a watch level or greater in 2020, while 102 (of 130) events were confirmed in 2021 (NJDEP, 

2020). Furthermore, data suggests that HAB are recurring in a great number of freshwaters and 

remaining until the winter months (NJDEP, 2020).  

To date, there are a limited number of studies whose objective focus on documenting 

information about select taxonomic groups in a few New Jersey waterbodies (Chu et al., 2013). 

A comprehensive phytoplankton community level study is lacking for New Jersey freshwaters. 

Thus, there is an urgency to document and make publicly available information on freshwater 

phytoplankton community assemblages in New Jersey. This study systematically surveyed 

waterbodies across New Jersey to document the distribution and occurrence of phytoplankton. 

Variations in phytoplankton communities among the five New Jersey ecoregions were also 

examined. An ecoregion analysis provides holistic ecosystem management strategies which 

might be more efficient than assessing individual waterbodies in the same ecoregion that are 

experiencing similar problems. This analysis helps integrate information from various 

stakeholders that are responsible for different resources in the same area which can ultimately 

help improve HAB forecasting. The objective extends to identify an environmental stressor that 

have the potential to trigger HAB in New Jersey aquatic ecosystems. 
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2.2 Materials and methods 

A total of 110 water bodies were selected for this study (Figure 2.1). The selected study sites 

were either chosen randomly (14 out of 110 or 12.7%), as a part of the routine lake monitoring 

program by the New Jersey Department of Environmental Protection (NJDEP) (45 out of 110 or 

40.9%), or as a part of the NJDEP’s HAB response program (51 out of 110 or 46.4%). Study 

sites consisted of lakes (75 out of 110 or 68.2%), ponds (19 out of 110 or 17.3%), reservoirs (10 

out of 110 or 9.1%), and rivers (6 out of 110 or 5.5%) in New Jersey. These waterbodies spread 

across 18 New Jersey counties, with Sussex (21 out of 110 or 19.1%), Passaic (14 out of 110 or 

12.7%), and Morris (10 out of 110 or 9.1%) counties comprising the greatest percentage of 

waterbodies included in this study.  
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Figure 2.1 A total of 110 waterbodies were selected for this study across the five New Jersey 
ecoregions: Northeastern Highlands (n=37), Northern Piedmont (n=25), Ridge and Valley (n=7), 
Middle Atlantic Coastal Plain (n=4), and Atlantic Coastal Pine Barrens (n=37). 

 
The U.S. Environmental Protection Agency (U.S. EPA) designated the State of New Jersey 

into five ecoregions: Northeastern Highlands (refer to as Highlands), Middle Atlantic Coastal 

Plain (refer to as Coastal Plain), Northern Piedmont (refer to as Piedmont), Ridge and Valley 

(refer to as Ridge and Valley), and Atlantic Coastal Pine Barrens (refer to as Pine Barrens) 

(Omernik & Griffith, 2014). The selected waterbodies were located in all five ecoregions: 

Highlands (37 out of 110 or 33.6%), Pine Barrens (37 out of 110 or 33.6%), Piedmont (25 out of 

110 or 22.7%), Ridge and Valley (7 out of 110 or 6.4%), and Coastal Plain (4 out of 110 or 

3.6%). The Highlands is composed of gneiss, limestone and shale and thus can have either 
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nutrient-poor or nutrient-rich soils ecoregion (U.S. EPA ORD, 2012). Streams in most of the 

ecoregion have been characterized as having higher calcium, magnesium, and bicarbonate ions 

and lower total suspended solids (TSS) due to low erosion rates (Anderson & George, 1966). 

However, TSS values are amongst the highest in the State towards the western portion of the 

ecoregion (90-250 ppm) in which streams are influenced by limestone and dolomite deposits 

(Anderson & George, 1966). Procopio & Zampella (2023) reported median nutrient 

concentrations in this ecoregion of dissolved organic carbon (DOC) (2.9 mg/L), phosphorus 

(0.018 mg/L), TN (0.923 mg/L). This ecoregion is characterized by forested, farmland and rural 

land types. 

The Coastal Plain houses gravels, sands and silts largely dominated by wetlands and pine 

forests while streams have higher calcium, magnesium, and sulfate chloride (Anderson & 

George, 1966; U.S. EPA ORD, 2012). Streams in this ecoregion have highly variable TSS 

concentrations ranging from 10 to 500 ppm (Anderson & George, 1966). The study sites selected 

within the Coastal Plain ecoregion in this study were located in both the Inner and Outer 

Coastal Plain province reported in Procopio and Zampella (2023). Low nutrient concentrations 

have been reported for the Inner and Outer Coastal Plain provinces with median concentrations 

of 3.7 mg/L and 5.7 mg/L (DOC), 0.024 mg/L and 0.013 mg/L (phosphorus), and 1.4 mg/L and 

0.6 (TN) (Procopio & Zampella 2023). The Pine Barrens study sites were also located in both 

the Inner and Outer Coastal Plain provinces, and have been characterized by low pH and low 

nutrients (mean 5.9) (Procopio & Zampella 2023). The Pine Barrens have widespread low 

nutrient soils, and is composed of clays, silts, marls, sands, gravels and shell beds (U.S. EPA 

ORD, 2012). Woodlands dominate and occur along with wetlands, agricultural and urban land 

use types. Streams are characterized by higher sodium potassium and sulfate chloride, and high 
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iron concentrations (10 ppm) due to groundwater influence (Anderson & George, 1966). Lower 

TSS values in this ecoregion are partially due to the high permeability of its soils (Anderson & 

George, 1966). 

The Piedmont is comprised of shale, sandstone and argillite with highly fertile soils (U.S. 

EPA ORD, 2012). Streams are similar to the Coastal Plain with higher calcium, magnesium, and 

sulfate chloride (Anderson & George, 1966). TSS values are higher (ranging from 40 to 120 

ppm) due to higher silt and clay concentrations present in the sediment and lower vegetation 

(Anderson & George, 1966). However, streams in this ecoregion that are located in the eastern 

portion, close to New York City, are characterized by higher percentage of chloride and nitrate 

ions, and have higher TSS (130-450 ppm) concentrations (Anderson & George, 1966). Some 

streams closer to New York City also contain higher iron concentrations (>1.0 ppm), possibly 

due to wastewater influence and decomposition of vegetation (Anderson & George, 1966). 

Median nutrient concentrations in the Piedmont province have been documented at 3.8 mg/L 

(DOC), 0.042 mg/L (phosphorus), and 1.47 mg/L (TN) (Procopio & Zampella 2023). Land use 

types that dominate this ecoregion are agriculture and urban land.  

Ridge and Valley is a diverse ecoregion with low fertility ridge soils composed of sandstone 

and higher fertility valley soils composed of limestone, shale or glacial till (U.S. EPA ORD, 

2012). The streams in this ecoregion have higher calcium, magnesium, and bicarbonate ions 

(Anderson & George, 1966). Lower TSS (30-90 ppm) concentrations characterize this 

ecoregion’s streams due to both high runoff rates and low erosion rates (Anderson & George, 

1966). Median nutrient concentrations in the Ridge and Valley province have been reported at 

2.9 mg/L (DOC), 0.015 mg/L (phosphorus), and 0.8 mg/L (TN) (Procopio & Zampella, 2023). 

Ridges are dominated primarily by forest land type and valleys by agriculture and farming. 
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Ecoregion level III data was obtained from the U.S. EPA website and analyzed using the ArcGIS 

Pro software (U.S. EPA ORD, 2012).  

 

2.2.1 Phytoplankton community 

Selection of grab sample numbers and location were determined by the NJDEP following the 

state Field Sampling Procedures Manual, 125 mL water samples were collected in amber plastic 

bottles from up to four sampling locations per water body (NJDEP, 2005). Grab samples from 

multiple locations within a waterbody were not combined or average, they were each treated as a 

single sample. The frequency of sampling per waterbody was determined by the purpose of 

collection. Waterbodies within the randomized program were collected only once. Routine lake 

monitoring program samples were collected one to two times in each waterbody. Whereas 

waterbodies within the NJDEP’s HAB response program were sampled up to 24 times. A total of 

196 water samples were collected in summer (June) and early fall (October) between 2016 and 

2019. Grab samples were collected at 0.5m depth in amber bottles, wrapped in foil, kept in the 

cold (4°C), and transported to a Montclair State University laboratory. Samples were then 

preserved in Lugol’s Iodine solution and stored in cold and dark conditions.  

For cell identification and enumeration, the unconcentrated samples were homogenized by 

carefully inverting the container 25 times prior to processing while reducing damage of 

phytoplankton structural features. For each replicate, there was 10µl of a sample that was 

pipetted into a hemocytometer chamber (Fisher Scientific 02-671-51B) and allowed it to settle 

for one minute prior to being observed under a compound light microscope (Fisher Scientific™ 

AX800). Due to the small pipette opening, this method might have resulted in bias towards 

phytoplankton with smaller cell sizes. The hemocytometer had three different sizes of counting 
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grids: small, medium and large. The grid was selected based on the dominant particle size and 

density. If a sample contained large, sparse cells, the large-size grid containing four large squares 

were used. On the contrary, if a sample presented small, dense cells, a small-size grid containing 

five small squares would be utilized. Cells with GALD (greatest axial linear dimension) of less 

than 2μm were not recorded. Cells were counted and identified at 400x to the genus level or the 

lowest taxonomic level possible using published freshwater phytoplankton identification 

materials including Freshwater algae of North America: ecology and classification (Wehr et al., 

2015), Cyanoprokaryota-1. Teil/Part 1: Chroococcales (Komárek & Anagnostidis, 2008), 

Cyanoprokaryota-2. Teil/Part 2: Oscillatoriales (Komárek & Anagnostidis, 2008), and 

Cyanoprokaryota-3. Teil/Part 3: Heterocytous Genera (Komárek, 2013). For quality control, 

samples were counted in triplicates to account for natural variability. The triplicate results from 

each sample were averaged. Averages of all phytoplankton taxa (Phyto) and cyanobacteria 

(Cyano) only taxa were reported in this study. Percent cyanobacteria dominance per site was 

defined as the sum of cyanobacteria taxa divided by the total number of phytoplankton 

individuals in that site. To further study the distribution of each taxon, if a taxon was observed it 

was documented as present. Distribution was calculated by dividing the number of waterbodies 

in which the taxon was observed by the total number of waterbodies (110) examined in this 

study. 

When a taxon was observed in a waterbody, it was considered as present in that waterbody. 

Frequency of presence for each taxon was calculated in this study by dividing the number of 

waterbodies present with the taxon by the total of waterbodies observed (110). 
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The Shannon Wiener Diversity Index (DI) was used to measure phytoplankton diversity 

within the phytoplankton community in each waterbody. The following formula was used to 

calculate the Shannon Wiener Index: 

H = – ∑ pi ln pi 

Where pi = proportion of total sample represented by species i 

 

2.2.2 Water quality data 

The water quality of 181 water samples were analyzed by the NJDEP. We explored water 

quality parameters commonly used to assess HAB conditions. Chlorophyll is essential to perform 

photosynthesis, present in all phytoplankton and commonly used as an indicator of primary 

production (Smyth et al., 2004; Zeng & Li, 2015). Chlorophyll-a (Chl-a) is the primary 

photosynthetic pigment for phytoplankton; Chl-a is commonly used as a proxy of phytoplankton 

primary production in freshwater ecosystems (Boyer et al., 2009; Cullen, 1982; Gregor & 

Maršálek, 2004; Riley, 1937). The following parameters were measured in situ using a 

multiparameter field meter: dissolved oxygen (DO), pH, water temperature (T), specific 

conductance (SPC) (HQ40D portable multi meter, Hach; Loveland, CO). The fluorescence of 

chlorophyll (Chl) and fluorescence of phycocyanin (PC) were measured in situ using a handheld 

fluorometer (CyanoFluor, Turner Designs; San Diego, CA). Secchi depth (Secchi) was measured 

in situ using a secchi disk. Laboratory analyses were conducted for the following parameters: 

total phosphorous (TP) (USGS-I-4650-03), total nitrogen (TN) (USGS-I-4650-03), alkalinity 

(Alk) (SM 2320 B-11), hardness (Hard) (SM 2340 C-11), and chlorophyll-a (Chl-a) (EPA 

445.0). Toxin analysis for microcystins (MC), cylindrospermopsin, and anatoxin-a was 
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conducted using the Enzyme-Linked ImmunoSorbent Assay (ELISA), EPA method 546, an 

automated plate reader and ABRAXIS kits (NJDEP, 2022). 

The water quality data of the 181 samples was included in the analysis of both statewide and 

ecoregion-specific environmental conditions to identify the environmental triggers of HAB. In 

order to help protect the public from the risks associated with cyanotoxin exposure, the NJDEP 

provides thresholds for toxins such as microcystins (NJDEP, 2020). This threshold was modified 

on February 2022 to 2 µg/L (NJDEP, 2022). Prior to this date, the NJDEP recreational 

microcystins threshold was 3 µg/L. This study used the 3 µg/L microcystins threshold since the 

samples used in the analysis were collected between 2016 and 2019. Microcystins concentrations 

below the detection limit of 0.15 μg/L were reported as undetectable. TP concentrations below 

the detections limit of 0.01 mg/L were reported as undetectable. TN concentrations below the 

detection limit of 0.1 mg/L were reported as undetectable. 

 

2.2.3 Statistical analysis  

Shapiro-Wilk’s test showed that data was not normally distributed, thus we conducted non-

parametric tests. Bivariate plots were used to discern relationships between water quality 

parameters and phytoplankton and cyanobacterial density. Spearman’s Correlation was also 

conducted to test correlations between water quality parameters and phytoplankton and 

cyanobacterial density (α = 0.05). The significance threshold was set at 0.05 and the Spearman's 

rank correlation coefficient was denoted by the letters rs. A multivariate statistical method, the 

Principal Component Analysis (PCA), was used to examine similarities between environmental 

variables and phytoplankton and cyanobacterial density (α = 0.05). Significant differences 

between the means of water quality parameters and phytoplankton and cyanobacterial density in 
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different ecoregions and waterbody type were determined using a Kruskal-Wallis test (α = 0.05). 

A Dunn’s post hoc test was used to determine which means were significantly different. All 

statistical analyses were done using JMP Pro 15. 

Cylindrospermopsins and anatoxin-a were excluded from statistical analyses due to the 

limited number of data points above the lower detection limit. If a detected concentration was 

below the parameter’s lower detection limit, one half of the detection limit was used for the 

purpose of statistical analysis. For example, if microcystins concentrations were below its lower 

detection limit of 0.15 μg/L, the data was analyzed as 0.075 μg/L.  

 

2.3 Results 

2.3.1 Water quality conditions and HAB advisory in New Jersey 

Due to the increasing incidence of HAB in New Jersey, a statewide analysis of cyanobacteria 

was performed. Cyanobacteria were found present in 87.2% of the water samples, with cell 

densities ranging from 150 to 11,730,000 cells/mL, and a medium density of 8,700 cells/mL. The 

median cyanobacterial dominance between all sites was 71.8%, with 62.8% of samples (124 of 

196) having cyanobacteria dominance greater than 50%, and 5.6% (11 of 196) of samples at 

100% dominance. Approximately 38.8% of samples (76/196) had cell densities in the 20,000 to 

80,000 cells/mL range. Microcystins were detectable in 58.0% of samples (105/181) with a 

median of 0.22 μg/L (Table 2.1). According to the NJDEP recreational health advisory criteria, 

13.2% (24/181) of samples analyzed between 2016 and 2019 were above microcystins thresholds 

demonstrating a potential health risk (NJDEP, 2020). Furthermore, yearly trends indicated that 

samples exceeded thresholds from 10.2% (12/118) in 2018 to 19.0.% (12/63) in 2019. Other 
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toxins analyzed were detected less frequently than microcystins. Anatoxin-a was detected in 11 

samples with the highest concentration at 5 μg/L, while all cylindrospermopsin concentrations 

were below the lowest detection limit.  

Water quality results indicated Chl-a concentrations of 0.60 to 152.80 μg/L with a median of 

10.60 μg/L (Table 2.2). As cyanobacterial biomass increases, so do the fluorescence of 

phycocyanin (Brient et al., 2008). Results showed PC values ranging from 4.53 to 3,773.00 RFU 

(median 30.07 RFU). Nutrients, including nitrogen and phosphorus, fuel cyanobacteria growth in 

waterbodies leading to HAB. Statewide, New Jersey waterbodies were characterized by TP 

ranging from UD to 143.13 mg/L (median 0.02 mg/L), and TN concentrations ranging from 0.23 

to 2.44 mg/L (0.39 mg/L). A total of 6.6% (12 of 181) of samples did not meet the New Jersey 

Surface Water Quality Standards (SWQS) for TP (Table 2.1). While not statistically significant, 

there was a decrease observed between samples that exceeded TP thresholds from 9.3% (11 of 

118) in 2018 to 1.6% (1 of 63) in 2019. With increased nutrients leading to increased HAB 

frequency and duration, water quality will be affected through diel impacts of HAB on DO and 

pH. A total of seven (of 181; 3.9%) samples failed to meet the SWQS for DO. A greater 

percentage of samples (8.8%; 16 of 181) did not meet SWQS for pH. Water quality standards 

were not met in some waterbodies in New Jersey, indicating that the health of these waters 

should be protected. 
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The highest percentage of cyanobacteria was recorded in reservoirs, which exhibited the lowest 

median DI values at 1.11 (ranging from 0.11 to 3.65). No golden algae were recorded present in 

reservoirs. 

The most widely distributed phytoplankton taxa were the cyanobacteria. Among all the 

cyanobacteria, the most widely distributed taxa were Synechococcus 74.5%, Aphanocapsa 

40.9%, Microcystis 36.4%, and Dolichospermum 31.8% (Table 2.3). Green algae were also 

found widely distributed in New Jersey waters, with Chlorella (73.6%), Chlamydomonas 

(54.5%, Selenastrum 47.3%, Scenedesmus 45.5%, and Oocystis 40.0% among the most 

frequently seen (Table 2.3). Diatoms such as Cyclotella (21.8%), Synedra 18.2%, Navicula 

16.4% were observed at a lower frequency than green algae and cyanobacteria (Table 2.3). Less 

distributed phytoplankton groups included cryptomonads (Cryptomonas (20.9%), and 

Chroomonas 10.0%), and euglenoids (Phacus (20.0%) and Trachelomonas 20.9%) (Table 2.3). 

Furthermore, the dinoflagellates (Gymnodinium (3.6%)), cryptomonads (Dinobryon (6.4%)), and 

golden algae (Mallomonas (11.8%)) observed in New Jersey waters were scarcely distributed 

and primarily documented in lentic systems (Table 2.3). 

Phytoplankton composition was observed by waterbody type. Lakes were the most diverse 

waterbodies with eighty-three total taxa, comprised primarily of green algae, cyanobacteria, and 

diatoms (Figure 2.2). Ponds were the second highest diverse waterbodies with sixty-five taxa and 

the highest percentage of green algae of all waterbodies (Figure 2.2). Rivers had a total of thirty-

five taxa present with the highest percentage of cyptomonads (Figure 2.2). Reservoirs were the 

least diverse waterbodies with thirty-nine taxa recorded. They showed the highest percentage of 

cyanobacteria (Figure 2.2). No golden algae were recorded present in reservoirs nor rivers. 
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Figure 2.2. Phytoplankton composition among the four waterbody types, lakes (n=75), ponds 
(n=19), reservoirs (n=10), and rivers (n=6) in New Jersey from 2016-2019.  

 

2.3.3 Water quality conditions and phytoplankton communities at five New Jersey ecoregions 

The highest number of waterbodies were selected in the Highlands (37), Pine Barrens (37), 

and Piedmont ecoregions (25) (Table 2.2). Only four waterbodies were included within the 

Coastal Plain and 7 in the Ridge and Valley, thus results might not necessarily best represent the 

entire ecoregion. Forested land was the most dominant LULC statewide (28.7%) and for the Pine 

Barrens (26.0%), Highlands (54.0%), and Ridge and Valley (53.2%) (Appendix A). Whereas 

urban land types were prominent in the Piedmont ecoregion (53.4%) (Appendix A). The Coastal 

Plain is characterized by marsh (30.0%), urban (12.5%) and forest (11.0%) land types (Appendix 

A). A high percentage of marsh land type in this ecoregion could be influenced by the inclusion 
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of the Delaware Bay in the LULC analysis. Furthermore, the Coastal Plain ecoregion comprises 

a small and narrow area. 

Waters exhibited DO values sufficient to support aquatic life in Ridge and Valley, Pine 

Barrens, and Piedmont (Table 2.2). The lowest median DO concentrations were observed in the 

Coastal Plain (Table 2.2). Waterbodies in the Northeastern Highlands ecoregions had samples 

that exceeded DO thresholds (Table 2.1). Samples that exceeded pH thresholds (4.5 to 7.5 for the 

Lower Delaware River Basin, Atlantic Coastal Basin, Lower Raritan River and Raritan Bay 

Basin, and 6.5 to 8.5) for all other freshwaters were observed only in the Ridge and Valley, 

Highlands, and Pine Barrens (Table 2.1) (N.J.A. C. 7:9B-1.14). Yearly trends in the Ridge and 

Valley ecoregion indicate that the percentage of samples exceeding pH thresholds decreased 

from 25.8% (8 of 31) in 2018 to 0% (0 of 4) in 2019. Median TP and TN concentrations were 

lowest in the Highlands, Coastal Plain, and Ridge and Valley (Table 2.2). The Pine Barrens and 

Piedmont were the ecoregions with the highest median TP and TN concentrations (Table 2.2). 

The highest single TP concentration was documented in the Pine Barrens from Deal Lake at 

143.13 mg/L and corresponded with Cyano of 125,700 cells/mL and MC of 0.37 μg/L, indicating 

non-toxic bloom conditions occurred (Appendix B). Waterbodies in the Highlands, Piedmont, 

Ridge and Valley, and Pine Barrens ecoregions had samples that exceeded TP thresholds (Table 

2.2). While not statistically significant, there was a decrease in TP samples that exceeded 

thresholds from 26.9% (7 of 26) to none in 2019 which could be influenced by a decrease in 

annual precipitation between these years (ONJSC, n.d.). 

Green algae and cyanobacteria had the highest richness in each ecoregion (Figure 2.3). 

Synechoccoccus and Chlorella were frequently observed at all five ecoregions (Table 2.3). 

Phytoplankton taxa (32) and diversity (median DI 1.19; ranging from 0.78 to 4.77) were lowest 



NEW JERSEY PHYTOPLANKTON AND HARMFUL ALGAL BLOOMS  

 

47 

in Coastal Plain while the Pine Barrens had the highest number of taxa (72) and high median DI 

of 1.40 (ranging from 0.11 to 8.01) (Table 2.2). Furthermore, median Phyto and Cyano counts 

were low in the Highlands and Ridge and Valley, with corresponding low median Chl-a and PC 

values (Table 2.2). In contrast, high median Phyto and Cyano counts were recorded in Coastal 

Plain, Piedmont, and Pine Barrens, supported by high Chl-a and PC median values (Table 2.2). 

Waters in Piedmont had low MC median concentration, while Northeastern Highlands and 

Coastal Plain had concentration below the detection limit (Table 2.2). However, an MC 

concentration of 254.20 μg/L from Saddle River County Park in the Piedmont was the second 

highest of all samples in all ecoregions and corresponded with a high Cyano count of 11,730,000 

cells/mL (Appendix B). According to the NJDEP recreational advisory, this waterbody would be 

classified as a Warning alert level due to the cyanotoxin content. This alert level indicates a high 

risk of adverse health effects to both humans and animals due to the high toxin concentrations.  
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Figure 2.3. Phytoplankton composition among the five New Jersey ecoregions, Northeastern 
Highlands (Highlands) (n=37), Northern Piedmont (Piedmont) (n=25), Ridge and Valley (Ridge 
and Valley) (n=7), Middle Atlantic Coastal Plain (Coastal Plain) (n=4), and Atlantic Coastal 
Pine Barrens (Pine Barrens) (n=37) from 2016–2019. 

 

One sample in the Coastal Plain from Amico Island Park Pond exceeded thresholds at 336.8 

μg/L, which was the highest microcystin concentration of all samples included in this study 

(Table 2.2; Appendix B). Following the criteria in the NJDEP alert tier system, it would 

correspond to the Warning level which indicates a high risk of adverse health effects due to the 

cyanotoxin concentrations. This microcystin concentration corresponded with a high Cyano of 

952,500 cells/mL and PC value of 3,773 RFU. These parameters suggest a highly toxic HAB 

occurred in this waterbody posing a great threat to both humans and animals. The Ridge and 

Valley and Pine Barrens exhibited among the highest median MC concentrations (Table 2.2). 
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Additionally, MC samples had concentrations above the recreational threshold in the 

Northeastern Highlands, Piedmont, Ridge and Valley, and Pine Barrens (Table 2.1). There was 

an increase in the percentage of samples that exceeded the MC threashold between 2018 from 

2.8% (1 of 26) and to 6.7% 2019 (4 of 15) which could have been influenced by environmental 

conditions such as increased light or nitrogen availability (Hellweger, 2022). 

 

2.3.4 Statewide HAB and water quality relationships 

Results showed that both Phyto and Cyano positively correlated with MC and aligned with 

published literature (Kotak et al., 1995; Oh et al., 2001; Rolland et al., 2005). Our results 

document an increase in Phyto counts with higher PC values (rs = 0.8018, p < 0.0001), Chl 

values (rs=0.7243, p < 0.0001), and Chl-a concentrations (rs = 0.5742, p < 0.0001) (Table 2.4). 

Oh et al. (2001) further suggested using Chl-a as an indicator for MC levels. Our study observed 

a similar trend, Chl-a concentrations were found to be higher with increasing MC concentrations 

(rs = 0.3307, p = 0.0012; Table 2.4). On the other hand, PC values are often used to predict 

cyanobacterial biomass and HAB status (Brient et al., 2008; Gregor et al., 2007; Izydorczyk et 

al., 2005; Lee et al., 1994; Yacobi et al., 2015). Our results showed that Cyano cells positively 

correlated with PC concentrations (rs = 0.8005, p < 0.0001). Previous studies have also 

concluded phycocyanin can be used as a proxy for microcystins, which was supported by our 

results showing high MC concentrations increasing with high PC values (rs = 0.5955, p < 

0.0001) (Wong & Hobbs, 2019). Hence, based on the results of this study, PC could be used as a 

proxy to indicate Cyano, MC, and HAB conditions. Nutrient results found Phyto counts to 

increase with TP concentrations (rs = 0.2638, p = 0.0136) but not TN (rs = 0.1544, p = 0.1607). 

However, Cyano was found to increase with both TN (rs = 0.2154, p = 0.0491) and TP (rs = 
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0.3433, p = 0.0011); similar patterns were also reported in previous studies (Kotak et al., 1995, 

2000; Søndergaard et al., 2011). A Principal Component Analysis was performed to investigate 

the similarities between water quality parameters and HAB parameters, including MC, Phyto, 

and Cyano. PCA results support the findings that Phyto, Cyano and MC are associated with the 

first component’s environmental variables such as TN, TP, Chl, PC, and Chl-a (Figure 2.4).  

 

Figure 2.4. Principal components analysis of water quality data in 110 selected waterbodies in 
New Jersey documented from 2016–2019. Parameters included specific conductance (SPC), 
dissolved oxygen (DO), pH, temperature (T), secchi depth (Secchi), alkalinity (Alk), hardness 
(Hard), total nitrogen (TN), total phosphorus (TP), fluorescence of phycocyanin (PC), 
fluorescence of chlorophyll (Chl), chlorophyll-a (Chl-a), phytoplankton cell density (Phyto), 
cyanobacteria cell density (Cyano), and microcystins (MC). 

 

Dunn’s post hoc results showed MC concentrations were significantly lower in rivers than in 

ponds (p = 0.0045) and lakes (p < 0.0387). Analyses were also performed to investigate water 
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quality and HAB trends at the ecoregion level (Table 2.5). Some significant differences in water 

quality were found between ecoregions. While the Coastal Plain was found to have similar water 

quality to the other four ecoregions, the results suggest that the Highlands and Ridge and Valley 

ecoregions were found to have significantly better water quality than the other three: Pine 

Barrens, Coastal Plain, and Piedmont (Table 2.5). Moreover, Piedmont and Pine Barrens were 

similar in nutrient and HAB water quality (Table 2.5). Both TN and TP were significantly lower 

in the Highlands (p < 0.01 and p < 0.01, respectively) and the Ridge and Valley (p < 0.01 and p < 

0.01, respectively) than the nutrients in the Pine Barrens (Table 6). The Ridge and Valley had 

significantly lower Phyto (p = 0.01), Cyano (p = 0.01), PC (p = 0.04), and Chl (p = 0.01) than the 

Pine Barrens and lower Chl (p=0.04) than the Coastal Plain. However, no significant difference 

was found in Phyto, Cyano or Chl between Pine Barrens and the Highlands ecoregions. 

Additionally, TN (p= 0.01), PC (p < 0.01, Phyto (p < 0.01), Cyano (p < 0.01), and Chl (p < 0.01) 

were all significantly lower in the Ridge and Valley than the Piedmont (Table 6). The Highlands 

ecoregion had significantly lower MC (p < 0.01), Cyano (p < 0.01), PC (p = 0.01), and Phyto (p 

< 0.01) than the Piedmont ecoregion. 

 

2.4 Discussion 

This is the first documentation of freshwater phytoplankton community assemblages in New 

Jersey waters that incorporates phytoplankton and cyanobacteria communities, water chemistry 

data, and cyanotoxins measurements. Results of this study show that a total of 91 phytoplankton 

taxa were present in freshwater waterbodies of New Jersey with seven major taxa groups 

documented including green algae, cyanobacteria, diatoms, golden algae, dinoflagellates, 

euglenoids, and cryptomonads. Most waterbodies (87.2%) in New Jersey had cyanobacteria 
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present, with cyanobacteria being the most widely distributed phytoplankton group statewide and 

across all five ecoregions. When cyanobacteria dominate phytoplankton assemblages, they affect 

interactions between phytoplankton taxa through altering ecological process rates (Hillenbrand et 

al., 2008). The high presence and dominance of cyanobacteria documented in this study could 

have been biased due to a number of reasons. For example, all sampling events took place during 

the HAB seasons, in summers and autumns, which provided favorable conditions, such as 

increased sunlight and surface water temperature, for cyanobacteria to proliferate (Buzzi, 2002). 

In addition, a high percentage of samples collected by the NJDEP were the results of responding 

to suspicious HAB events where visual blooms were detected and reported to the NJDEP; thus, 

observance of higher cyanobacteria dominance was expected.  

Some of the cyanobacteria present in the assemblages of the documented waterbodies share 

morphological and behavioral adaptations such as small size and motility (e.g. flagella and 

buoyancy), which help increase their time in the photic zone, and aid in their dominance over 

other phytoplankton groups (Buzzi, 2002). Our results showed that Synechococcus was the most 

frequently documented phytoplankton statewide and found in all ecoregions and all waterbody 

types. This taxa’s small size and ability to exchange nutrients with the environment give 

Synechococcus unique competitive advantages over other phytoplankton (Liu et al., 2019). 

Scanlan and Carr (1993) reported that when phosphorus is limited in a waterbody, 

Synechococcus can produce a polypeptide that aids in binding phosphorus, which enables this 

cyanobacterium to survive in phosphorus limited environments. 

In terms of being present in waterbodies, across all five ecoregions, Cyanophytes and 

Chlorophytes were the most frequently observed phytoplankton. Similarities in phytoplankton 

composition of different ecoregions have also been reported in previous studies of freshwater 
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lakes. Literature suggested that those similarities might have been caused by environmental 

resemblances between lakes of close proximity that are situated in two ecoregions, such as 

physico-chemical characteristics, landscape features, and morphometry (Griffith et al., 1999; 

Sodre et al., 2020; Whittier et al., 1988). Ecoregion differences and similarities were examined 

using its land use and land cover patterns. Land use and land cover (LULC) of a drainage area 

can greatly impact the water quality such that increased runoff can increase TP and TN 

concentrations, stimulating Cyano growth, and HAB events (Beaver et al., 2012; Cross & 

Jacobson, 2013; Huang et al., 2016; Katsiapi et al., 2012; Paul & Meyer et al., 2001; Omernik et 

al., 2016; Schindler, 2006; Shi et al., 2017; Wagner et al., 2011). Our results demonstrated 

similar patterns to previous studies (Beaver et al., 2012; Marion et al., 2017; Paul et al., 2012) 

which have documented that as forest land cover increased, concentration of nutrients, Cyano 

and HAB events decreased. The forest-dominated Highlands was found to have lower nutrients 

than the urban-dominated Piedmont consistent with previous results (Paul et al., 2012). When 

compared to other ecoregions, the Ridge and Valley and Highlands had the greatest percentage 

of forest cover (>50%) while percent urbanization was at least half of the forest cover (<25%), 

which could influence nutrient inputs relative to other ecoregions (U.S. EPA ORD, 2012). 

Moreover, the Ridge and Valley is largely dominated by soils that are nutrient poor, possibly 

contributing to overall low nutrients (U.S. EPA ORD, 2012). The high TN concentrations 

documented in the Piedmont ecoregion could be associated with the relatively high human 

population density, its history of urbanization and industrialization, as well as its land use and 

land cover, dominated by agriculture and urban (U.S. EPA ORD, 2012). All of the above could 

lead to elevated nutrients in runoff, over-growth of cyanobacteria, and HAB events. Results for 

the forest-dominated Pine Barrens were not in accordance with previous studies which have 
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documented low nutrient concentrations in this area (Zampella & Procopio, 2023). The high 

nutrient concentrations reported in this study could be influenced by the focus on HAB response 

in the study site selection as well as possible watershed disturbance upstream from the selected 

sites. 

Although published literature has mixed conclusions about the effectiveness of describing 

aquatic systems through ecoregions (Beaver et al., 2012; Sodré et al., 2020; Soranno et al., 

2008), the results of this study indicated that land use and land cover is a major factor 

influencing water quality and HAB formation. We recognize there are limitations in this study 

with a wide array of sampling events across a wide spatial distribution across the State of New 

Jersey. However, the study sites were not selected randomly or systematically but 

opportunistically; hence, some ecoregions were better represented than others. Specifically, less 

numbers of waterbodies were surveyed within the Coastal Plain and Ridge and Valley 

ecoregions, which might cause biased results. 

In addition to the phytoplankton community composition and ecoregion variations, 

relationships between environmental conditions were studied. The results of this study suggest 

that PC can be used as a proxy for Cyano, MC, and HAB conditions in New Jersey waterbodies. 

Our results are in agreement with the findings of Izydorczyk et al. (2005), Francy et al. (2016), 

and Marion et al. (2012) who suggested that PC values are an effective water quality parameter 

to estimate MC concentrations. Previous studies have suggested that PC values could be used as 

an HAB monitoring proxy for cyanobacterial concentrations (Ahn et al., 2007; Izydorczyk et al., 

2005; Mchau et al., 2019).  

In this study, sampling activities were limited to phytoplankton community assemblage and 

dominance during the HAB season. Community assemblage and dominance are likely to exhibit 
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seasonal changes (Figueredo & Giani, 2009; Hilaluddin et al., 2020; Jiang et al., 2014; Mengxu 

et al., 2005). The results of the study were not intended to represent the year-round community 

dynamics. Year-round sampling is suggested to provide a greater understanding of seasonal 

variation in phytoplankton and cyanobacterial communities in New Jersey. Particularly, some 

HAB in New Jersey were documented to continue into the late fall or last throughout the winter 

with some taxa such as Planktothrix being capable of blooming under ice and possibly producing 

cyanotoxins (Messineo et al., 2006; Nürnberg et al., 2003). Thus, it would be advantageous to 

study phytoplankton seasonal succession in New Jersey waterbodies since summer 

phytoplankton compositions are likely to be influenced by winter phytoplankton communities 

(Babanazarova et al., 2013). Phytoplankton community succession and waterbody environmental 

conditions can be used to project future phytoplankton compositions and HAB.  

Across the state, and within each of the five ecoregions, cyanobacteria were found to be the 

most dominant phytoplankton. Based on published literature, most cyanobacteria taxa 

documented are capable of producing cyanotoxins. However, only a portion of the samples were 

analyzed for microcystins and an even smaller portion for cylindrospermopsin and anatoxin-A. 

We suggest further incorporating a comprehensive cyanotoxin and molecular analysis into future 

monitoring plans to better assess human health risk.  
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Chapter 3 An Investigation of Cyanobacteria, Cyanotoxins and Environmental Variables 

in Select Drinking Water Treatment Plants in New Jersey 

3.1 Introduction 

Potable water is vital for human health and survival. However, in recent years, drinking 

water resources worldwide are increasingly affected by cyanobacterial harmful algal blooms 

(HAB) (Mohan et al., 2019). A HAB forms when algal cells grow in excess, affecting the 

ecological integrity and degrading the water quality of a waterbody (Paerl & Otten, 

2013). Bloom events can be influenced by several factors such as: nutrient availability, 

stratification, climate conditions, flushing and residence time, light intensity, dissolved organic 

matter, and grazing (Paerl & Otten, 2013). For instance, eutrophication occurs when there is 

excess of nutrients in a waterbody that stimulates the growth of algae which can lead to blooms 

causing hypoxia/anoxia and fish kills (Paerl & Otten, 2013).  

Many lakes, rivers, and reservoirs affected by HAB are utilized as source waters by 

drinking water treatment facilities. The overabundance of algal biomass and cyanotoxins that it 

produced in these source waters are likely to require additional treatment processes in order to 

supply safe drinking water, such as increases in coagulants, use of chlorine, management of 

disinfection by-products, microbial regrowth in the distribution systems, as well as shortening 

filter runs via clogging (Knappe et al., 2004; Gray, 2008; Westrick et al., 2010). However, these 

treatment processes will result in large-scale cell lysis, causing high concentrations of 

cyanotoxins to be released into the water (Ibelings & Maberly, 1998). Westrick et al. (2010) 

found that about 95% of anatoxin-a, saxitoxins, and microcystins were present intracellularly 

before bloom senesce. The high intracellular presence of these frequently observed cyanotoxins 
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highlights the importance of removing intact cyanobacterial cells without lysing. Cyanotoxin 

removal becomes more complicated once dissolved in water which can occur via cell lysis, 

excretion, or deterioration (Cheung et al., 2013). Thus, water purveyors have added 

complications in the water treatment process to remove multiple cyanotoxins in relatively high 

concentrations (He et al., 2016). Consequently, cyanotoxins break-through in finished waters 

have been documented at multiple drinking water facilities in concentrations above which 

adverse health effects could occur (USEPA, 2015a; Yen et al., 2011). For instance, in 2014, a 

cyanobacterial bloom near the water intake of a drinking water facility in Toledo, Ohio led to 

total microcystins concentrations in the finished water up to 2.5 µg/L which affected 500,000 

customers (USEPA, 2015a). Yen et al. (2011) reported that cylindrospermopsin was detected in 

finished waters on Kinmen Island, Taiwan in 2007 at concentrations of 1.3 and 8.6 µg/L. In 

order to minimize the risk from cyanotoxins, drinking water source management strategies need 

to incorporate a range of assessments to reduce the probability of cyanobacterial cell lysing and 

cyanotoxin release (Hitzfeld et al., 2000). These strategies include but are not limited to 

dominant cyanobacterial taxa, relevant water treatment system, and cyanotoxin location inside 

the cell (intracellular) or within the water column (extracellular) (Westrick et al., 2010). 

HAB can also affect drinking water quality through odor, taste, and appearance (Knappe 

et al., 2004; Gray, 2008). Geosmin and 2-methylisoborneol (MIB) are the most frequently 

reported taste and odor compounds in both finished and source waters (Chorus & Welker, 2021). 

Taxa such as Dolichospermum, Oscillatoria, Phormidium, Lyngbya, Planktothrix, 

Pseudanabaena, and Synechococcus are known producers of geosmin and/or MIB (Jüttner & 

Watson 2007; Krishnani et al., 2008).  Conventional water treatment methods such as 

coagulation, flocculation, sedimentation, and filtration, as well as common disinfectants and 
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oxidants do not completely remove taste and odor compounds (Bruchet et al., 2004; Chorus & 

Welker, 2021; Ghernaout et al., 2010). However, these taste and odor compounds can be noticed 

by humans at very low concentrations of about 4 ng/L and 6 ng/L for geosmin and MIB, 

respectively (Young et al., 1996). Once detected, water is deemed unacceptable by consumers; 

thus, monitoring of HAB is considered the most effective approach in managing the taste and 

odor compounds (Ghernaout et al., 2010; Srinivasan et al., 2011). 

During the water treatment process, challenges in managing source water HAB often involve 

repairing clogged filters and pipes, and removing suspended algal biomass (Chorus & Welker, 

2021; He et al., 2016). Algal biomass removal can be difficult due to poor flocculation of algal 

cells which is influenced by the motility of each algae taxon (Petruševski et al., 1996). Needle-

shaped diatoms such as Synedra and Asterionella have been reported to attach to flocs, 

efficiently reducing their density, to an extent that they overflow the sedimentation basin (Joh et 

al., 2011). Small-celled, colonial, and mucilaginous algae (i.e., cyanobacteria such as 

Microcystis) are less dense and have been documented to float to the surface, overflow the 

sedimentation basin, and clog the filter (Joh et al., 2011).   

Algae can also cause high concentrations of soluble or biodegradable organic compounds 

which, after chlorination, can be a source of trihalomethanes which are potential carcinogens 

(Hoehn et al., 1980; Richardson, 2003). Cyanotoxins such as microcystin-LR and 

cylindrospermopsin have been reported to react with disinfectants to form disinfection by-

products, potentially creating additional toxicity through new pathways during the treatment 

processes (Merel et al., 2010). Overall, the best strategy on HAB management is to focus on 

decreasing algae abundance at the source water before initiating the treatment process since 

conventional treatment processes (coagulation, flocculation, sedimentation, and filtration) have 
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been reported as not effective at removing all algal cells, cyanotoxins and the treatment by-

products (Mouchet & Bonnélye et al., 1998; Henderson et al., 2008; OEPA, 2001; Westrick et 

al., 2010). Large-scale solutions to manage HAB in source water include catchment-scale 

nutrient management plans, investment in sewage system improvement, investment in sewage 

system improvement, and political changes relating to nutrient loads (Chorus & Welker, 2021). 

However, source water HAB management is complex and there is no one simple solution, thus 

treatment will most likely be necessary for safety usage (Nwankwegu et al., 2019). Ultimately, 

more effective treatment methods and advancements in treatment technology are needed to 

remove cyanobacteria and their toxins. 

3.1.1 Treatment Costs  

The human population is expected to rise to 10 billion by the middle of this century 

(Chorus & Welker, 2021). As human population increases, so does the demand for safe drinking 

water and drinking water sources (Watson & Lawrence, 2003). To help meet this demand, 

monitoring drinking water sources such as reservoirs, lakes, and rivers is crucial, including HAB 

water quality parameters (Treuer et al., 2021). Reservoirs are of special interest to drinking water 

managers due to their longer water residence times and water column stratification which help 

promote HAB events (Paerl et al., 2018; Tundisi et al., 1999). While targeted treatments for 

cyanobacteria and cyanotoxins are commercially available, they can be costly and may 

potentially jeopardize drinking water availability due to its low cyanotoxin removal efficiency as 

low as 60% (USEPA, 2015b; Zamyadi et al., 2012). Economic loss in water treatment facilities 

can be associated with backwash frequency such that if high densities of empty algal cells are 

found in backwash water, it’s deemed unsuitable for reuse and water production is reduced (Joh 

et al., 2011). Joh et al. (2011) reported a daily loss of 18% of the daily volume (60,000 m3) of 
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treated water due to discarded backwash affected by high concentrations of empty algal cells and 

other debris.  

HAB can cause significant losses in both water resources and the economy (Joh et al., 

2011). Purcell et al. (2013) reported that harmful algal blooms increased treatment costs by 25%. 

Results from a public water systems survey of HAB events at Lake Erie, Ohio estimated annual 

HAB control costs of $417,200 (Weicksel & Lupi, 2013; Bingham et al., 2015). The treatments 

utilized by public water systems to control HAB included powdered activated carbon, chlorine 

dioxide, and potassium permanganate (Weicksel & Lupi, 2013). Of the 15 public water systems 

surveyed, 10 reported using additional treatments due to HAB events (Weicksel & Lupi, 2013). 

In a single HAB event in 2013, Toledo, Ohio reported treatment costs of $1 million related to 

cyanotoxins in source water obtained from Lake Erie (Walker, 2014). 

 

3.1.2 Effects on Human Health  

Under the current trend of climate change, HAB events are predicted to increase in 

frequency, intensity, and duration, posing serious public health risks worldwide due to some 

cyanobacteria’s capacity to produce cyanotoxins (Paerl, 2016; Paerl et al., 2011; Figgatt et al., 

2016; Paerl & Huisman, 2009; Paul, 2008). In large quantities, cyanobacteria and the 

cyanotoxins they produce can have significant negative impacts on water quality, biotic health 

and economy (Srinivasan & Sorial, 2011; Landsberg, 2002; Hoagland & Scatasta, 2006; Adams 

et al., 2018). Cyanotoxins are secondary metabolites that have a wide range of molecular 

structures and toxicity, and can cause adverse health effects to humans such as abdominal pain, 

fever, headache, vomiting, nausea, diarrhea, pneumonia, tingling, numbness, incoherent speech, 

salivation, respiratory paralysis, and possible death (Szlag et al., 2015; USEPA, 2019). In lethal 
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doses, cyanotoxins are considered among the compounds with the highest toxicity in nature 

(Chorus & Welker, 2021). Cyanotoxin classes and concentrations in HAB can vary since one 

cyanobacterium can potentially produce multiple toxins, and multiple cyanobacteria can produce 

the same toxin (Davis et al., 2009; Chorus et al., 2021). The commonly documented cyanotoxins 

in freshwaters of the United States are microcystins, cylindrospermopsin, anatoxins, and 

saxitoxins (Szlag et al., 2015). Microcystins, a class of cyanotoxins with more than 200 

congeners, can be produced by a number of cyanobacteria including Anabaenopsis, 

Aphanocapsa, Aphanizomenon, Dolichospermum, Limnothrix, Microcystis, Nostoc, Oscillatoria, 

Phormidium and Planktothrix (Chernoff et al., 2020; Buratti et al., 2017; Žegura et al., 2011). 

Microcystins are hepatotoxins with the potential to cause acute health effects in humans ranging 

from abdominal pain and headaches to pneumonia and liver disease (Jochimsen et al., 1998; 

Carmichael et al., 2001). Microcystins are regarded as possible human carcinogens (Nishiwaki-

Matsushima et al., 1992; USEPA, 2015a). Previous studies such as, Yu et al. (2001), have 

reported that increasing microcystins concentrations in the river and pond sources positively 

correlated with the incidence of colorectal cancer. Zhou et al. (2001) also reported that the 

number of people drinking microcystin-contaminated water correlated with liver cancer cases in 

China. Another hepatotoxin, cylindrospermopsins, have also been documented as possibly 

carcinogenic and mutagenic, and can be produced by taxa such as Aphanizomenon, 

Dolichospermum, Oscillatoria, Raphidiopsis, and Umazekia (Buratti et al., 2017; Kinnear et al., 

2010; US EPA, 2015c; Žegura et al., 2011). However, there is no sufficient data available to 

determine cylindropsermopsin’s carcinogenic potential, although some studies have found 

preliminary evidence of tumor-initiating activities in mice such as immunotoxic effects in the 
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thymus and spleen (Diez-Quijada et al., 2022; Falconer & Humpage, 2001; Humpage et al., 

2005; Maire et al., 2010; Puerto et al., 2018; Shen et al., 2002; USEPA, 2015c).  

 

3.1.3 Thresholds 

Potable water regulations are of importance to help safeguard human health against 

harmful effects of contaminants (USEPA, 2022). The United States Environmental Protection 

Agency (US EPA) has not imposed a regulation on cyanotoxins for potable waters (USEPA, 

2021), and instead issued Health Advisories (HA) for cyanotoxins providing concentrations at 

which detrimental effects on human health are not anticipated (USEPA, 2021). HA for 

microcystins in bottle-fed infants and pre-school children is 0.3 µg/L and 0.7 µg/L for 

cylindrospermopsin over a ten-day period (USEPA, 2021). The HA for school-aged children and 

adults is 1.6 µg/L over a ten-day period while cylindrospermopsin is 3.0 µg/L (USEPA, 2021). 

Although no guideline at the federal level, states can implement their own regulations for 

cyanotoxins in potable waters. New Jersey does not currently have drinking water standards for 

cyanotoxins however, there is a pending act under public review which has an implementation 

schedule. A draft was developed on drinking water health advisory values for microcystins based 

on the US EPA’s advisory at 0.07 µg/L for people six years of age and older (DWQI, 2022). 

Thus, investigating potentially toxin-producing HAB in source and finished waters of New 

Jersey is of importance since cyanotoxins are unregulated. 

3.1.4 Climate Change Impacts 

Climate change is predicted to increase extreme weather events such as heavy rainfall, 

heat and cold waves, and droughts (Fischer et al., 2015; Pörtner et al., 2022; Pall et al, 2011; 
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Rahmstorf et al., 2011; Reidmiller et al., 2018). Patterns of these extreme weather events, such as 

drought followed by heavy rainfall and flooding can cause excess nutrients and sediment to be 

transported in runoff, encouraging phytoplankton growth and formation of HAB (Chapra et al., 

2017; HaRa et al., 2020; Kaushal et al., 2014). Moreover, intensifying lake stratification is 

another documented climate change trend contributing to the formation of HAB (Moore et al., 

2008; Paerl et al., 2011). Increased thermal stratification and salinization-induced stratification 

suppress the mixing within the water column, and cause low oxygen in the hypolimnion which, 

when anoxic, can lead to a complex process where sediment-bound phosphorus is released into 

the hypolimnion (Behrenfeld et al., 2006; Smayda, 2010). This phenomenon creates a favorable 

environment for some phytoplankton taxa that are equipped with adaptations to have competitive 

advantages. For example, some cyanobacteria taxa such as Microcystis and Dolichospermum are 

able to regulate their gas vacuoles and change their position in the water column to reach the 

hypolimnion and utilize nutrients only available in this bottom layer (Behrenfeld et al., 2006; 

Smayda, 2010; Bormans et al., 1999). Additionally, taxa such as Cylindrospermopsis and 

Dolichospermum possess the capability to fix nitrogen which allows for their survival under 

nitrogen-limited waters (Willis et al., 2016; Wood et al., 2010). Other taxa such as 

Synechococcus are able to uptake orthophosphate at higher rates than eukaryotic algae; a 

competitive advantage in phosphorous-depleted waters (Moutin et al., 2002). Additionally, 

climate change has been suggested as a cause for some phytoplankton taxa to expand beyond 

their historical ecological ranges. Wiedner et al. (2007) suggested the toxin-producing 

cyanobacteria Raphidiopsis raciborskii expanded their range from subtropical to temperate water 

due to the earlier warming enabling earlier germination of R. raciborskii. This expansion led to 
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early population growth and establishment of R. raciborskii before the establishment of other 

phytoplankton taxa (Wiedner et al., 2007). 

Eutrophication might be further intensified by the current trend of climate change 

resulting in even greater frequency and intensity of HAB events, and the negative effects they 

cause, posing a greater risk for drinking water safety (Manabe, 2019; Paerl & Huisman, 2009). 

To our knowledge, no studies have been published describing the harmful algal blooms, 

cyanobacteria and cyanotoxins in drinking water sources in New Jersey, which further highlights 

the need for public knowledge on HAB of New Jersey drinking water sources. The objective of 

this study is to assess the water quality conditions in drinking water sources in New Jersey. Five 

drinking water treatment facilities were selected; water quality and harmful algal bloom 

parameters were examined. Finished water was also tested to determine efficacies of cyanotoxin 

removal. 

3.2 Materials and methods  

3.2.1 Study sites 

Five water treatment plants in New Jersey that pump water from a reservoir or directly 

from a river source were included in this study. Due to the sensitivity of identity, the names and 

specific locations of these treatment plants were not disclosed; instead, sites are referred to as 

sites A through E in this chapter. Site A draws its source water from the confluence of Millstone 

River and Raritan River, serves as a drinking water supply for more than 1 million residents, and 

produces an average of 132 million gallons per day (MGD) (NJDEP, 2017). Site B draws its 

source water from a reservoir that is fed by the following bodies of water: Ramanessin Brook, 

Fourth Creek, Bordens Brook, Willow Brook, Hopp Brook, Big Brook, Fulling Mill Brook, 
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Barren Neck Brook, Trout Brook, Yellow Brook, Miry Bog Brook, Mine Brook, Slope Brook, 

Hockhockson Brook, and Pine Brook (NJDEP, 2017). This 2.3 billion-gallon (BG) reservoir has 

a catchment basin of 125.6 km. Site C receives source water for its reservoir from the Shark 

River and Jumping Brook with a catchment area of 41.4 km and a storage capacity of 1 BG 

(NJDEP, 2017). Sites B and C serve as a drinking water supply to a combined total of 366,000 

people (NJDEP, 2017). Site D is sourced directly from the Pompton River and the Passaic River 

and has an off-stream reservoir with a storage capacity of 2.9 BG. It produces an average of 83 

MGD and serves about 1 million people (NJDEP, 2017). Site E is sourced from a different 

section of the Passaic River and serves 2.7 million people (NJDEP, 2017). The water from Site E 

is pumped and collected into three raw water reservoirs before the treatment process and has a 

combined storage capacity of 2.84 BG. 

3.2.2 Field sampling 
Samples were collected once a month between May and October 2019 from two locations 

at each treatment plant: source (at 0.5 m water depth in a reservoir/river) and finished. For source 

waters, in-situ water characteristics such as water temperature (T), pH, dissolved oxygen (DO), 

and specific conductance (Cond) were recorded on location using a multi-parameter sonde 

(Yellow Springs Instrument Professional Plus; Yellow Springs, OH). Fluorescence of 

phycocyanin (PC) and fluorescence of chlorophyll (Chl) were recorded on locations in source 

waters using a hand-held fluorometer (CyanoFluor, Turner Designs; San Jose, CA). Water 

samples were collected, stored on ice in coolers (4°C), and transferred to Montclair State 

University laboratories for further analysis. Parameters analyzed at the laboratory included total 

suspended solids (TSS), total dissolved solids (TDS), chlorophyll-a (Chl-a), total nitrogen (TN), 

total phosphorus (TP), ammonia (AM), non-purgeable dissolved organic carbon (NPDOC), 
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phytoplankton cell density (Phyto), cyanobacterial cell density (Cyano), microcystins (MC), 

cylindrospermopsin (CY), Microcystis 16S rRNA gene (MCS), microcystin-producing mcyB 

gene (MCN), Cylindrospermopsis raciborskii-specific genes rpoC1 (CYS), and 

cylindrospermopsin-producing pks gene (CYN). Finished water samples were only analyzed for 

MC and CYN. Samples for TSS, TDS, TN, NH3, NPDOC, Phyto, and Cyano were collected in 

plastic bottles cleaned with phosphorus-free soap, while Chl-a were collected in the same 

containers and wrapped in foil to protect from light. MC and CY samples were collected in 

amber glass containers cleaned with phosphorus-free soap. Finished water CY samples were 

preserved using ascorbic acid and pH was adjusted between 4 and 7. TP samples were collected 

using a plastic bottle cleaned with 1:1 hydrochloric acid and rinsed with deionized water. 

Polypropylene bottles were washed with phosphorus-free soap and autoclaved for sterilization 

prior to collecting MCS, MCN, CYS, and CYN samples. 

3.2.3 Phytoplankton identification and enumeration 

Phytoplankton water samples were preserved by adding Lugol’s iodine solution as soon 

as they were back in the lab. Samples were kept in a cold room until processing. Phytoplankton 

samples were identified via sedgwick-rafter chamber under a light microscope with phase 

contrast using a long-distance working objective using the following taxonomic 

keys:  Freshwater algae of North America: ecology and classification (Wehr et al., 2015), 

Cyanoprokaryota-1. Teil/Part 1: Chroococcales (Komárek & Anagnostidis, 2008), 

Cyanoprokaryota-2. Teil/Part 2: Oscillatoriales (Komárek & Anagnostidis, 2008), and 

Cyanoprokaryota-3. Teil/Part 3: Heterocytous Genera (Komárek, 2013). Samples were 

homogenized by gently inverting the sample container 25 times. For each replicate, 1mL of 

sample was pipetted into the chamber and settled for fifteen minutes before counting. Cells were 
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counted and identified at 400x to the genus level until at least 200 natural units or 40 fields of 

view were reached. Cells with GALD (greatest axial linear dimension) of <2μm were not 

recorded due to identification difficulty. Zooplankton and nonviable cells were excluded from 

counts. For quality control, samples were counted in triplicates to account for natural variability. 

3.2.4 Laboratory analyses 
3.2.4.1 Water quality parameters. TSS and TDS were analyzed within 24 hours 

according to Standard Methods for the Examination of Water and Wastewater (Method 2540D 

and 2540C). Chl-a were filtered within 24 hours. The filters were then stored in a freezer and 

analyzed within 24 days following the EPA Method 445.0. TN, NH3, and TP were preserved to 

pH less than 2 with concentrated sulfuric acid and kept at or below 6°C. These samples were 

analyzed within 28 days, where pH was adjusted to 7 with 5.0 N sodium hydroxide solution, and 

the results were later corrected for dilution. TN was determined using the Total Nitrogen by the 

Persulfate Digestion Test 'N Tube method (Hach Method 10071), TP with the Total Phosphorus 

by the PhosVer® 3 Ascorbic Acid method with Acid Persulfate Digestion (Hach Method 8190), 

and NH3 with Ammonia Nitrogen by the Salicylate method (Hach Method 8155) using a UV–

Vis spectrophotometer (Hach, DR 5000, CO). NPDOC were analyzed within 24 hours, and the 

concentrations were determined using a Total Organic Carbon Analyzer (Shimadzu TOC-L 

CPH, Columbia, MD). MC and CY samples were kept frozen and analyzed using the 

Microcystins-ADDA ELISA (Microtiter Plate) kit for Microcystins/Nodularins and Abraxis 

Cylindrospermopsin ELISA kit (Eurofins Abraxis, Warminster, PA) following the 

manufacturer’s instructions within three months. Quantified MC concentrations less than 0.15 

µg/L, the lowest limit of quantification and CY concentration less than 0.04 µg/L were reported 

as undetectable (UD). Copy numbers of MCS less than 117 copies/mL, MCN less than 228 
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copies/mL, CYS less than 141copies/mL, and CYN less than 187 copies/mL were reported as 

undetectable. 

3.2.4.2 Real-time PCR. Two hundred mL of water samples were filtered within 24 hours 

with mixed cellulose ester filters (0.45 mm, 47mm) for MCS, MCN, CYS, and CYN analysis. 

The filters were kept in a freezer and analyzed within six months. DNeasy Power Water Kits 

(Qiagen, Germantown, MD) were used for DNA extraction. The final eluate was 100 mL. The 

DNA concentrations and purity were checked using a NanoDropTM 2000c Spectrophotometer 

(Thermo Fisher Scientific, Waltham, MA). Real-time polymerase chain reaction (qPCR) analysis 

was performed using StepOnePlus Real-Time PCR System (Thermo Fisher Scientific). Primers 

used in this study, including MCS, MCN, CYS, and CYN, were shown in Table 3.1. Known 

concentrations of recombinant plasmid including gene targets were used to establish calibration 

curves against cycle threshold values (CT). DNA extracts from Microcystis aeruginosa UTEX 

B2662 culture or water samples identified with presence of Cylindrospermopsis were used as 

template for cloning. Detailed process of cloning was described elsewhere in Hsu et al., (2019). 

Contents of Master Mix stock included 1X PowerUp SYBR Green Master Mix (Applied 

Biosystems, Foster City, CA) and 10 mM of forward and reverse primers (Table 3.1). Programs 

started at 95oC for 10 min, followed by 40 cycles of denaturation at 95oC for 15 sec and 

polymerization at 60oC for 1 min. Quality control measures included duplicate sample analysis, 

no-template-control, coefficient of determination of calibration curves greater than 0.99 as well 

as melting curve programs to confirm the specificity of amplification. Levels of genetic markers 

were reported in copies/mL of water. Reporting limit for MCS was 117 copies/mL, 228 

copies/mL for MCN, 141 copies/mL for CYS, and 187 copies/mL for CYN. 
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3.3 Results 

3.3.1 Water Quality at Five Study Sites 

Site A: Results showed that there was low cyanobacterial cell count and undetected 

cyanotoxins at Site A within the duration of the study. Seasonal patterns indicate that HAB water 

quality results were higher in the fall. This waterbody had the highest median TSS concentration 

of all sites at 4.4 mg/L (ranging from 2.6 in October to 25.9 mg/L in July); which was above 

thresholds and indicates water is not clear (Table 3.2). NPDOC concentrations were lowest at 3.3 

in June and highest at 17.8 mg/L in October. The lowest median NPDOC value of all sites was 

recorded in Site A at 7.3 mg/L with other studies that have found similar concentrations (<0.2 to 

36 mg/L) of organics in rivers (Table 3.2; Canham et al., 2004, Kretser et al., 1989). Overall, this 

site had the lowest Cyano cell count documented among all sites (0 in all months except 

September at 27 cells/mL) (Figure 3.1). MCS had the lowest median copy numbers among all 

sites at 1,425 copies/mL (minimum of 364 in September and maximum of 5,572 copies/mL in 

October) (Figure 3.2). All MC concentrations were found to be below the detection limit (Table 

3.3). Molecular results supported the observations of low MC concentrations with MCN having 

the lowest median copy numbers among all sites at 511 copies/mL (lowest was undetected in 

August and highest was 922 copies/mL in July) (Figure 3.2). Raphidiopsis was detected at this 

site, however CY concentrations for all samples were below the detection limit. As for 

Cylindrospermopsis and cylindrospermopsin-producing genes, low CYS and CYN copy numbers 

were observed, the highest median CYS value among all sites was reported at 1,131 copies/mL 

(ranging from undetected in May, June, July, and October to 2,033 copies/mL in September), 

while CYN was not detected in any sample from this study site. 
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With regards to the nutrient water quality, site A had elevated nutrient concentrations. 

Seasonal patterns indicate that nutrient levels were higher in the summer. This site had the 

second lowest median NH3 concentration among all sites at 0.05 mg/L (minimum of 0.01 in June 

to maximum of 0.11 mg/L in August). TN concentrations ranged from 0.85 in October to 1.56 

mg/L in June and had the second highest median TN concentration among all sites at 1.26 mg/L 

(Figure 3.3). TP concentrations were lowest at 0.15 mg/L in September and highest at 0.60 mg/L 

in July (median 0.22mg/L), and all concentrations documented were above the thresholds for 

rivers (equal to or less than 0.1 mg/L) under the New Jersey Surface Water Quality Standards 

(SWQS).  

 
 
Figure 3.1. Side by side box and whisker plot of phytoplankton cell density (Phyto) and 
cyanobacterial cell density (Cyano) in five New Jersey drinking water sources. The x represents 
the median; the whiskers represent the minimum and maximum values. 

 

Site B: Similar to Site A, low cyanobacterial cell count and undetected cyanotoxins were 

reported in Site B during the study period. HAB water quality results were higher during the 
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summer and fall seasons. This site was characterized by clear water, with the lowest median TSS 

concentration among all sites at 1.9 mg/L (minimum of 0.9 in May to maximum of 3.1 mg/L in 

September) (Table 3.2). NPDOC concentrations peaked at 14.0 mg/L in October and dropped 

down to 4.0 in July (median 8.2 mg/L) which were similar to those previously reported (<0.2 to 

36 mg/L) for lentic systems (Table 3.2; Canham et al., 2004; Kretser et al., 1989). Cyano cell 

densities reported in Site B were the second highest median among all sites at 398 cells/mL 

(ranging from 0 in June to 4,131 cells/mL in September) which was below the 20,000 cells/mL 

cyanobacteria threshold enforced during the study period by the NJDEP (Figure 3.1; Table 3.3; 

NJDEP, 2019). MCS had the second lowest median copy numbers at 3,039 copies/mL (minimum 

of 571 in May to maximum of 6,018 copies/mL in October). The low cyanobacterial cell 

densities reported were supported by low toxin and molecular values (Figure 3.2). This site had 

undetected MC concentrations for all samples. MCN copy numbers ranged from undetected in 

May to 2,606 copies/mL in June (median 988 copies/mL). As for Cylindrospermopsis and 

cylindrospermopsin-producing genes, low CYS and CYN copy numbers were observed. The 

lowest CYS value was undetected in May, June, August, and October and the highest was 1,627 

copies/mL in September (median 941 copies/mL). CY not detected in any Site C water sample, 

however Raphidiopsis was observed. 
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Figure 3.2. Box and whisker plot comparison between microcystins (MC), Microcystis 16S 
rRNA (MCS), and microcystin-producing mcyB gene (MCN) in five New Jersey drinking water 
sources. The x represents the median; the whiskers represent the minimum and maximum values. 

 

In regard to the nutrient water quality, site B had excess nutrients. Nutrients 

concentrations at this site were higher in the spring and summer seasons. NH3 concentrations 

ranged from 0.01 in June and July to 0.48 mg/L in August, TN had the second lowest 

concentration among all sites at 0.75 mg/L (minimum of 0.35 in July to maximum of 1.30 mg/L 

in August) (Figure 3.3). TP concentrations had the lowest median concentration at 0.15 mg/L 

(0.13 in June to 0.25 mg/L in May); however, these values were above the NJ SWQS TP 

threshold for lakes (equal to or less than 0.05 mg/L).  



NEW JERSEY PHYTOPLANKTON AND HARMFUL ALGAL BLOOMS  

 

96 

Site C: Cyanobacterial cell densities were low and toxins were undetected in Site C, 

however cyanobacteria taxa were documented. Overall, HAB parameters were higher in the 

summer season. This site had TSS lowest concentrations at 1.4 in May to highest concentrations 

at 5.2 mg/L in August (median 2.8 mg/L), suggesting clear water. However, the highest median 

NPDOC concentration was reported at 12.4 mg/L (ranging from 11.5 in June to 13.9 mg/L in 

September), which previous reports have suggested concentrations greater than 12 mg/L as 

indicative of eutrophication (Table 3.2; Canham et al., 2004; Kretser et al., 1989). Cyano cell 

densities were low at this site and ranged from 0 in June to 8,844 cells/ mL in October (median 

269 cells/mL) while all MC concentrations recorded for this site were undetected (Figure 3.2, 

Table 3.3). Molecular results showed MCS and MCN had the second highest median copy 

numbers among all sites at 64,277 copies/mL (minimum of undetected in May to maximum of 

336,077 copies/mL in August) and 6,347 copies/mL (ranging from undetected to 13,583 

copies/mL in July), respectively. In contrast, CYS had the lowest median copy numbers among 

all sites at 141 copies/mL with lowest values at undetected in May, June, July, September, and 

October to highest values at 292 copies/mL in August. Although Raphidiopsis was present, all of 

the waters tested in this site had undetected CY concentrations. 

Nutrient water quality at this site suggested substantial concentrations present. Seasonal 

trends in this site suggested nutrients were higher in the spring and summer. Among the five 

sites, NH3 had the second highest median concentration at 0.11 mg/L, with the lowest value of 

0.03 in August and highest value of 0.19 mg/L in June. TN had the lowest reported median 

concentration among all sites at 0.73 mg/L (ranging from 0.35 in October to 1.31 mg/L in May) 

(Figure 3.3). While TP had the second lowest median concentration at 0.20 mg/L (minimum of 

0.13 in August to maximum of 0.57 mg/L in May) and above the SWQS threshold. 
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Figure 3.3.  Side by side box and whisker plot of total nitrogen (TN) (mg/L) and total 
phosphorus (TP) (mg/L) in five New Jersey drinking water sources. The x represents the median; 
the whiskers represent the minimum and maximum values. 

 

Site D: The results showed that Site D had low cyanobacterial cell densities and 

undetected cyanotoxins within the duration of the study. HAB parameters in this site were higher 

in the summer. The second highest median TSS concentration among all sites was reported at 3.8 

mg/L (ranging from 0.8 in October to 11.4 mg/L in May); however, these concentrations were 

below thresholds, suggesting clear waters (Table 3.2). NPDOC concentrations were second 

lowest among all sites with a median of 8.2 mg/L, with the lowest value at 4.0 in May and the 

highest value at 20.7 mg/L in October (Table 3.2). Cyano cell densities were low, with Site D 

having the second lowest value among all sites at 56 cells/mL (minimum of 0 in June and August 

to maximum of 259 cells/mL in October) (Figure 3.1, Table 3.3). MCS copy numbers ranged 
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from undetected in May, June, and September to 7,555 copies/mL in July (median 5,116 

copies/mL). These low cyanobacterial counts were supported by low toxin and molecular results 

(Figure 3.2). This site had MC concentrations that ranged from undetected in May, July, August, 

September, and October to 0.18 µg/L in June. None of the finished water was detected with MC. 

MCN and CYS had the second lowest median copy numbers at 808 copies/mL (minimum of 

undetected in May, June, September, and October to maximum of 1,285 copies/mL in August) 

and 211 copies/mL (minimum of undetected in May, June, July, August, and October to 

maximum of 211 copies/mL in September), respectively. While Raphidiopsis was observed at 

this site, CY was undetected in source and finished waters. 

Nutrient water quality in Site D was elevated with nutrients being the highest among all 

sites; nutrients were higher in the summer and fall. Site D had more nutrient issues than all other 

sites. The highest median NH3, TN, and TP concentrations among all sites were reported at 0.14 

mg/L (ranging from 0.06 in August to 0.36 mg/L in October), 2.85 mg/L (ranging from 1.50 in 

July to 2.85 mg/L in September), and 0.33 mg/L (ranging from 0.27 in August to 0.39 mg/L in 

June), respectively (Figure 3.3). All TP concentrations recorded at this site exceeded SWQS 

thresholds.  

Site E: Among all sites surveyed, the only site that exhibited HAB issues, specifically 

elevated microcystins levels, was Site E. Specifically, HAB parameters were highest in the 

summer and fall. The highest median TSS concentration among all sites was reported at 4.9 

mg/L (minimum of 2.5 in May and maximum of 5.6 mg/L in June), which is below threshold and 

indicates clear waters (Table 3.2). This site had the second highest NPDOC median 

concentration at 11.5 mg/L (ranging from 5.1 in July to 20.1 mg/L in October) (Table 3.2). The 

highest median Cyano cell densities were documented at this site at 3,687 cells/mL (ranging 
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from 1,603 in September to 11,807 cells/mL in October), with Microcystis cells present (Figure 

3.1, Table 3.3). These results were supported by MCS values with the highest median copy 

number among all sites at 3,648,401 copies/mL (lowest at 794,435 in May to highest at 

7,076,480 copies/mL in July (Figure 3.2).  

MC concentrations were documented at all months at this site, with a median of 5.31 

µg/L (ranging from 0.26 in May to 8.39 µg/L in September) (Table 3.3). The treatment processes 

were able to effectively remove MC and it was not detected at finished water samples. Monthly 

MC concentrations from source to finished waters in Site E were: May from 0.26 µg/L to UD, 

June from 4.80 µg/L to UD, July 3.32 µg/L to UD, August 5.81 µg/L to UD, September 8.39 

µg/L to UD, and October 6.80 µg/L to UD. Molecular analyses supported these cell count and 

toxin results with the highest median MCN numbers at 2,723,562 copies/mL (minimum of 

82,437 in May and maximum of 8,660,900 copies/mL in September. CY concentrations were 

only detected in Site E at 0.09 µg/L in July and were undetected in finished waters. This suggests 

that they were being effectively removed by treatment processes. CYS had the second highest 

median value of all sites at 958 copies/mL (ranging from undetected in May, June, and July to 

2,794 copies/mL in September).  

Site E nutrient water quality exhibited considerable nutrient concentrations. Of all sites 

documented, site E had greater HAB issues with the highest values of HAB conditions. Seasonal 

trends indicate that nutrients were high in all seasons. This site had the lowest median NH3 

concentrations at 0.04 mg/L (minimum of 0.01 in August and maximum of September to 0.10 

mg/L in July). TN concentrations ranged from 0.34 in May to 1.35 mg/L in September (median 

0.90 mg/L) while the second highest median TP concentration among all sites was reported at 
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0.31 mg/L (lowest at 0.22 in October and highest at 0.40 mg/L in May) (Figure 3.3). TP 

concentrations exceeded SWQS thresholds in this site.  

3.3.2 Comparison of Source Water Quality 

A Principal Component Analysis was performed to examine the association between 

HAB parameters (the first component) and water quality parameters (the second component). 

The PCA results showed that the first component explains 31.4% of the variation and the second 

component explains 16.6% of the variation (Figure 3.4). PC, MC, and MCS had large positive 

loadings on the first component suggesting these three HAB parameters were associated with 

one another. TN had a large positive loading on the second component with TP and NH3, 

suggesting a positive relationship with the HAB parameters. Temporal analysis of water quality 

conditions of all five sites combined were analyzed to determine any statistically significant 

difference. Results indicated that NPDOC was the only parameter that varied significantly by 

month (p=0.0037). 
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Figure 3.4. Principal components analysis of water quality data in five New Jersey drinking 
water sources. Conductivity (Cond), dissolved oxygen (DO), pH, temperature (T), total 
suspended solids (TSS), total dissolved solids (TDS), non-purgeable dissolved organic carbon 
(DOC), ammonia (NH3), total nitrogen (TN), total phosphorus (TP), fluorescence of phycocyanin 
(PC), fluorescence of chlorophyll (Chl), chlorophyll-a (Chl-a), phytoplankton cell density 
(Phyto), cyanobacterial cell density (Cyano), microcystins (MC), Microcystis 16S rRNA (MCS), 
and microcystin-producing mcyB gene (MCN). 

 

In addition to temporal analysis, water quality results of source waters were compared 

between sites to discern statistically significant differences. Results showed that there was a 

significant difference in the TSS (p=0.0416), Cond (p=0.0004), and pH (p=0.0009) values 

between source sites, suggesting unique water chemistry characteristics of each drinking water 

source. With respect to nutrients, results showed that both TN (p=0.0016) and TP (p=0.0118) 

concentrations were statistically significant. This indicates some sites have significantly higher 

nutrients than others thus, a post hoc test was used to identify which sites were different. Lastly, 

various HAB water quality parameters differed significantly by site including Chl (p=0.0028), 

PC (p=0.0003), Chl-a (p=0.0026), Phyto (p=0.0003), MC (p<0.0001), MCS (p=0.0026), and 
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MCN (p=0.0025). These results suggest some sites had significantly greater HAB issues than 

others. This was further confirmed by Dunn's post-hoc test results which investigated the 

difference in source water quality among the five selected study sites (Table 3.4). Dunn's post-

hoc test results showed that Site D had elevated nutrient water quality; TN concentrations in Site 

D were significantly higher than in Sites B (p=0.0061), C (p=0.0077) and E (p=0.0255). On the 

other hand, TP concentrations were not significantly different among sites with an exception that 

Site D had significantly higher concentrations than Site B (p=0.0162).  

Although not the most eutrophied site, Site E demonstrated the most severe HAB water 

quality with the highest average cyanobacterial cell densities, microcystins concentrations, and 

microcystin-producing mcyB gene copies. Cyano cell densities were significantly higher in Site 

E than sites A (p=0.0009) and D (p=0.0363). Overall, MC concentrations were significantly 

higher in Site E than all other sites: Site A (p=0.0005), Site B (p=0.0005), Site C (p=0.0005), and 

Site D (p=0.0040). Site E had significantly higher copy numbers of MCN than Sites A 

(p=0.0220), B (p=0.0419) and D (p=0.0024). Additionally, Site E had significantly higher PC 

values (p=0.001) and Phyto (p= 0.0008) than Site A. Similar patterns were found at site D, where 

PC values (p=0.0037) and Phyto (p=0.0184) were also greater than Site A. Among all five sites, 

D and E were of the greatest concern due to their elevated nutrient and/or HAB water quality. 
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supported by previous studies, suggesting nitrogen could be a nutrient source used by 

Microcystis (Conradie & Barnard, 2012; Rinta-Kanto et al., 2009). Our study results also showed 

that microcystin-producing mcyB gene copy numbers (MCN) decreased with increasing TN 

concentrations (rs= -0.4462, p=0.0135). Conradie & Barnard (2012) reported that MCN copies 

were lower when TN concentrations were higher, indicating that nitrogen could be used during 

microcystin production. In addition, NH3 was found to increase with the decreasing Microcystis 

MCS copy numbers (rs=-0.4211, p=0.0205) and microcystin-producing mcyB gene MCN copy 

numbers (rs=-0.5639, p=0.0012). 

While previous studies have documented high Cyano cell densities associated with high 

MC concentrations, a high cyanobacterial density sample could have no toxins detected (Bolch et 

al., 1997; Rolland et al., 2005). Toxin detection can depend on different toxin-producing 

cyanobacteria taxa and their wide range in capacity to produce MCs (Chorus, 2001). 

Furthermore, there are particular environmental conditions, such as temperature and nutrients, 

that affect the MC production of each toxin-producing cyanobacteria taxa (Mowe et al., 2015b; 

Vézie et al., 2002). In our study, increasing Cyano cell densities were associated with higher MC 

concentrations (rs=0.5211, p=0.0032) and higher MCN copy numbers (rs=0.5725, p=0.0009). 

Furthermore, we sought to investigate if certain cyanobacterial taxa, such as Microcystis, were 

related to toxin concentrations. Our results showed that as MC concentrations increased with the 

abundance of Microcystis 16S rRNA copies (rs=0.5903, p=0.0008) and microcystin-producing 

mcyB genes (rs=0.6037, p=0.0004). Higher MC concentrations with increasing Microcystis 16S 

rRNA copies and microcystin-producing mcyB genes were also reported by Conradie and 

Barnard (2012), Rinta-Kanto et al. (2009), Ha et al. (2009), Otten et al. (2012), and Te and Gin 

(2011). Our results aligned with published literature (Beversdorf et al., 2015; Francy et al., 2016; 



NEW JERSEY PHYTOPLANKTON AND HARMFUL ALGAL BLOOMS  

 

105 

Izydorczyk et al., 2005) demonstrating that PC values increase with MC concentrations 

(rs=0.5675, p=0.0011) (Table 3.5). 

 

3.4 Discussion 

Cyanobacteria were found at the source waters of all five drinking water facilities 

selected for this study. Microcystis was the most dominant cyanobacteria taxon. Previous studies 

have shown contradicting results regarding the positive correlations between Microcystis and 

cyanotoxin concentrations since toxin-producing genes can be present or absent in Microcystis 

(Dai et al, 2006; Kurmayer et al., 2003; Orr & Jones, 1998; Rinta-Kanto et al., 2009; Via 

Ordorika et al., 2004). Furthermore, even when toxin-producing genes are present, toxins might 

not be produced which is believed to possibly be controlled by environmental factors (Dai et al., 

2006; Kurmayer et al., 2003; Orr & Jones, 1998; Rinta-Kanto et al., 2009; Via-Ordorika et al., 

2004). Studies such as Kardinaal & Visser (2005) reported that high Microcystis densities does 

not necessarily indicate high toxicity in water. Thus, quantifying MCS and MCN copy numbers 

can be alternative parameters that provide closer estimations of the true toxicity in waters and a 

valuable tool for monitoring blooms (Bittencourt-Oliveira et al., 2010; Conradie & Barnard, 

2012; Mankiewicz-Boczek et al., 2006; Rinta-Kanto et al., 2009; Te & Gin, 2011; Wood et al., 

2021). Results from this study also confirmed that higher MCS gene copy numbers and MCN 

copy numbers presence were associated with higher MC concentrations. Furthermore, our results 

suggest that MCN copy numbers were more sensitive and had lower detection when compared 

with MC concentrations. Thus, MCN copy numbers can be used for early detection of potentially 

toxic HAB before MC accumulates to a detectable concentration using current available 

quantification methods.  



NEW JERSEY PHYTOPLANKTON AND HARMFUL ALGAL BLOOMS  

 

106 

PC is the primary photosynthetic pigment found mainly in freshwater cyanobacteria and 

has been widely used as a proxy to estimate cyanobacterial biomass and HAB in freshwater in-

situ (Ahn et al., 2002; Basheva et al., 2018; Brient et al., 2008; Cotterill et al., 2019; Izydorczyk 

et al., 2005; Lee et al., 1994). In our study sites, fluorescence of PC values were significantly 

correlated with various cyanobacterial parameters including MC concentrations, MCS copy 

numbers, and MCN copy numbers. These results support the concept that fluorescence of PC is a 

good proxy to estimate HAB conditions at our study sites. However, it is important to consider 

that PC has limitations since certain environmental conditions and pigment cell content can 

interfere with the in-situ measurement of PC fluorescence and thus, these interferences need to 

be accounted for (Beutler et al., 2003; Chang et al., 2012; Zamyadi et al., 2016). The same 

phycocyanin pigments can result in different RFU measurements at different temperatures and 

light conditions (Rousso et al., 2021; Zamyadi et al., 2016). For example, light intensity 

influences cyanobacteria fluorescence emission by light harvesting regulation processes, thus 

darker environments have higher production rates per unit volume than brighter ones (Erickson 

et al., 2012; Rousso et al., 2021). This suggests that cyanobacteria that occupy the top of the 

water column during the day would have a reduction in pigment production and less fluorescence 

emitted by each cell due to intense light availability (Hofstraat et al., 1991; Zamyadi et al., 

2016). The effects of light stress on phytoplankton cellular fluorescence have been documented 

to be correlated to contractions and movement of chloroplasts associated with photosynthesis 

photoinhibition and fluctuations in cellular fluorescence (Kiefer, 1973). In contrast, 

cyanobacteria located at the bottom of the water column with reduced light might increase their 

phycocyanin pigment production to have a greater ability to process light and lead to an increase 

in their phycocyanin fluorescence per cell (Zamyadi et al., 2016). Furthermore, fluorescence 
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intensity has been documented to decrease as water temperature increases (Downing et al., 2012; 

Watras et al., 2011). Similarly, Henderson et al. (2009) concluded that organic matter 

fluorescence intensity decreased with increased temperature. Thus, the effects of water 

temperature on phycocyanin fluorescence and field measurements are a subject that should be 

further studied. While fluorescence of PC has been reported as a good real-time proxy for 

cyanobacterial biomass, it should not be used as a HAB indicator. 

In this study, high Chl-a concentrations, and MCS and MCN copy numbers in the 

selected drinking water sources had a significant inverse correlation with concentrations of total 

nitrogen and NH3. Additionally, high Phyto and Cyano densities were negatively correlated with 

TN. While nitrogen is an essential macronutrient needed for cyanobacterial growth, helps 

regulate metabolic activity, and promotes cyanobacterial growth, phytoplankton and 

cyanobacteria can differ in their preference and reactions to various forms and concentrations of 

nitrogen (Dai et al., 2012). Freshwater cyanobacteria mostly take up and use nitrate, ammonia, 

and urea, with NH3 being the most favorable nitrogen source (Bothe et al., 1982; Yates et al., 

1980; Wu et al., 2006). This is so since NH3 assimilation is less energetically costly than NO3- 

reduction and N2 fixation (Schubert, 1982). However, NH3 has toxic effects on cyanobacteria at 

higher concentrations, pH values, and light intensity (Markou & Muylaert, 2016; Peccia et al., 

2013; Yuan et al., 2011). NH3 toxicity can suppress the enzyme activity, photosynthesis, 

denitrification, and growth of cyanobacteria (Azov & Goldman, 1982; Belkin & Boussiba, 1991; 

Gao et al., 2012; Thomas et al., 1980). Previous studies have reported that Chl-a concentrations 

in freshwaters are inversely correlated to NH3 and have concluded that NH3 could be a factor that 

limits phytoplankton growth (Ooi et al., 2010). Temporal analyses suggest that low NH3 

concentrations and high phytoplankton and cyanobacteria presence is observed during the 
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growing seasons (Carvalho, 1994; Dai et al., 2012). Ooi et al. (2010) reported that when NH3 

concentrations are low NO3- is utilized by phytoplankton thus leading to an inverse correlation 

between NO3- and phytoplankton. Certain cyanobacteria taxa, such as the non-N-fixing 

Microcystis, have also been reported to be efficient at taking up NH3 during the summer (Dai et 

al., 2012). Blomqvistet al. (1994) hypothesized that due to the lack of nitrogen-fixing 

capabilities, cyanobacteria taxa such as Microcystis have higher competitiveness for ammonia 

nitrogen than other phytoplankton and thus ammonia concentrations could influence 

cyanobacterial dominance. 

In addition to the associations between TN concentrations and cyanobacteria, there was a 

presence of high TP concentrations across all study sites. All drinking water treatment sources 

had TP concentrations above New Jersey DEP SWQS (>0.05µg/L for lakes, 0.01µg/L for rivers). 

The availability of phosphorus can lead to an increase in cyanobacterial growth and ultimately 

have detrimental effects on the surrounding biota and water quality (Huisman et al., 2018). 

Phosphorus concentrations thus should be reduced to achieve target concentrations at the study 

sites. Future studies should focus on land use and land cover analysis in drinking water sources 

to identify phosphorus sources and help create more effective and updated nutrient management. 

Moreover, HAB intensity and frequency in these sites could be further exacerbated by climate 

change. Factors such as increased water stratification and warmer temperatures can lead to 

increased cyanobacterial population growth and their dominance in the phytoplankton 

assemblages, which can be worsened when combined with nutrient enrichment (Carey et al., 

2012; Paerl, 2008). Specifically, thermal stratification favors cyanobacteria with some mobility 

that can change their positions within the water column. Those cyanobacteria are able to move 

downward in the water column to be closer to the nutrient-rich deeper water while other 
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phytoplankton taxa are without access to the nutrients (Carey et al., 2012; Cottingham et al., 

2015; Walsby, 1994). In contrast, mixing events during spring and fall turnovers can disrupt 

cyanobacteria scums, and transport cyanobacterial cells to the profundal zone where no sunlight 

is available. Additionally, the pressure from increasing depths can cause cyanobacteria’s gas 

vesicles to collapse (Visser et al., 1996; Zhao et al., 2017); cells are unable to control buoyancy 

and sink to the bottom where light and temperature conditions negatively affect their survival 

(Huisman & Hulot, 2005; Kinsman et al., 1991; Oliver & Walsby, 1984; Pfeifer, 2012). It has 

been hypothesized that one of the main causes for increases in cyanobacterial blooms is 

increased stratification influenced by climate change (Carey et al., 2012; Joehnk et al., 2008). 

With impending climate change affecting multiple drivers of HAB formation, all sites present in 

this study are vulnerable for future eutrophication and HAB events (O’neil et al., 2012).  

Among all five study sites, Site E is of particular concern since it exhibited a prevalence 

of HAB and impaired water quality conditions throughout the duration of the study. Overall, this 

was the only site with detectable MC concentrations during all months, with some MC 

concentrations above the 8µg/L US EPA recreational water Health Advisories (HAs) for source 

waters. However, toxin concentrations in the finished waters were below HAs post-treatment. 

This suggests that Site E is equipped to effectively remove cyanobacteria and MC from the 

source waters. While the MC levels in the finished water were below drinking water health 

advisory guidelines in Site E, this site is still with the greatest risk of future HAB events and 

ultimately greater treatment costs associated with cyanobacteria and cyanotoxin removal. 

Additionally, while the other four drinking water sources did not have detectable CYN genes 

present, CY was detected in Site E although at very low concentrations. However, our results 

also showed that CY concentrations were effectively reduced to acceptable drinking water levels 
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after treatment. Similarly, during a four-year sampling period in the neighboring state of New 

York CY was rarely detected in natural waterbodies (Boyer, 2007). Boyer (2007) reported CY 

were detected in five eutrophic lakes in New York with concentrations ranging from 0.1 ug/L to 

0.25 ug/L. 

HAB when dominated by cyanobacteria bring additional issues for water treatment 

plants. Microcystis are taxa known to form surface scums which can be further concentrated by 

wind (Chorus & Welker, 2021; Konopka, 1989). The specialized adaptations (i.e., akinetes, 

buoyancy, nitrogen-fixation, luxury phosphorus uptake and storage) that cyanobacteria possess 

relating to nutrient stress aid in their survival and dominance within their communities and create 

further difficulties in managing Microcystis for drinking water facilities (Carey et al., 2012). 

Microcystis is a cyanobacterial taxon known to dominate eutrophic lakes with sufficient 

stratification which aids in their buoyancy regulation throughout the water column (Dokulil & 

Teubner, 2000; Reynolds, 1987). Water column stability allows for cyanobacteria to either grow 

somewhere in the middle with favorable conditions or move towards the surface to access light 

and CO2 (Dokulil & Teubner, 2000). These varying depth positions can impact drinking water 

facilities by having to make adjustments to the intake depth if a bloom is occurring to avoid 

excess cyanobacterial cells (Brookes et al., 2021; Westrick et al., 2010). Furthermore, adjusting 

intake depth is not practical for all drinking water treatment facilities since most have a fixed 

intake depth. A study by Boyer (2007) concluded that the 1 m depth sampling method for 

analyzing CY was biased since the CY-producing Cylindrospermopsis raciborskii blooms are 

dispersed throughout the water column (Boyer, 2007; Padisak, 1997). Thus, future CY sampling 

should consider that C. raciborskii population peaks in stratified lakes occur at various depths 

within the epilimnion (Padisak, 1997). Similarly, dispersal and toxin concerns apply to other 
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cyanobacteria taxa and toxins with these adaptations. However, research on diurnal vertical 

buoyancy patterns of cyanobacteria and impacts on water quality and treatment is limited and 

should be further examined (Kim et al., 2007; Westrick et al., 2010). Due to the presence of 

possibly toxic cyanobacteria and future susceptibility of all drinking water sources to HAB 

events, routine monitoring and management is suggested to reduce the risk of cyanotoxin 

contamination. Routine monitoring would provide early bloom detection, lower treatment costs, 

and lower public health risk to the community. 
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Chapter 4 Phytoplankton Dynamics Across the Spatial and Temporal Gradients in the 
Hudson-Raritan Estuary 

4.1 Introduction 

Estuaries are essential ecosystems which provide a myriad of services, from feeding and 

nursery habitats to the capability of processing and filtering a large portion of the watershed 

discharge from the rivers and coastal areas on Earth (Costanza et al., 1997; Paerl, 2006). Dürr et 

al. (2011) estimated about 57% of water discharge from rivers that drain to the ocean is filtered 

by estuaries. Specifically, estuaries can exclude and hold materials such as sediments, nutrients 

and pollutants from rivers and oceans that are both suspended and in solution and provide 

cleaner water for humans and wildlife (NRC, 2000; Kennedy, 2013). The waters discharged into 

the estuaries can be greatly impacted by anthropogenic activities which can increase nutrient 

inputs and aggravate eutrophication of rivers and coastal waters (O’Neil et al., 2012; Paerl et al., 

2018; Wurtsbaugh et al., 2019). Among the anthropogenic activities that can lead to an increase 

in nutrients are urbanization, agriculture, wastewater, and aquaculture (Adams et al., 2020; 

Heisler et al., 2008). 

4.1.1 Hudson-Raritan Estuary 
The Hudson-Raritan Estuary (Estuary) provides important economical, ecological, and 

recreational resources to the surrounding populations (Pendleton, 2008; Pirani et al., 2018). 

Moreover, it provides many ecological benefits such as a nursery to many juvenile fishes, habitat 

for shellfish, and resting areas for migratory and non-migratory birds (Able, 1999; Adams et al., 

1998; Duffy-Anderson et al., 2003). The Estuary is a complex ecosystem located in New York 

and New Jersey which is influenced by both tidal and wind generated currents (Bagheri et al., 

2002). These currents are altered by discharges from four major rivers: the Hackensack, Hudson, 
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Passaic, Arthur, and Raritan rivers (Bagheri et al., 2002). A long history of urbanization and 

industrialization of surrounding cities such as Newark, New Jersey and New York City, New 

York have contributed both point and non-point sources of pollution and lead to a decline in 

water quality of the rivers and bays within the Hudson-Raritan Estuary (Bloom et al., 2008; Feng 

et al., 1998; Jung et al., 2021; USEPA, 2007). High concentrations of pollutants such as Cu and 

Pb have been documented in the sediments of the Hudson River Estuary and have been 

suggested to originate from urban runoff and wastewater effluent (Feng et al., 1998). Other 

consequences of urbanization in the Estuary include habitat loss, reduced recreation, and a 

decrease in biodiversity (Studholme, 1988).   

The many impacts of human activities on water quality have ultimately led to 

eutrophication symptoms in the Estuary. Harmful algal blooms (HAB) have been a concern in 

the New Jersey coastal area and rivers that drain to the Estuary (Gastrich, 2000; Mahoney et al., 

1990; Van, 2016). The Passaic River has been reported to have higher phosphorus concentrations 

than other freshwaters in New Jersey (Van, 2016). Studies have suggested sewage waters are the 

main source of phosphorus inputs to the Hudson, Raritan, Hackensack, and Passaic rivers (Jung, 

2017; Obropta et al., 2008; Pearce et al., 1988). Similarly, O’Shea et al. (2000) suggested that 

Raritan Bay water quality had declined and HCBs were increasing, possibly due to wastewater 

effluents and an increase in nonpoint source pollution. Moreover, the study documented an 

increase in surface dissolved oxygen supersaturation and stratification (O’Shea et al., 2000). 

These findings are supported by worldwide trends where estuaries have seen a decline in water 

quality partly due to nutrient enrichment and eutrophication (O’Neil et al., 2012; Paerl et al., 

2014). 
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4.1.2 Economic and Ecological Impacts 

The Hudson-Raritan Estuary has been greatly impacted by urban and industrial 

development since the early 1800’s (Suszkowski et al., 1990). Greater urbanization can 

ultimately increase runoff and transport greater amounts of nutrients into waterbodies (Sugianto 

et al., 2022). The Estuary is located in one of the most densely populated areas in the United 

States and possesses the largest shipping port of the east coast (Pirani et al., 2018). This shipping 

port is of importance to the regional economy since the value of the cargo in the Hudson-Raritan 

Estuary has been estimated at $200 billion per year and provides around 190,000 local jobs 

(Pirani et al., 2018). Moreover, the Estuary is of great economic value since its waters have been 

estimated to serve as a public resource for 14 million people (Pirani et al., 2018).  

The Passaic, Hudson, and Raritan rivers in the Estuary are utilized to supply drinking 

water to surrounding populations (Cosgrove et al., 2005; Hall & Dietrich, 2000; McLaughlin et 

al., 1988; Palmer et al., 2011). These water systems are vulnerable to eutrophication conditions. 

The costs of HAB treatment on drinking water facilities have been estimated at $70 million in a 

10-year span in Texas (Dunlap et al., 2015). Furthermore, treatment processes such as powdered 

activated carbon have been estimated at more than $1 million during the summer season only 

(Walker, 2014). There are numerous economic costs associated with human activities in the 

Estuary. 

In addition to economic impacts, habitat loss, fragmentation, wetland filling, and legacy 

toxic contaminants have influenced local biota by reducing diversity and abundance of 

organisms (Crawford et al., 1994; Pearce, 1988). Furthermore, a rise in eutrophication events 

have contributed to the increasing frequency and intensity of HAB, and subsequently produced a 

negative effect on dissolved oxygen levels (Wurtsbaugh et al., 2019). HAB impacts on wildlife 

have been reported in the rivers and bays of the Estuary related to toxins and eutrophication. 
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Brown tides events have been associated with affecting the mortality of eelgrass beds (Zostera 

marina), which provides habitat for juvenile finfish and shellfish (Dennison et al., 1989). 

Moreover, HAB were suggested to facilitate hypoxia in the Hudson-Raritan Estuary (Olsen & 

Mulcahy, 1991). While HAB in the Estuary have been mostly documented in the coastal and 

marine ecosystems, research that focuses on the comparison between the rivers and bays of the 

Estuary is limited. 

4.1.3 Public Health and Recreational Impacts 
Toxin-production by various HAB taxa can have both acute and chronic impacts on 

human health (Gastrich, 2000). These health impacts from HAB can occur through various 

routes of exposure including ingestion, skin contact, and aerosolization (Gastrich, 2000). In New 

Jersey, coastal blooms have been associated with reports of moderate illness and discomfort from 

New Jersey bathers. (Gastrich, 2000; USEPA, 1986). Reports of acute toxicity from exposure 

HAB have been reported by the New Jersey Department of Environmental Protection, with 

reported adverse effects such as respiratory issues, fever, skin reactions, and nausea after bloom 

exposure (NJDEP, 1998; USEPA, 1986). Blooms in the Estuary have also been reported to affect 

recreation such as decreased aesthetic value of the beaches (Mahoney & McLaughlin, 1977). 

While freshwater HAB have been confirmed by the NJDEP in the Passaic and Hackensack 

rivers, reports with information on public health impacts are lacking (NJDEP, 2021).  

4.1.4 HAB and Phytoplankton Communities 

Phytoplankton are photosynthetic organisms that contribute to approximately half of the 

primary production in aquatic coastal ecosystems (Sigman & Hain, 2012). The physical and 

biogeochemical processes that occur in the river to ocean continuum are influenced primarily by 

freshwater flow and river-ocean mixing (Wang & Zhang, 2020). This suggests that observed 
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poor water quality in estuaries could be occurring as a result of eutrophication and HAB from 

freshwaters upstream or waterbodies downstream (Wang & Zhang, 2020). Eutrophication can 

facilitate a rapid increase in the algae concentration causing HAB and can result in detrimental 

effects to other living organisms and water quality (Hallett et al., 2016). These detrimental 

effects can be attributed to the algal toxins and/or large biomass produced (Anderson et al., 

2002). Some HAB have been documented to cause adverse ecological effects such as 

hypoxic/anoxic conditions and fish kills (Paerl et al., 2018; Wurtsbaugh et al., 2019). Thus, 

eutrophication and HAB can interfere with the ecosystem services that estuaries provide (Elliot 

& Whitfield, 2011). In addition, climate change trends are predicted to exacerbate extreme 

weather events such as flooding and droughts, which could stimulate HAB and worsen 

detrimental impacts on water quality and wildlife (IPCC, 2014; O’Neil et al., 2012; Philps, 2020; 

Wetz & Yoskowitz, 2013). 

Various studies have observed a strong influence of freshwater discharge on the 

distribution of phytoplankton biomass (Day et al., 2009; Pilkaitytė & Razinkovas, 2007). This 

suggests that freshwater discharge transports nutrients from surrounding watersheds which 

support primary production and influence phytoplankton growth. Freshwater discharge can also 

affect phytoplankton composition by altering flushing characteristics and residence times in 

estuaries (Crump et al., 2022). Similarly, Qian et al. (2000) suggested that phytoplankton growth 

within the river-ocean continuum, and exacerbating eutrophication in estuaries could be due to a 

shift from nitrogen to phosphorus limitation. Other water quality conditions have been 

hypothesized to alter phytoplankton communities. For instance, previous studies have suggested 

that the shift in phytoplankton community composition from freshwater to marine taxa could be 

influenced by salinity and turbidity (Fortunato et al., 2012; Keller et al., 2014). As freshwater 
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phytoplankton move towards the ocean, they can die as they access the oligohaline and 

mesohaline zones (Wang & Zhang, 2020). This could be due to osmotic stress or turbidity 

increases along the river-ocean continuum (Wang & Zhang, 2020). Thus, the transport and fate 

of phytoplankton from freshwater to brackish waters should be further studied and incorporated 

for creating and implementing effective water quality management strategies that integrate 

rivers, bays, and estuarine systems. 

As previously mentioned, the highly productive waters within the Estuary are influenced 

by factors such as winds and turbidity which could in turn impact its phytoplankton assemblages. 

Furthermore, freshwater discharge to the bays could impact the physical, chemical, and 

biological features of the Estuary (Hickey et al., 2010). While water quality and its relation to 

HAB have been a focus of research in both freshwater and brackish water systems, fluvial 

studies of both systems in spatial and seasonal scales are scarce (Fortunato et al., 2012, 

2013).  Due to the complex nature of the Estuary, management strategies should incorporate data 

from its rivers and bays. To our knowledge, there is no systematic study of the inputs and 

transports of cyanobacteria and pollution in the Hudson-Raritan Estuary. This study sought to 

document the variation and trends in water quality and HAB conditions between the rivers and 

bays of the Estuary. Moreover, this study reported the environmental factors that influence the 

spatial and temporal changes in both the phytoplankton and cyanobacterial communities within 

the Estuary. 
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4.2 Materials and methods 

4.2.1 Site Description 

A total of 31 sampling sites were selected for this study which spanned across the 5 rivers 

and 2 bays in the Hudson-Raritan Estuary including 14 sites in the Passaic River, 4 in the 

Hackensack River, 3 in the Hudson River, 2 in the Arthur Kill, 2 in the Raritan River, 3 sites in 

the Newark Bay, and 3 in the Raritan Bay (Table 4.1; Figures 4.1 and 4.2). The Pompton, 

Saddle, and Second rivers are three tributaries that were incorporated into the Passaic River 

sampling sites for the purpose of this study. These waterbodies had a wide range of salinities 

from fresh to brackish water (Figure 4.3). We divided the waterbodies into tidal and non-tidal 

waters with non-tidal waters defined, for the purpose of our study, as sampling sites upstream of 

the salt line.  

 
Figure 4.1. A total of 31 sites were selected for this study across the Hudson-Raritan Estuary in 
New Jersey. 
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Passaic River: The Passaic River is located in Northern New Jersey, approximately 30 miles 

long, has a daily average discharge of 47 m3/s, and ends at its confluence with Newark Bay 

(Brydon, 1974; Shrestha et al., 2014). A history of severe pollution from industrialization and 

urbanization have degraded the water quality of the river, especially the lower 6 to 7 miles, and 

have led to its designation as a Superfund site (Iannuzzi et al., 2002; Olson & Tharp, 2020; 

USEPA, 1998). Pollutants such as 2,3,7,8-tetrachlorodibenzo-p-dioxins, among others, have 

contaminated its sediments, fish, and crustaceans to the extent where harvesting is banned from 

the lower portion of the river (Iannuzzi et al., 2004).  

 
Figure 4.2 Concept map of water flow of study sites of the Hudson-Raritan Estuary. (*= 
indicates non-tidal waters). 
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Hackensack River: Another river that drains into Newark Bay is the Hackensack River which is 

approximately 45 miles long, with a daily discharge of 6 m3/s, and is located both in New York 

and New Jersey (Shrestha et al., 2014; USACE, 2016). Similar to the Passaic River, the water 

quality in the lower portion of the Hackensack River has been worsened by industrialization and 

urbanization of the Hackensack meadowlands (Crawford et al., 1994; Long et al., 1995). Severe 

pollution from chemical waste resulted in one of its tributaries, Berry’s Creek, having the highest 

sediment concentrations of methyl mercury recorded in a waterbody in the United States 

(Cardona-Marek et al., 2007; Lipsky & Harkov, 1980; Schartup et al., 2003).  

         
Figure 4.3. Box (median) and whiskers (maximum and minimum) plot of the salinity (ppt) of 
five rivers and seven bays within the Hudson- Raritan Estuary in New Jersey. Outliers are 
represented by black dots. 
 

Hudson River: The 315-mile-long Hudson River drains into the Lower New York Bay, with its 

lower stretch being a tidal estuary and has a daily average discharge of 620 m3/s (Dunwell, 

2011). Its utilization as a main transportation passageway has subsequently increased local 
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population and further affected water quality (Dunwell, 2011). This river was also impacted by 

industrial pollution, especially polychlorinated biphenyls (PCBs) (Dunwell, 2011; Williams et al, 

1978; Olsen et al., 1978).  

Newark Bay: The Newark Bay is approximately 6.21 miles long and located at the confluence of 

the Hackensack and Passaic Rivers (Crawford et al., 1994). It is economically valuable, being 

designated as a major commercial port in the United States (Suszkowski et al., 1990). However, 

this tidal bay has been severely impacted by pollution from its port and discharges from the 

Passaic and Hackensack rivers (Bonnevie et al., 1994; Dimou et al., 2006). Pollutants such as 

dioxins, mercury, lead, and PCBs have been reported in high concentrations at Newark Bay 

(Bopp et al., 1991; Crawford et al., 1995; Saba & Su, 2013; Wolfskill & McNutt, 1998). 

Arthur Kill: The Arthur Kill, a 15 miles long river or strait, connects to the Newark and Raritan 

bays and is an important navigable estuarine channel worldwide (Burger, 1994). The majority of 

its riverbanks have been altered for industrial purposes (Burger, 1994). Historically, it has 

experienced a higher frequency of oil spills than any other waterbodies in the Hudson-Raritan 

Estuary with an estimated average spill volume of 2,541,939 US gallons (Gunster et al., 1993). 

Huntley et al. (1995) showed severely high polyaromatic hydrocarbons (PAH) concentrations in 

the Arthur Kill sediments. Other reports have shown heavy metal concentrations were highest at 

the Arthur Kill (Grieg & McGrath, 1977).  

Raritan River: The Raritan River is the largest interstate river system in New Jersey at 30 miles 

long, which has an average discharge of 34 m3/s and drains to the Raritan Bay (Ashley et al., 

1998). Between the 1920s and 1980s, industrial wastes were discharged directly to the river such 

as formaldehyde, phenols, arsenic, and copper (Rudolfs & Fletcher, 1951). Other contaminants 

such as sulfate, chloride and nitrate ions concentrations significantly increased in the 1970’s, 
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indicating waste-water discharge and agricultural runoff inputs (Anderson & Faust, 1974). 

Furthermore, it flows through approximately 18,000 contaminated industrial sites (Li et al., 

2020). The surrounding population utilize the river for drinking water, transportation, and 

recreation (Reiser, 2001).  

Raritan Bay: At a length of 12 mi, the Raritan Bay is a drowned river estuary which receives 

freshwater from the Hudson and Raritan Rivers and effluents from the Hackensack and Passaic 

Rivers (Jeffries, 1962; MacKenzie, 1990). The bay has been impacted by a long history of 

landscape alterations, ocean pollution, industrial chemicals, and increased population density 

(Pearce, 1979). These activities have led to an increase in heavy metals (mercury, cadmium, 

copper, and lead), and hydrocarbons (PCBs) concentrations at the bay (Greig & McGrath, 1977; 

Staiken, 1979; Waldhauer et al., 1978). It has been considered as one of the most deteriorated 

estuaries in the United States (Pearce, 1979). 

4.2.2 Phytoplankton and HAB Density 
Samples for phytoplankton and HAB taxa analysis were collected at 0.5m depth in glass 

jars which were wrapped in foil, kept cold, and transported to a Montclair State University 

laboratory. Lugol’s Iodine solution was used to preserve the samples which were then stored in a 

cold room. A FlowCam 8000 Series Dynamic Imaging Particle Analyzer (referred as FlowCam 

in this paper) (Yokogawa Fluid Imaging Technologies, Scarborough, ME) was used to process 

phytoplankton samples for identification and enumeration. Samples were homogenized by gently 

inverting 25 times, and for each analysis, 300 µl of sample was processed by the FlowCam. 

Samples were run in triplicates. The FlowCam’s AutoPilot software was used for categorizing 

and counting of phytoplankton and HAB particles. Images generated by FlowCam were then 

further processed for taxa identification and cell density. Cells were identified and counted to the 
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lowest taxonomic level possible using identification materials such as Freshwater algae of North 

America: ecology and classification (Wehr et.al, 2015), Cyanoprokaryota-1. Teil/Part 1: 

Chroococcales (Komárek & Anagnostidis, 2008), Cyanoprokaryota-2. Teil/Part 2: 

Oscillatoriales (Komárek & Anagnostidis, 2008), and Cyanoprokaryota-3. Teil/Part 3: 

Heterocytous Genera (Komárek, 2013). Phytoplankton cell density (Phyto) refers to the total 

density of all phytoplankton taxa. Harmful algal bloom cell density (HAB) was calculated by 

adding freshwater cyanobacteria taxa and red tide phytoplankton taxa. 

4.2.3. Water quality data 
Data was downloaded from the US EPA Water Quality Portal 

(https://www.waterqualitydata.us/) including the following parameters: pH, dissolved oxygen 

(DO), temperature (Temp), salinity (Sal), total suspended solids (TSS), total phosphorus (TP), 

nitrate (NO3−), nitrite (NO2−), and Total Kjeldahl Nitrogen (TKN), fand chlorophyll-a (Chl-a). 

The TN concentrations were calculated by adding nitrate (NO3−), nitrite (NO2−), and Total 

Kjeldahl Nitrogen (TKN) concentrations. 

4.2.4. Statistical analysis  

The data were not normally distributed (Shapiro-Wilk’s test), thus non-parametric tests 

were conducted. The non-parametric Spearman’s Correlation test was conducted to observe 

correlations between water quality and phytoplankton and HAB taxa density. For this test, a p-

value of 0.05 was chosen as the threshold for statistical significance. Dunn’s post hoc test was 

conducted to determine differences between water quality parameter means of bays and rivers 

and seasons. The Principal Component Analysis (PCA) was used to discern patterns among 

environmental parameters and phytoplankton and HAB taxa density. Statistical analyses were 

done using the JMP Pro 15 software. 
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4.3 Results 

4.3.1 Water Quality at the Selected Study Sites 

Arthur Kill 

The lowest number of taxa was recorded in the Arthur Kill with a total of 35 phytoplankton taxa. 

Major phytoplankton taxa groups present in this river include the diatoms (19; 54.3%), green 

algae (7; 20.0%), cyanobacteria (5; 14.3%), dinoflagellates (2; 5.7%), euglenoids (1; 2.9%), and 

cryptomonads (1; 2.9%) (Appendix C). The diatoms Cyclotella were present in 18 of 22 samples 

(81.8%) and Thalassiosira in 12 of 22 of samples (54.5%) in the Arthur Kill. The Arthur Kill 

phytoplankton community was dominated by HAB taxa. While phytoplankton densities were the 

lowest amongst all rivers and bays at a median density of 96 cells/mL (ranging from 22 to 1,281 

cells/mL), the HAB densities were found the highest ranging from 13 to 842 cells/mL (Table 

4.2). Low Chl-a concentrations were also recorded with a median of 2.32 ug/l (ranging from 0.8 

to 18.8 ug/l). The median water temperature in this river was 14.5 °C (ranging from 3.0 to 24.3 

°C) while Sal concentration had a median of 17.5 ppt, ranging from 12.5 to 24.0 ppt. 

Hudson River 

A total of 39 phytoplankton taxa were observed in the Hudson River with five major 

phytoplankton groups present: diatoms (19; 48.7%), cyanobacteria (7; 18.0%), green algae (10; 

25.6%), dinoflagellates (2; 5.1%), and cryptomonads (1; 2.6%) (Appendix C). The diatom 

Cyclotella were found in 30 of 33 samples (90.9%) while the cryptomonad Cryptomonas was 

found in 22 of 33 of samples (66.7.%). Similar to Arthur Kill, results in the Hudson River 

showed lower phytoplankton and HAB taxa density. The Hudson River had low phytoplankton 

densities with a range from 16 to 365 cells/mL and a median of 113 cells/mL, while HAB counts 

were amongst the lowest in the Estuary ranging from 16 to 365 cells/mL (Table 4.2). Chl-a 

concentrations supported these results with the lowest median concentration of all sites at 1.96 
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ug/l (ranging from 0 to 13.6 ug/l). Median water temperature was among the lowest of all sites at 

12.9 °C (ranging from 2.3 to 25.6 °C) while Sal concentrations ranged from 3.7 to 20.6 ppt 

(median of 11.2 ppt). 

Newark Bay  

Similar to the Hudson River, a total of 39 phytoplankton taxa were recorded in the Newark Bay. 

The Newark Bay results showed some of the lowest phytoplankton and HAB taxa in the Estuary. 

Seven major phytoplankton taxa groups were recorded in this bay and included the diatoms (15; 

38.5%), green algae (14; 35.9%), cyanobacteria (6; 15.4%), dinoflagellates (1; 2.6%), euglenoids 

(1; 2.6%), golden algae (1; 2.6%), and cryptomonads (1; 2.6%) (Appendix C). Of the 

phytoplankton taxa recorded, the diatom Cyclotella was detected in 26 of 33 samples (78.8%) 

and Thalassiosira was detected in 17 of 33 of samples (51.5%) at Newark Bay. Median Phyto 

densities were the third lowest in the Estuary at 135 cells/mL (ranging from 24 to 650 cells/mL) 

and HAB counts were low ranging from 13 to 429 cells/mL (Table 4.2). These results were 

supported by low median Chl-a concentrations 2.54 ug/l (ranging from 0.57 to 12.5 ug/l). The 

Newark Bay had median water temperature at 14.2 °C (ranging from 3.1 to 24.9 °C) while 

median Sal concentration were the second highest of all sites at 17.6 ppt (ranging from 9.8 to 

24.0 ppt).  

Passaic River  

The highest taxa richness in the Estuary was recorded in the Passaic River with a total of 82 

phytoplankton taxa. Furthermore, this river had seven phytoplankton taxa groups: diatoms (30; 

36.6%), green algae (27; 32.9%), cyanobacteria (18; 22.0%), golden algae (3; 3.7%), 

dinoflagellates (2; 2.4%), euglenoids (1; 1.2%), and cryptomonads (1; 1.2%) (Appendix C). Of 

the 82 taxa, the diatom Navicula was observed in 141 of 157 samples (89.9%) while the 
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cryptomonad Cryptomonas in 111 of 157 of samples (70.7%). Overall, higher phytoplankton and 

HAB density were observed when compared to other waterbodies in the Estuary. Phyto densities 

ranged from 5 to 10,393 cells/mL with a median of 275 cells/mL while HAB counts ranged from 

4 to 10,244 cells/mL with a median of 138 cells/mL (Table 4.2). Chl-a concentrations were also 

higher ranging from 0.49 to 32.8 ug/L with a median of 3.36 ug/L. However, water temperature 

and Sal were found to be the lowest in the Estuary among all sites, with a median Temp at 9.7 °C 

(ranging from 1.4 to 26.5 °C) and a median Sal concentration of 0.3 ppt (ranging from 0.2 ppt 

recorded at upstream freshwater sites to 1.94 ppt observed at the tidal section of the Passaic 

River). 

Hackensack River  

The Hackensack River had the second highest phytoplankton taxa richness at 65. Similar to the 

Passaic River, there were seven major phytoplankton groups present including the diatoms (28; 

43.1%), green algae (18; 27.7%), cyanobacteria (10; 15.4%), dinoflagellates (3; 4.6%), golden 

algae (3; 3.1%), euglenoids (2; 3.1%), and cryptomonads (1; 1.5%). Similar to the Passaic River, 

the diatom Navicula was present in 30 of 43 samples (69.8%) and the cryptomonad Cryptomonas 

in 29 of 43 samples (67.4%) (Appendix C). Phytoplankton and HAB taxa density in the 

Hackensack River was amongst the highest in the Estuary. The phytoplankton densities had a 

median of 261 cells/mL (36 to 18,147 cells/mL) while HAB densities had a median of 72 

cells/mL (ranging from 4 to 17,235 cells/mL) (Table 4.2). The higher phytoplankton densities 

were supported by the third highest median Chl-a median concentrations among all sites at 4.93 

ug/l (ranging from 0.51 to 50.6 ug/l). Furthermore, the median water temperature and Sal were 

the second highest in the Estuary at 15.4 °C (ranging from 2.6 to 27.2 °C) and 8.9 ppt (ranging 

from 0.2 to 19.5 ppt), respectively.  
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Raritan Bay 

Similar to the Newark Bay, a total of 39 phytoplankton taxa were recorded in the Raritan Bay. 

Major phytoplankton taxa groups present in this bay were the diatoms (22; 56.4%), 

cyanobacteria (5; 12.8%), dinoflagellates (4; 10.3%), green algae (4; 10.3%), golden algae (2; 

5.1%), euglenoids (1; 2.6%), and cryptomonads (1; 2.6%) (Appendix C). The phytoplankton taxa 

in this bay included the diatoms Cyclotella which was found in 19 of 31 samples (61.3%) and 

Thalassiosira in 18 of 31 samples (58.1%). Phytoplankton densities were high amongst all rivers 

and bays ranging from 18 to 2,932 cells/mL and a median density of 803 cells/ml while HAB 

densities ranged from 15 to 1,642 cells/mL (Table 4.2). Median Chl-a concentration was the 

highest in the Estuary at 19.75 ug/L and ranging from 1.14 to 83.4 ug/L. The median water 

temperature was higher at 14.8 °C (ranging from 2.5 to 29.2 °C) and the highest median Sal 

concentration in the Estuary was recorded at 20.3 ppt (ranging from 9.4 to 25.9 ppt). 

Raritan River 

Forty-six phytoplankton taxa were recorded in the Raritan River, the third highest in the Estuary. 

All seven taxa groups were present in this river with the diatoms (16; 34.8%), green algae (13; 

28.3%), cyanobacteria (10; 21.74%), dinoflagellates (3; 6.5%), golden algae (2; 4.3%), 

cryptomonads (1; 2.8%), and euglenoids (1; 2.8%) (Appendix C). The diatom Navicula was 

recorded in 21 of 22 samples (95.5%) and the green algae Monoraphidium in 14 of 22 samples 

(63.6%) were amongst the highest number of taxa detected in the Raritan River samples. The 

Raritan River had the second highest median phytoplankton and HAB densities when compared 

to other waterbodies in the Estuary at 329 cells/ml (ranging from 42 to 2,400 cells/mL) and 200 

cells/mL (ranging from 4 to 1,833 cells/mL), respectively (Table 4.2). Median Chl-a 

concentrations were also the second highest in the Estuary at 6.26 ug/l and ranging from 0.65 to 
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33.6 ug/l. The highest median temperature in the Estuary was recorded at 15.8 °C (ranging from 

2.6 to 27.3 °C) while median Sal concentrations were second lowest at 0.5 ppt (ranging from 0.1 

ppt to 8.1 ppt).  

 

4.3.2 Water Quality in the Hudson-Raritan Estuary  

Water quality data was analyzed to obtain a greater comprehension of the environmental 

conditions across the five rivers and two bays in the Hudson-Raritan Estuary. Across the Estuary, 

Phyto densities were low during the study period ranging from 18 to 18,147 cells/mL with a 

median of 238 cells/mL; as well as low HAB densities with a range from 4 to 17,235 cells/mL 

(median of 138 cells/mL) suggesting low to no HAB risk to the human health (Table 4.3). 

Certain parameters such as Chl-a have been commonly utilized to determine phytoplankton 

biomass estimations. The results of this study showed Chl-a concentrations of 0 to 83.4 μg/L 

with a median of 3.66 μg/L. According to the US EPA guidance values for estuaries, these Chl-a 

concentrations indicated that the selected study sites in the Hudson-Raritan Estuary ranged from 

oligotrophic to eutrophic (USEPA, 2001). Any Chl-a concentrations above 10 μg/L could 

indicate impacted water quality (NJDEP, 2011; USEPA, 2001; WHO, 2003). During the study 

period, among the 31 study sites, 19.1% of samples (50 of 262) were above 10 μg/L. Among 

those 50 samples with Chl-a concentrations above 10 μg/L, the Raritan Bay had the highest 

number of samples exceeding the threshold at 40% (20 of 50), followed by the Hackensack River 

at 30% (15 of 50), the Passaic River at 20% (10 of 50), and the Raritan River at 18% (9 of 50). 

The Newark Bay, Hudson River, and Arthur Kill each had less than 7% of samples whose Chl-a 

concentrations were above 10 μg/L. 

Both phytoplankton and HAB growth can be impacted by excess or lack of TN and TP; 

nutrient data can be useful to assess water quality degradation due to nutrient pollution. Using 
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historical and recent nutrient data as well as reference site conditions, the US EPA established 

ecoregional nutrient recommendations as guidelines for states to establish water quality 

standards (USEPA, 2000a). These nutrient recommendations indicate conditions where surface 

waters are least affected by anthropogenic activities, and where water quality is protected for 

recreation and to support aquatic organisms (USEPA, 2000a). Two sub ecoregions span the 

study sites in the Hudson-Raritan Estuary: the Northern Piedmont and the Atlantic Coastal Pine 

Barrens. The Passaic River, Hudson River, Hackensack River, Arthur Kill, and the Newark Bay 

sites were located in the Northern Piedmont ecoregion. Nutrient criteria conditions for this 

ecoregion ranged from 0.07 to 1.0 mg/L for TN and 0.022 to 0.1 mg/L for TP (USEPA, 2000a). 

More recent studies have reported nutrient concentrations for reference waterbodies in New 

Jersey, defined as <10% altered land use/land cover (Procopio & Zampella, 2023). We compared 

the Hackensack, Passaic, Hudson, and Arthur rivers and the Newark Bay TN and TP 

concentrations with the median TN and TP reference conditions of the northern reference 

streams as reported in Procopio & Zampella (2023) at 0.26 mg/L and 0.01 mg/L, respectively. 

TN was calculated by summing the medians of NH3 +ON and NO3 +NO2 concentrations. The 

TN results of the northern study sites ranged from 0.0001 to 0.530 mg/L with the Hackensack 

River and Passaic River having the only samples exceeding TN reference conditions at 14.3% 

and 1.5%, respectively (Tables 4.3, 4.4). TP concentrations in the northern study sites ranged 

from 0.050 to 1.150 mg/L, with all waterbodies having 100% of samples exceeding TP reference 

conditions (Tables 4.3, 4.4).  

The Raritan River and Raritan Bay were located in the Atlantic Coastal Pine Barrens 

ecoregion which had nutrient criteria ranging from 0.48 to 0.87 mg/L for TN and 0.006 mg/L to 

0.052 mg/L for TP (USEPA, 2000b). The Raritan River and Raritan Bay were compared with 
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reference conditions for the southern region of New Jersey at 0.19 mg/L for TN and <0.01 mg/L 

for TP (Zampella & Procopio, 2023). However, the draining waters of the Raritan River and 

Raritan Bay primarily originate in the Piedmont and Highlands physiographic regions in the 

northern area of New Jersey. Results showed that TN concentrations from the study sites in the 

southern NJ area ranged from 0.001 to 0.059 mg/L, with no samples exceeding either the 

northern or southern TN reference conditions (Table 4.4). TP concentrations at the Atlantic 

Coastal Pine Barrens ecoregion ranged from 0.050 to 0.290 mg/L and all waterbodies having 

100% of samples exceeding both northern and southern TP reference conditions (Tables 4.3, 

4.4). 

We conducted a Principal Components Analysis (PCA) in order to identify 

environmental conditions associated with phytoplankton and HAB taxa density at all seven 

waterbodies in the Estuary. The first and second principal components explained 49.8% of the 

total variance, with Phyto densities making the greatest contribution to the first axis (Figure 4.4). 

The first component measures phytoplankton and harmful algal bloom indicators such as Phyto, 

HAB, and Chl-a. While the second component measures water quality conditions such as Temp, 

TN, TP, and TSS. Spearman’s correlation results showed that as TP (p<0.01) and TN (p<0.01) 

concentrations increased, Chl-a concentrations decreased, which has been reported in previous 

studies (Liang et al., 2020; Saraswathy et al., 2012) (Table 4.5). 
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Figure 4.4. Principal Component Analysis of water quality parameters and phytoplankton and 
cyanobacterial densities of 31 sites in the Hudson-Raritan Estuary. Parameters: pH, dissolved 
oxygen (DO), salinity (Sal), temperature (T), total suspended solids (TSS), Total Nitrogen(TN), 
Total Phosphorus (TP), harmful algal bloom cell density (cells/mL) (HAB), Chlorophyll-a (Chl-
a), phytoplankton cell density (Phyto), and richness (Rich).  

Moreover, Phyto densities also decreased with increasing TP (p<0.01) concentrations 

(Table 4.5). However, this result contradicts previous studies showing that phytoplankton 

densities increase with higher nutrient concentrations (Buford & O’Donohue, 2006; Sirunda et 

al., 2021). This negative correlation could indicate that phytoplankton could be experiencing 

some functional constraints such that if the competitive ability for nitrate is higher, it can cause 

the competitive ability for phosphate to be lower (Edwards et al., 2011). 

Seasonal and Temporal Patterns  
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Seasonal patterns were examined to observe the influence of weather conditions on the 

water quality in the Hudson-Raritan Estuary. In order to discern which water quality parameters 

were significantly different between seasons, a Dunn’s post-hoc test was conducted. Among all 

seasons, the fall had the lowest Phyto densities ranging from 18 to 3,761 cells/mL (median 86 

cells/mL) (p<0.001, p<0.001, p<0.001), lowest HAB densities ranging from 8 to 3,548 cells/mL 

(median 72 cells/ml), and lower Chl-a concentrations (p<0.001, p<0.001) (Tables 4.6, 4.7). The 

fall was also characterized by having higher nutrients with TP concentrations ranging from 0.10 

to 1.15 mg/L (median 0.17 mg/L) (p<0.001, p<0.001) and the highest TN concentrations ranging 

from 0.00 to 7.90 mg/L (median 1.36 mg/L) (p<0.001, p<0.001, p<0.001) (Tables 4.6, 4.7). The 

winter season showed higher Phyto densities ranging from 40 to 10,393 cells/mL (median 261 

cells/mL), the second highest median HAB densities at 194 cells/ml (ranging from 5 to 10,244 

cells/mL), while lower Chl-a concentrations ranging from 0.49 to 54.20 μg/L (median 2.09 μg/L) 

(p<0.001, p=0.019) (Tables 4.6, 4.7). Lower nutrient concentrations were observed in the winter 

with TP ranging from 0.06 to 0.58 mg/L (median 0.11 mg/L) along with lower TN 

concentrations ranging from 0.00 to 6.83 mg/L (median 0.92 mg/L). Results showed that the 

spring season had higher Phyto densities ranging from 62 to 3,061 cells/mL (median 344 

cells/mL), HAB densities ranging from 4 to 1,833 cells/mL (median 198 cells/mL), and higher 

Chl-a concentrations ranging from 0.00 to 83.40 μg/L (median 6.67 μg/L). The spring season 

also had lower TP concentrations ranging from 0.05 to 0.42mg/L (median 0.08 mg/L) and TN 

concentrations ranging from 0 to 4.87 mg/L (median 1.28 mg/L). When compared to all other 

seasons, the summer season results showed lower Phyto densities ranging from 22 to 18,147 

cells/mL (median 220 cells/mL) (p=0.036) and TP concentrations ranging from 0.05 to 0.41 

mg/L (median 0.15 mg/L) (p<0.001, p<0.001), while lower Chl-a concentrations ranging from 
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0.54 to 65.2 μg/L (3.72 μg/L) and TN concentrations ranging from 0 to 4.25 mg/L (median 1.25 

mg/L) (Tables 4.6, 4.7). 

Spatial Patterns 

The PCA results showed that the Passaic River, Raritan River, and the Raritan Bay were 

on the positive side of the first component, indicating similarities in phytoplankton and HAB 

indicator parameters such as Chl-a concentrations, Phyto densities and HAB densities (Figure 

4.4). In contrast, Arthur Kill, Hackensack River, Hudson River, and Newark Bay were on the 

negative side of the first component, suggesting they were dissimilar from the Passaic River, and 

Raritan River, and Raritan Bay with lower phytoplankton and HAB indicator parameters. 

Moreover, a Dunn’s post-hoc test was conducted to determine which parameters were 

significantly different between waterbodies in the Estuary. Phytoplankton and HAB densities 

were the greatest in lower salinity waterbodies with an exception of the Raritan Bay, which had 

the highest salinity in the Estuary. Results showed that the Raritan Bay was characterized by 

higher phytoplankton and HAB densities than other waterbodies in the Estuary. For example, 

results showed that the Raritan Bay had significantly greater Chl-a concentrations than the 

Arthur Kill (p<0.001), Hudson River (p<0.001), Newark Bay (p<0.001), and Passaic River 

(p<0.001) (Table 4.8).  

Similarly, Phyto densities were significantly higher in the Raritan Bay than the Arthur 

Kill (p<0.01), Hudson River (p<0.001), and Newark Bay (p<0.001) (Table 4.8). After the 

Raritan Bay, the Raritan River had the greatest phytoplankton densities. Additionally, Chl-a 

concentrations (p=0.036) and Phyto densities (p<0.01) were significantly higher in the Raritan 

River than the Hudson River (Table 4.8). Furthermore, Phyto densities (p=0.0302) and Chl-a 

concentrations (p<0.01) were significantly greater in the Raritan River than the Newark Bay. 



NEW JERSEY PHYTOPLANKTON AND HARMFUL ALGAL BLOOMS  

 

161 

Following the Raritan Bay and Raritan River, the Hackensack River differed from various 

waterbodies in the Estuary when comparing phytoplankton and HAB parameter values. Both 

Chl-a concentrations (p=0.025) and Phyto densities (p<0.001) were significantly greater in the 

Hackensack River than the Hudson River. Similarly, Chl-a concentrations were significantly 

higher in the Hackensack River than the Newark Bay (p=0.031), and the Passaic River 

(p=0.033). Lastly, the Passaic River had significantly higher Phyto densities than both the 

Hudson River (p<0.001) and Newark Bay (p=0.019).  

Similar to phytoplankton and HAB densities, nutrients were the highest in waterbodies 

with lower salinity such as the Raritan River, Passaic River, and Hackensack River, except the 

Raritan Bay which had the highest salinity, high phytoplankton and HAB densities, and low 

nutrient concentrations. The lowest nutrient concentrations were observed in the Hudson River 

while the Raritan Bay had the second lowest TP concentrations. Results showed that the Hudson 

River had significantly lower TN concentrations than the Raritan River (p<0.001), Passaic River 

(p<0.001), and Hackensack River (p<0.001) (Table 4.8). The Hudson River also had lower TP 

concentrations than Raritan River (p<0.01), Passaic River (p<0.001), Hackensack River 

(p<0.001), and Arthur Kill (p=0.026). The Raritan Bay had significantly lower TN than the 

Passaic River (p<0.01), and Hackensack River (p<0.01). Furthermore, the Raritan River and 

Passaic River were not statistically significant (p>0.05) from each other in terms of nutrients.  

Lastly, to explore the effect of salinity on water quality and HAB conditions in the 

Estuary, samples were grouped into tidal and non-tidal waters. Tidal waters were characterized 

by low Phyto and HAB densities. Results showed that median Phyto densities were higher in 

non-tidal waters (p>0.05) at 279 cells/mL (ranging from 25 to 18,147 cells/mL) when compared 

to the tidal median of 218 cells/ml (ranging from 18 to 10,393 cells/mL) (Table 4.9). However, 
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Chl-a concentrations were slightly higher in the tidal waters (p>0.05) with a median 

concentration of 3.70 μg/L (ranging from 0.00 to 83.40 μg/L) (Table 4.9). Non-tidal waters had a 

median Chl-a concentration of 3.42 μg/L (ranging from 0.58 to 27.10 μg/L). Similar to Phyto 

densities, HAB densities were higher in the non-tidal waters (p>0.05) ranging from 4 to 17,235 

cells/mL and tidal counts ranged from 4 to 10,244 cell/mL. Results from the Hudson-Raritan 

Estuary showed that the lowest TN concentrations were observed in the non-tidal waters ranging 

from 0.00 to 4.88 mg/L while tidal waters had higher TN concentrations (p<0.0001) ranging 

from 0.00 to 7.90 mg/L (Table 4.9). Reference nutrient concentrations in the northern part of 

New Jersey had a median of 1.1 mg/L for TN (Procopio & Zampella, 2023). Thus, the higher 

ranges reported in both tidal and non-tidal waters were higher than reference conditions. TP 

concentrations were higher in tidal waters (p=0.035) ranging from 0.05 to 1.15 mg/L while non-

tidal water concentrations ranged from 0.05 to 0.18 mg/L. Procopio & Zampella (2023) reported 

reference conditions for TP at 0.02 mg/L, suggesting that higher TP concentrations were reported 

in our study. A PCA was conducted to further explore the relationships between water quality 

parameters in samples from tidal and non-tidal waters in the Estuary. The first and second 

principal components explained 49.8% of the total variance, with Phyto densities making the 

greatest contribution to the first axis (Figure 4.5). Results showed that tidal and non-tidal water 

quality parameters were dissimilar since they were located on the opposite sides of both principal 

1 and 2 components. When compared to non-tidal waters, tidal waters were associated with 

lower Phyto densities, DO concentrations, and higher Temp, TN, TP, and TSS concentrations. 
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Figure 4.5. Principal Component Analysis of water quality parameters and phytoplankton and 
cyanobacterial densities of 31 tidal and non-tidal sites in the Hudson-Raritan Estuary. 
Parameters: pH, dissolved oxygen (DO), salinity (Sal), temperature (T), total suspended solids 
(TSS), Total Nitrogen (TN), Total Phosphorus (TP), Chlorophyll-a (Chl-a), harmful algal bloom 
cell density (cells/mL) (HAB), phytoplankton cell density (Phyto), and richness (Rich).  

 

4.4 Discussion 

While various water quality parameters in the Estuary have gradually improved (i.e., 

lower total suspended solids and higher dissolved oxygen) in response to sewage discharge 

regulations, its pollution history, and continuously growing population are likely to continue 

influencing nutrient loads; impacting water quality and ecological integrity (Hetling et al., 2003; 

Howarth et al., 2006; Fizabadi et al., 2002; Brosnan & O'Shea, 1996; O'Shea & Brosnan, 2000). 

For example, untreated sewage and sewer overflows have been reported as a major source of 
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pollution for the Estuary even after the Clean Water Act regulations regarding pollutant 

discharge have been in place for decades (Shu, 2004; USEPA, 2007). Furthermore, no nutrient or 

DO water quality standards exist in New Jersey for tidal rivers which further complicates 

management of these systems (NJDEP, 2018). For the purpose of our study, we used reference 

nutrient conditions (<10% altered land) from Procopio & Zampella (2023) in which conditions 

were assessed only for non-tidal waters since this was the only data available for comparison. 

This lack of regulations, failure to comply with regulations, accompanied by pollution from local 

municipal discharges could further contribute to the decline in water quality of the tidal rivers 

and bays (Howarth et al., 2006). However, the USEPA (2001) has reported regional nutrient 

criteria for rivers and streams to be used as a baseline for States to develop water quality 

standards for estuaries and coastal waters. Establishing nutrient criteria for New Jersey estuaries 

is of importance to protect the water quality of these complex systems. The planning of nutrient 

criteria in Barnegat Bay and Atlantic Coastal Estuaries are currently ongoing, thus have not been 

adopted by NJDEP’s Water Quality Standards (NJDEP, 2018). Additionally, our study showed 

that more than half of the total phosphorus concentrations in the Passaic River, Hudson River, 

Hackensack River, Arthur Kill, and the Newark Bay were higher than the regional nutrient 

criteria range from the USEPA. In the Raritan River and Raritan Bay, the majority of samples 

were above the regional TP nutrient criteria. This indicates that the Estuary could be possibly 

subject to increasing nutrient loadings, greater phytoplankton primary productivity, and decline 

in water quality. Future studies should focus on implementing nutrient criteria for tidal rivers as 

well as within the Hudson-Raritan Estuary to help lessen nutrient enrichment. 
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4.4.1 Phytoplankton Assemblages in the Hudson-Raritan Estuary 

Results showed a total of 99 phytoplankton genera were observed in the five rivers and 

two bays in the Estuary. For example, the diatom Cyclotella was the most frequently observed 

phytoplankton taxon in all samples across the Estuary. This taxon is known to inhabit fresh, 

brackish, and marine waters and requires NO3- as its nitrogen source in brackish and marine 

environments (Kipp et al., 2023). The elevated total nitrogen concentrations observed in the 

Estuary could indicate favorable conditions present for Cyclotella growth. Another important 

diatom taxa observed was Thalassiosira which can inhabit waters of varying salinities, with 

rapid growth rates reported at higher salinities (Vrieling et al., 1999). While this taxon is non-

toxic, it has been associated with phytoplankton assemblages that produce red tides and polluted 

regions with high nutrient concentrations (Raman & Prakash, 1989; Yamaoka et al., 1998). It has 

the potential for climate change adaptations since it can grow in elevated CO2 concentrations, 

temperatures, and high pH levels (Ishida et al., 2000; Lomas & Gilbert, 1998). Thus, this taxon 

could be of interest for future research in the Hudson-Raritan Estuary.  

While HAB taxa such as Gymnodinium, Amphidinium, and Chaetoceros were present in 

the Hudson-Raritan Estuary, no blooms were recorded. The genus Gymnodinium is of note since 

some species are capable of producing neurotoxins and saxitoxins (Negri et al., 2007). Human 

illnesses associated with the consumption of toxic shellfish include Paralytic Shellfish Poisoning 

(saxitoxins) and Neurotoxic Shellfish Poisoning (neurotoxins) and can cause symptoms ranging 

from tingling and numbness to difficulty in breathing (Negri et al., 2007; Rodrigues et al., 2012; 

WHOI, 1999). Similarly, some Amphidinium species possess the capability of producing 

ciguatoxins which are known to cause the foodborne illness Ciguatera fish poisoning and have a 

range of symptoms from nausea to tingling of fingers and toes (Hallegraeff, 1993; NJDEP, 1998; 

WHOI, 1999). Previous reports have mentioned some common HAB taxa in New Jersey coastal 
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waters such as Prorocentrum spp., Ceratium tripos, Cochlodinium heterolobatum, Katodinium 

rotundatum, and Olisthodiscus luteus (Gastrich, 2000). However, these taxa were not observed in 

this study which could be influenced by the natural variability of the phytoplankton community 

or study sampling techniques. 

 

4.4.2 Temporal Trends 

Our results showed that Chl-a concentrations were higher in the summer than winter, 

however cell densities were lower. While previous studies have suggested that temperature could 

be a factor affecting phytoplankton growth rates, the lower phytoplankton densities observed 

could have been impacted by a bias in counting methodology (Boynton et al., 1982; Eppley, 

1972; Muylaert et al., 2000; Nixon, 1981). For example, the FlowCam has been reported to have 

lower counts when compared to microscopic methods (Brzezinski et al., 2011; Owen et al., 

2022). These differences could be due to preservation impacts in some phytoplankton groups or 

size limitations from the FlowCam, with smaller-sized cells (<5 μm), such as picoplankton, 

being excluded (Brzezinski et al., 2011). Future studies should incorporate manual microscopic 

methods in order to validate the FlowCam results (Owen et al., 2022). Temporal trends 

suggested that the winter season was characteristic of lower nutrients and Chl-a concentrations. 

Previous studies have suggested that phytoplankton growth in the winter and fall can be limited 

by low temperatures, light, and high river discharge (Muylaert et al., 2000). Furthermore, the 

spring season in this study exhibited higher total nitrogen and Chl-a concentrations, consistent 

with findings from Muylaert et al. (2000). Previous studies have suggested that spring 

destratification can increase nutrient inputs from the benthos into the surface water, making the 

nutrients more accessible for phytoplankton growth (Webb & D'Elia, 1980). Overall, the spring 

and summer seasons in this study had the most favorable conditions for phytoplankton to grow in 
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the Hudson-Raritan Estuary. Future research could focus on collecting continuous data on water 

quality and HAB of the rivers and bays of the Estuary and analyzing trends of multi-year studies 

to assess the impacts of climate change on these seasonal patterns. 

 

4.4.3 Spatial Trends 

The results from this study suggested that the Raritan River, Hackensack River, and 

Passaic River had more advantageous conditions for phytoplankton and HAB to flourish. Most 

of the rivers in the Hudson-Raritan Estuary, except the Hudson River and Arthur Kill, showed 

higher Chl-a concentrations than the Newark Bay, which agrees with previous studies suggesting 

that higher nutrients and light increase phytoplankton accumulation in upstream systems of the 

turbidity zone (Harding et al., 1986; Fisher et al., 1988). In contrast to the Newark Bay, the 

Raritan Bay had some of the highest Chl-a concentrations in the Estuary. Previous studies have 

suggested high Chl-a concentrations present either landward or seaward of the turbidity 

maximum in an estuary and related to a decrease in phosphate, ammonium, and nitrate in this 

zone (Anderson, 1986; Harding et al., 1986; Fisher et al., 1988). The Raritan Bay sampling 

locations were further removed from the confluence of its rivers when compared to the Newark 

Bay locations; phytoplankton communities at the Raritan Bay could be less impacted by high 

turbidity. 

The least advantageous phytoplankton and HAB conditions in the Hudson-River Estuary 

were reported at the Hudson River, the Newark Bay, and the Arthur Kill. Both sunlight and 

salinity changes have been reported to impact phytoplankton assemblages and mortality in the 

turbidity maximum (Cloern et al., 1983; Wofsy, 1983; Harding et al., 1986; Pennock & Sharp, 

1994; Filardo & Dunstan, 1985), which could have influenced the low Chl-a values observed at 

the Newark Bay sites when compared to the riverine sites. The Hudson River and Arthur Kill 
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were two rivers that did not follow the same pattern as the Passaic River, Hackensack River, and 

Raritan River. Low Chl-a concentrations were reported in both the Hudson River and Arthur 

Kill. The Hudson River results showed both low Chl-a and TN concentrations, suggesting this 

waterbody could be less eutrophied than the other rivers in the Estuary (Desmit et al., 2020; 

Irvine & Murphy, 2009). Hansey and Rattray (1966) suggested that phytoplankton dynamics are 

more complicated in the river-estuary transition due to the impacts of river discharge on water 

mixing and high turbidity. Similar to the trend observed at the Arthur Kill with low Chl-a 

concentrations and higher nutrients, Li et al. (2018) found similar results with a tidal strait that 

had high nutrients and low chlorophyll concentrations and suggested that phytoplankton growth 

could be limited by reduced light availability from suspended silt (Li et al., 2018). 

Nutrient analysis in most of the rivers from the Estuary, except the Hudson River, 

showed higher nitrogen concentrations when compared to both the Newark Bay and Raritan Bay 

which could indicate that these bays could be a sink for nitrogen. Tao et al. (2021) reported 

similar results with higher nutrient concentrations in rivers than in bays. Furthermore, the Raritan 

River has been documented as a source of nitrogen to the Raritan Bay in periods of high 

discharge (Reiser, 2004). While rivers can be sources of nutrients via downstream transport to 

the Estuary, the lower concentration of TN in the bays suggest a possibility that processes, such 

as denitrification, could be acting as a removal mechanism, and sedimentation taking place in the 

bay could serve as a nitrogen sink (An & Gardner, 2002; Tobias et al., 2001). Moreover, the 

Hudson River had lower nutrient concentrations than the Newark Bay. This could suggest that 

Newark Bay could be a source of nitrogen to the Hudson River (Prastka et al., 1988). The 

Hudson River has also been subject to water quality improvement efforts which could have 

possibly influenced the lower nutrient concentrations observed in our study (Brosnan & O’Shea, 
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1996; Taillie et al., 2020). However, median nitrogen concentrations in the Hudson River were 

still within the regional nutrient criteria (USEPA, 2001a, 2001b). While nutrient concentrations 

between rivers and bays showed some similar patterns, overall median nutrient concentrations 

recorded in the Estuary were higher than regional nutrient criteria for TP (USEPA, 2001a, 

2001b).  

Shallcross et al. (2002) suggested that the main sources of pollution entering the Hudson-

Raritan Estuary are increased urbanization, urban runoff, and storm drain discharges. Due to the 

increasing population surrounding the highly urbanized Hudson-Raritan Estuary, combined 

restoration and remediation efforts are crucial for water quality improvement of the Hudson-

Raritan Estuary. In order to address water quality and ecological health, focus on assessment and 

improvement of the Estuary has persisted since the 1970’s. Previous ecosystem restoration 

research between the 1990’s and 2000’s focused on various studies of which three were within 

the Estuary including the Hackensack Meadowlands, Lower Passaic River, and a more 

comprehensive study of the Hudson-Raritan Estuary (NJSEA, 2019; (USEPA, 2001a, 2001b). In 

2020, the USACE proposed a new restoration project combining the data from these studies to 

restore various ecosystems throughout the Estuary (USACE, 2020). The main goals of these 

projects were to restore ecological function and structure of estuarine, freshwater riverine, marsh 

island habitats, and increase oyster reefs (USACE, 2020).  

While environmental variables are commonly studied in relation to HAB, future research 

in the Hudson-Raritan Estuary could extend to examine the relationships of environmental and 

biotic parameters due to its complex nature and need for comprehensive management strategies. 

For example, Rothenberger et al. (2023) suggested that biotic factors could be associated with 

HAB expansion and toxin production. Their results showed positive relationships between biotic 
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factors (such as diatoms, dinoflagellates, and zooplankton) and HAB taxa (Rothenberger et al., 

2023). Thus, their research implies that a better understanding is needed to possibly utilize biotic 

factors in HAB monitoring and management. Moreover, research regarding the interactions 

between bacterial communities and HAB is needed. Bertrand and Allen (2012) reported that 

various bloom-forming cyanobacteria taxa rely on bacteria to obtain vitamin B12. Future research 

on these bacterial relationships with HAB-forming phytoplankton taxa could provide new and 

useful information for future HAB and water quality management. Molecular analysis in future 

studies could also help support and complement microscopic methods while providing new 

opportunities for HAB forecasting and monitoring. 
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Chapter 5 Conclusion and Environmental Management Implications 

Harmful algal blooms (HAB) have been increasing globally over the last three decades, 

simultaneously impacting the environment, society, and economy (Paul, 2008; Hudnell, 2010). 

This increase in global HAB can be affected by increased detection of blooms, nutrient 

enrichment, ship ballast water transport, and climate change. Some HAB are fueled by 

anthropogenic pollution from industrial, agricultural, and wastewater discharges (Benayache et 

al., 2019; Gatz, 2017; Lapointe et al., 2015; Scavia et al., 2014). However, other areas experience 

HAB without a direct relationship with pollution which could reflect the natural dispersal of 

indigenous algae populations (Carey, Weathers, & Cottinghamn, 2008; Reinl et al., 2021). The 

detection of blooms has increased over the past decades due to improved methods of detection 

and increased awareness and surveillance (Benson et al., 2019; Esenkulova et al., 2021; 

Hallegraeff et al., 2021; Hanlon et al., 2022; Schmale et al., 2019; Stauffer et al., 2019). 

Research has shown that ship ballast water has contributed to the global transportation and 

expansion of toxic algal taxa around the world (Smayda, 2007). For example, Hallegraeff & 

Bolch (1992) reported that 50% of ballast tank sediment samples from 343 vessels contained 

dinoflagellate resting spores, including some toxic taxa. Similarly, Wang et al. (2022) showed 

that ship ballast water from 40 commercial ships in the Yangshan deep water port had 21 bloom 

forming taxa with 4 potentially toxin-producing taxa. 

5.1 Mitigation and Management of HAB 

Due to the global increase in HAB, strategies are needed to help prevent and control these 

blooms. These strategies are complicated by the diverse nature of the blooms (Sukenik & 

Kaplan, 2021; Zingone & Enevoldsen, 2000). Current HAB management strategies focus on the 

simultaneous protection of the ecology, economy, and public health impacts (Meriluoto et al., 
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2017). The mitigation of HAB can involve taking action of current or ongoing blooms as well as 

decreasing their negative effects (Howard et al., 2022). For example, routine monitoring of 

cyanobacteria and cyanotoxins can help determine when waters are unsafe for fish and shellfish 

harvesting, recreation, and drinking water consumption (Anderson et al., 2001). In addition to 

addressing current blooms, strategies that help prevent the occurrence of a bloom would be 

greatly beneficial due to the reduced impacts from nuisance algae (Anderson, 2004). However, 

the prevention of HAB is difficult due to the existing knowledge gaps in HAB occurrence, 

physiology, and ecology (O’Keeffe, 2019; Schmale et al., 2019). Nonetheless, various studies 

show that several human activities such as increases in fertilizer, fossil fuel combustion, and 

sewage disposal have contributed significantly to nutrient pollution of our waters and 

subsequently HAB (Howarth, 2008; Paerl & Scott, 2010; Wurtsbaugh et al., 2019). These 

activities can be a focus of HAB prevention through legislative or policy changes (Castro et al., 

2016; Davis et al., 2019; Hudnell, 2010). 

HAB management strategies can be focused on prevention and control of blooms. 

Prevention measures can include environmental manipulation such as pollution control policies 

which can offer long-term reduction of nutrients that contribute to HAB (Kudela et al., 2005). 

Prevention strategies in recreational and drinking waters such as aeration focus on changes in 

stratification while dredging can create a shift in residence times to create less favorable 

conditions for cyanobacteria proliferation (Kibuye et al., 2021; Paerl et al., 2016). The 

sedimentation control strategy, utilized in both drinking and recreational waters, moves 

cyanobacterial cells to the bottom sediments by adding clay particles to the water surface 

(Beaulieu et al., 2005). These clay particles help HAB cells to coagulate and flocculate, overall 

increasing the sedimentation of the cells and removing them from the water surface (Beaulieu et 
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al., 2005). However, factors such as environmental clearances, permits, and economic costs 

hinder the application of this technique in the United States (Sengco & Anderson, 2004). 

Management strategies incorporating biological, genetic, and chemical control measures are not 

as extensively utilized since they pose various logistical problems including negative 

consequences of non-indigenous organisms on other aquatic organisms (Pal et al., 2020). There 

are numerous options for the management and mitigation of HAB. Strategy selection should also 

take into consideration physical attributes (i.e., hydrology, and temperature) of the waterbodies 

experiencing HAB. 

5.2 Drinking Water Supply  

The mitigation and management of cyanobacterial HAB (HAB) extends to drinking water 

supplies since many lakes, streams, rivers, and reservoirs are used for drinking water facilities 

(Falconer, 1999). Some consequences of the presence of cyanobacteria and cyanotoxins in 

drinking water facilities include increased microbial growth, disinfection by-product (DBP) 

formation, and treatment chemicals, among others (Foreman et al., 2021; He et al., 2016; Zhang, 

2018). HAB can also produce taste and odor issues which can affect finished water quality for 

consumers in drinking water facilities that do not have proper treatment technologies (Watson, 

2004). The management of taste and odor compounds should focus on monitoring and 

prevention efforts (Dietrich et al., 2020; Suffet et al., 1995). Another management strategy that 

would help improve water treatment is the prediction of odor events (Chong et al., 2018; 

Srinivasan & Sorial, 2011; Watson et al., 2008). Cyanobacteria and their associated toxins can 

pose a risk to water facilities and affect the course of treatment, especially since there are no 

federal regulations set in place in the United States (USEPA, 2022). Thus, since there exist only 

advisories, states can decide whether to actively monitor and treat HAB in drinking waters, 
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possibly increasing public health risk. However, New Jersey is currently finalizing cyanotoxin 

drinking water regulation. Subsequently, many drinking water facilities have unambiguous 

monitoring protocols which could pose a health risk to consumers potentially exposed to 

cyanotoxins (Mchau et al., 2019; Rashidiet al., 2021; Treuer et al., 2021).  

Impacts regarding this lack of HAB management have been focused greatly on economic 

and public health effects (Brooks et al., 2016; Hoagland & Scatasta, 2006). Economic concerns 

from HAB are associated with increased treatment costs and water bans (Schinck et al., 2020). 

For example, HAB related treatment costs in 10 drinking water facilities in Ohio were estimated 

at $417,200 (Loadings & Blooms, 2014). A single HAB event from Toledo, Ohio in 2014 

exposed residents to levels of microcystins above drinking water thresholds and affected the 

health of more than 100 persons (Gill and Joshi 2018). Treatment costs associated with this 

incident were estimated over $200,000 per month for activated carbon treatment (Liu & Klaiber 

et al., 2022). Other countries have also experienced drinking water crises with Qin et al. (2010) 

reporting two million people being affected for a week after a Microcystis bloom in Wuxi, 

Jiangsu Province, China contaminated the city’s only water supply. Another public health 

concern for drinking water facilities is the delay between occurrence, detection, and public 

advisories (Stroming et al., 2020). Because it takes a few days for drinking water facilities to 

obtain toxin concentration results, consumers could potentially be exposed to cyanotoxins in the 

drinking water (Cheung et al., 2013; O’Keeffe, 2019). Many drinking water supplies could be at 

risk of HAB events and a proper course of action is needed to reduce public health risk. 

5.3 Climate Change Predictions 

The mitigation and management of HAB is further complicated by climate change trends. 

Climate change trends such as increased lake stratification, length of growing season, 
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temperatures, and alteration of the hydrologic and nutrient cycles can create beneficial conditions 

for cyanobacteria to proliferate which is predicted to increase the frequency and intensity of 

bloom events (Moore et al., 2008; Paerl 2016; Wells et al., 2020). In New Jersey, studies have 

shown long-term changes in the average annual temperature which has increased significantly by 

1.9°C over the last 100 years while the winter season showed the highest temperature increase, 

which can create more favorable conditions for HAB growth (NJDEP, 2020). Predictions also 

suggest that New Jersey will have an average annual temperature increase of 4.1°F to 5.7°F and 

annual precipitation increase between 4% and 11% by 2050 (NJDEP, 2020). Other precipitation 

events such as droughts, floods, and tropical storms are also expected to increase in frequency 

and intensity in New Jersey (NJDEP, 2020). Moreover, estimates show that there is a 50% 

chance that sea-level in New Jersey will rise at or above 1.4 feet by 2050 (NJDEP, 2020). Sea-

level rise can create shallower and more stable coastal waters in which HAB can proliferate 

(Paerl, 2016). Lastly, global predictions suggest that if the current CO2 emission rates continue, 

ocean pH conditions will worsen and possibly create more acidic conditions than has been 

recorded in the past 20 million years (NJDEP, 2020). Ocean acidification is expected to have 

significant impacts in New Jersey since the economy of coastal communities depend on shellfish 

resources which are highly vulnerable to acidification impacts (NJDEP, 2020). 

Warmer temperatures are predicted to favor some cyanobacteria taxa such as Microcystis 

since conditions such as increased stratification are preferred (Deng et al., 2014). Many 

cyanobacteria possess climate change related adaptations such as photo-protective pigments that 

allow for some cyanobacteria to withstand high irradiance levels (Paerl et al., 1983). Climate 

change trends have been predicted to impact the spatial and temporal ranges of HAB taxa, 

including the expansion of cyanobacteria (Gobler et al., 2017; Paerl & Paul, 2012; Visser et al., 
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2016; Weyhenmeyerh, 2001). Conditions such as earlier summers and later falls have 

contributed to this cyanobacteria expansion (Wiedner et al., 2007). In addition to affecting 

cyanobacteria taxa directly, climate change is predicted to affect conditions which are favorable 

for cyanobacteria and bloom growth. For example, changes in precipitation, hydrology, and 

increased stratification are predicted to affect nutrient composition and supply (Koltz et al., 

2022; Moss 2012). Kosten et al. (2012) reported an increase in cyanobacteria dominance and 

frequency with increasing temperatures and total nitrogen concentrations.  

All HAB mitigation planning is affected by climate change trends, thus a shift towards 

new and improved strategies is imperative. Climate-change focused mitigation approaches 

should implement interactions between changes in hydrology, nutrient transport, rising 

temperatures, and agricultural and industrial impacts (Paerl et al., 2016). As HAB growth 

conditions (i.e., temperature, and nutrients) are altered by climate change, new guidelines will 

have to be changed accordingly to reduce nutrient inputs into waterbodies (Paerl et al., 2016). 

Furthermore, several studies have shown that watershed-scale remediation approaches could 

provide long-term nutrient reduction from urban and agricultural sources (Gao et al., 2014; 

Vymazal, 2007). For example, Vymazal (2007) concluded that constructed wetlands reduced 

approximately 50% of total nitrogen and total phosphorus from an agricultural watershed. With 

impending climate change trends, HAB mitigation and management strategies will require 

constant adjustments.  

5.4 Future Directions 

This study aimed to provide statewide baseline information for fresh and brackish water 

phytoplankton, cyanobacteria, and cyanotoxins in New Jersey with the implication to help 

inform management and monitoring strategies for HAB and ultimately help improve water 
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quality. Our field studies assessed water quality conditions of various waterbodies used for 

recreational and drinking purposes in New Jersey with a focus on cyanobacteria detection. Most 

of the selected study sites were deemed vulnerable to future HAB events. As the global 

population increases, continued impacts from human activities are expected to increase blooms 

and impact water resources (Bramburger et al., 2023; Ekstrom et al., 2020; Holland & Leonard et 

al., 2020; Oberle et al., 2019). Thus, we suggest that future HAB management strategies should 

include dual control of N and P along with continued and/or routine monitoring to obtain long-

term data trends for improved bloom prediction. The relationship between nutrients and 

cyanobacteria dynamics are another important area of management research. For example, 

(Higgins et al., 2018) reported that residence times in lentic waterbodies could impact nitrogen-

fixing cyanobacteria which could help balance the availability of phosphorus (Higgins et al., 

2018). While planktonic cyanobacteria research is extensive, there is information lacking on 

benthic cyanobacteria communities and their impacts on eutrophication. Results from McCarthy 

et al. (2016) and Tobias et al. (2003) suggest that benthic cyanobacteria help reduce nitrogen 

deficits in some oligotrophic lakes and estuaries. Research on this topic could help gain a better 

understanding of HAB ecology and inform management strategies.  

Current HAB mitigation strategies do not discriminate between problematic taxa and 

other phytoplankton present in the waters. Thus, future mitigation tools that target toxic HAB 

taxa would be beneficial for aquatic ecosystem health. Wells et al. (2020) suggested that viruses 

and nanotechnology tools are two new possible HAB mitigation strategies of interest that should 

be investigated. Future HAB management directions should also address technology issues. Due 

to the large amounts of data generated by HAB and the large number of reported incidents in the 

water sector, water cybersecurity is an important component of HAB management (DHS, 2015; 
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Schmale et al., 2019). Panguluri et al. (2017) recommended that water cybersecurity programs 

are necessary to secure public health and limit service disruptions to water and wastewater 

utilities. Furthermore, revising and improving the ways in which various sectors such as 

municipal, domestic, industrial, and recreational utilize water would help alleviate water quality 

degradation. A focus on current and ongoing HAB research is essential to implement new and 

improved monitoring, mitigation, and management policies (Gobler, 2020). For example, there is 

insufficient research on deep cyanobacteria layers which could affect risk management actions 

(Erratt et al., 2022). Moreover, public education, outreach, and communication of HAB science 

to citizens is essential to inform their understanding and increase their trust in the science and 

policies derived to protect human health and the ecosystem. Ultimately, a holistic social-

ecological research approach to managing HAB is necessary to better understand the interactions 

between humans and the environment and further improve resource management (Bauer et al., 

2010). 
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