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Abstract

Given a graph G, we study the problem of finding a spanning tree T that max-
imizes the number of vertices of full degree; that is, the number of vertices whose
degree in T equals its degree in G. We prove a few general bounds and then analyze
this parameter on various classes of graphs including grid graphs, hypercubes, and
random regular graphs. We also explore a related problem that focuses on maximizing
the number of leaves in a spanning tree of a graph.
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Chapter 1

Introduction

This chapter will introduce a few basic graph theory concepts related to the full

degree spanning tree problem, as well as provide some background information on

the problem.

1.1 Preliminaries

We begin by briefly defining some graph theory terminology that is essential to the

results in this thesis. A graph G is an ordered pair G = (V,E) where V is a non-

empty, finite set and E ✓
�
V

2

�
, where

�
V

2

�
= {X ✓ V : |X| = 2}. V = V (G) is called

the vertex set, the elements of which are called vertices. E = E(G) is called the edge

set, the elements of which are called edges. A subgraph of a graph G is a graph H such

that V (H) ✓ V (G) and E(H) ✓ E(G), and a spanning subgraph of G is a subgraph

with vertex set V (G).

For u, v 2 V , the edge between u and v is denoted uv. We say that u and v are

adjacent if uv 2 E(G). If e = uv, then the edge e is incident to the vertices u and

v. We will be focusing on simple graphs, in which no vertex is adjacent to itself (i.e.,
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the graph has no loops) and there is only one edge between adjacent vertices (i.e.,

the graph has no multiple edges). The degree of a vertex v in a graph G, denoted

d(v) or dG(v), is the number of edges incident to v. Two adjacent vertices are called

neighbors. The neighborhood of v is N(v) = {u 2 V (G) : uv 2 E(G)}. Note that

|N(v)| = d(v).

Given a graph G and a vertex v 2 V (G), G� v denotes the graph with vertex set

V (G)\{v} and edge set E(G)\{uv : u 2 NG(v)}. Similarly, given an edge e 2 E(G),

G � e denotes the graph with vertex set V (G) and edge set E(G) \ {e}. In general,

if we remove a set of vertices or a set of edges S from G, we are left with G� S.

A path is a list v0, e1, v1, e2, v2, . . . , ek, vk of vertices and edges with no repeated

vertices, where ei = vi�1vi for i = 1, 2, . . . , k. In this definition, v0 and vk are called

endpoints. The length of a path is the number of edges it contains. A graph G is

connected if for each pair of vertices u, v 2 V (G) there is a uv-path (i.e., a path with

endpoints u and v) in G. The components of a graph are its maximal connected

subgraphs. A cycle is a closed path (i.e., a path where the endpoints are the same

vertex) and a graph is acyclic if it contains no cycle.

Of extreme pertinence to this thesis, a forest is an acyclic graph, a tree is a

connected acyclic graph, and a spanning tree of G is a spanning connected acyclic

subgraph of G. A leaf is a vertex of degree one. Figure 1.1 shows an example of a

spanning tree on a graph, where tree edges are represented by solid lines and non-tree

edges are represented by dashed lines.

Figure 1.1: Example of a spanning tree on a graph with 12 vertices
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Lemmas 1.1.1, 1.1.4, and 1.1.5, which follow, characterize some important prop-

erties of trees and serve as a basic foundation for the work in this thesis.

Lemma 1.1.1. Every tree with n � 2 vertices has at least 2 leaves. Deleting a leaf

from a tree on n vertices yields a tree on n� 1 vertices.

Proof. A connected graph on at least 2 vertices contains an edge. In an acyclic graph,

the endpoints of any maximal path (i.e., a path that cannot be made longer by adding

another edge and vertex) must be leaves. Let v be a leaf in a tree T and let T 0 = T�v.

Then T 0 is acyclic since it is a subgraph of T . A vertex of degree 1 cannot lie on a

path between other vertices, so for u, w 2 V (T 0), every uw-path in T is still in T 0,

which means that T 0 is connected. Thus, T 0 is a tree on n� 1 vertices.

The proofs of Lemmas 1.1.4 and 1.1.5 make use of Lemma 1.1.3, which requires

some extra definitions and a proposition. A cut-edge is an edge whose deletion in-

creases the number of components in a graph. A walk is a list v0, e1, v1, e2, v2, . . . , ek, vk

of vertices and edges where ei = vi�1vi for i = 1, 2, . . . , k. Note that a path is a re-

stricted walk, as paths cannot repeat vertices but walks can.

Proposition 1.1.2. Every uv-walk contains a uv-path.

Proof. Let W be a uv-walk and consider the shortest uv-walk W 0 contained in W .

If W 0 has a repeated vertex, then we can delete all edges between occurrences of the

repeated vertex. This yields a shorter uv-walk, which contradicts the minimality of

W 0. Thus, W 0 is a uv-path.

Lemma 1.1.3. An edge is a cut-edge if and only if it belongs to no cycle.

Proof. Let e = xy be an edge in G and let H be the component of G containing e.

The removal of e a↵ects no component other than H, so we’ll prove that H � e is

connected i↵ e belongs to a cycle in H.

3



Suppose H � e is connected. Then H � e contains an xy-path. This path, along

with e, forms a cycle in H. Thus, e belongs to a cycle in H.

Now suppose e belongs to a cycle C in H. Let u, v be any two vertices in H � e.

We know H is connected by definition, so there must be a uv-path P in H. If P does

not contain e, then we are done. If P contains e, then there is a ux-path in P , a

xy-path in C, and a yv-path in P . Thus, stitching these together, we get a uv-walk

in H � e. By Proposition 1.1.2, this uv-walk in H � e contains a uv-path in H � e.

Thus, H � e is connected.

We now have enough information to state and prove Lemmas 1.1.4 and 1.1.5.

Lemma 1.1.4. For a graph G on n vertices, the following are equivalent:

(i) G is connected and acyclic,

(ii) G is connected and has n� 1 edges,

(iii) G has n� 1 edges and is acyclic,

(iv) For any u, v 2 V (G), there exists exactly 1 uv-path.

Proof. First we will show (i) ) (ii) and (iii), so suppose G is connected and acyclic.

If n = 1, |E(G)| = 0 = n � 1. Let G have n > 1 vertices and be connected and

acyclic. By Lemma 1.1.1, G has a leaf x whose removal creates G�x, a tree on n� 1

vertices. So G� x has n� 2 edges. Thus, G has n� 2 + 1 = n� 1 edges.

Now we will show (ii) ) (i) and (iii), so suppose G is connected and has n � 1

edges. If G has a cycle, then we can remove an edge from the cycle and the remaining

graph is connected by Lemma 1.1.3. Delete edges that lie on cycles from G until we

are left with an acyclic graph G0. Since we only removed edges on cycles, G0 is still
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connected. Thus, we know from the first part of this proof that G0 has n�1 edges, so

we did not actually remove any edges from G to obtain G0. Therefore, G is acyclic.

Now we will show (iii) ) (i) and (ii), so suppose G has n�1 edges and is acyclic.

Let G1, . . . , Gk be the components of G. Since every vertex of G appears in some

Gi, we know
kX

i=1

|V (Gi)| = n.

Each Gi is connected by definition and, since G is acyclic, each Gi is acyclic. Thus, we

know from the first part of this proof that each Gi has |V (Gi)|� 1 edges. Therefore,

n� 1 = |E(G)| =
kX

i=1

|E(Gi)| =
kX

i=1

(|V (Gi)|� 1) =
kX

i=1

|V (Gi)|�
kX

i=1

1 = n� k.

So we have k = 1, i.e., G has one component. Thus, G is connected.

Now we will show (i) ) (iv), so suppose G is connected and acyclic. Then there

is at least one path between every pair of vertices. If some pair is connected by at

least two paths, let P,Q be the pair of such paths whose total length is shortest. If P

and Q share an internal vertex, this contradicts the minimality of P,Q. But if there

are no shared internal vertices, P and Q form a cycle, which contradicts the fact that

G is acyclic. Thus, there is exactly one path between every pair of vertices in G.

Lastly, we will show (iv) ) (i), so suppose for any u, v 2 V (G), there exists

exactly 1 uv-path. Then G is connected by definition. If G contained a cycle, then a

pair of vertices would have at least two paths between them. So G is acyclic.

Lemma 1.1.5. Every connected graph contains a spanning tree.

Proof. Let G be a connected graph. If G is acyclic, then we are done. If G contains

cycles, remove edges from the cycles until we have an acyclic graph. The remaining

graph is connected by Lemma 1.1.3. Thus, this is a spanning tree of G.
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We have now discussed the preliminaries that are the most essential to the re-

mainder of this thesis. Any other necessary terminology will be defined as the need

arises. In the next section, we will turn our attention to the full degree spanning tree

problem and examine its background and a few previous results.

1.2 Background and Previous Results

A vertex v of the graph G is of full degree in a spanning tree T if dT (v) = dG(v). Let

'(G) be the maximum number of full degree vertices in any spanning tree of G. For

example, in Figure 1.2 we see two spanning trees of the same graph G, where tree

edges are represented by solid lines, non-tree edges are represented by dashed lines,

and full degree vertices are solid. In this figure, T1 has the maximum number of full

degree vertices, so '(G) = 3, while T2 is a spanning tree that does not contain the

maximum number of full degree vertices.

T1 T2

Figure 1.2: A graph G with spanning trees T1 and T2. T1 has '(G) full degree vertices.

The main goal of this thesis is to determine '(G) for di↵erent types of graphs. This

problem is variously referred to as the full degree spanning tree (FDST) problem [4]

or the degree preserving spanning tree (DPST) problem [5]. It was first studied by

Lewinter [17], who found that if there exist spanning trees with k and l full degree

vertices and k < l, then there exists a spanning tree with exactly m full degree

vertices for every k < m < l. Pothof and Schut [19] suggested that the problem

could be approximately solved by finding a minimum weight spanning tree of a graph

6



G, where the weight of each edge uv 2 E(G) is the sum of the degrees of u and v.

However, they note that this heuristic does not work well in all graphs. Broersma et

al. [5] and Bhatia et al. [4] independently obtained results on linear and almost linear

time approximation algorithms for the FDST problem on certain types of graphs.

Other previous results will be mentioned in the forthcoming chapters, but for the

most part, the FDST problem has been studied from a complexity theoretic and

algorithmic viewpoint (see [12, 15, 18] for some fairly recent work) and is, in general,

NP-hard.

The FDST problem has the following nice application to water distribution net-

works (for more details see [4, 5, 19]). A co-tree in a graph G is a set of edges whose

removal leaves a spanning tree in G. To measure the flow across each edge in a water

network, one may place flow meters on the edges of a co-tree and then infer the flow

on the edges of the tree. Alternatively, one may place pressure meters (which are

apparently much less expensive) on the endpoints of an edge and compute the flow

across that edge. In this set up, we would only need to place pressure meters on

vertices that are incident to co-tree edges. In other words, we would not need to

place a pressure meter on any vertex of full degree in the tree, and so maximizing the

number of such vertices minimizes the cost of pressure meters. Further, as mentioned

in [5], the FDST problem can be thought of as finding a spanning tree of a damaged

network that contains as many undamaged vertices as possible, which is a problem

that could certainly have a wide variety of other applications.

In the following chapters, we will explore the FDST problem on various classes

of graphs. Chapter 2 provides relatively simple bounds on '(G) for general graphs.

Chapter 3 discusses this parameter in grids and Chapter 4 does so for hypercubes.

In Chapter 5, we provide and analyze an algorithm that determines lower bounds for

'(G) on random regular graphs. We explore a related problem about maximizing the

number of leaves in a spanning tree of a random regular graph in Chapter 6.

7



Chapter 2

Basic Graphs and General Bounds

2.1 Basic Graphs

We can easily determine '(G) for a few basic classes of graphs. Note that a path is

connected and acyclic and is thus a tree. The graph Cn is a cycle on n vertices, and

the complete graph Kn on n vertices is a graph with all
�
n

2

�
possible edges.

Proposition 2.1.1. For any tree T , cycle Cn on n � 3 vertices, and complete graph

Kn on n � 3 vertices,

'(T ) = |V (T )|,

'(Cn) = n� 2,

'(Kn) = 1.

Proof. Let T be a tree and T1 be a spanning tree of T . It is obvious that T = T1

and thus all vertices of T are full degree in T1. Let n � 3. For uv 2 E(Cn), note

that H = Cn � {u, v} is a path. So '(H) = |V (H)| = n � 2. If we add u and

v back into H to create a spanning tree of Cn, we cannot include edge uv. Thus,

8



'(Cn) = '(H) = n � 2. Lastly, note that a subgraph of Kn that has at least 2 full

degree vertices contains a cycle, so '(Kn) = 1.

Figure 2.1 illustrates examples of spanning trees with ' full degree vertices on a

tree, a cycle, and a complete graph. Tree edges are represented by solid lines, non-tree

edges are represented by dashed lines, and full degree vertices are solid.

Figure 2.1: Spanning trees with ' full degree vertices on T7, C4, and K4

2.2 General Bounds

The maximum degree of a graph G is �(G) = maxv2V (G) d(v). The minimum degree

of a graph G is �(G) = minv2V (G) d(v). There are simple absolute bounds on '(G)

in terms of the maximum degree � = �(G) and the minimum degree � = �(G),

which are given in Theorem 2.2.3. In order to prove this theorem, we will need to

use Lemma 2.2.1, which gives a well-known bound for the independence number of

a graph. An independent set is a set of vertices such that none of the vertices in

the set are adjacent. The independence number of a graph G, denoted ↵(G), is the

maximum size of an independent set in G.

Lemma 2.2.1. For any graph G on n vertices,

↵(G) � n

�+ 1
.

Proof. Let I be an independent set of maximum size in G so that |I| = ↵(G). Any

9



vertex in V (G)� I must be adjacent to a vertex in I, so |I|+ |N(I)| = n. We obtain

an upper bound for N(I) by summing over the degrees of I. Each vertex of I has

degree at most �. Thus, we have

n = |N(I)|+ |I|


X

v2I

d(v) + |I|

 ↵(G)�+ ↵(G)

= ↵(G)(�+ 1).

Solving for ↵(G), we obtain the desired result.

We will also need to use Lemma 2.2.2 to prove Theorem 2.2.3. Lemma 2.2.2 is a

fundamental result in graph theory that is variously referred to as the Degree Sum

Formula, the First Theorem of Graph Theory, and the Handshake Lemma.

Lemma 2.2.2. If G = (V,E) is any graph, then

X

v2V (G)

d(v) = 2|E(G)|.

Proof. Let xy 2 E(G). The edge xy is counted twice in the sum
P

v2V (G) d(v): once

in the d(x) term and once in the d(y) term.

We can now prove the aforementioned simple absolute bounds on '(G) in terms

of � and �.

Theorem 2.2.3. For any connected graph G on n vertices, we have

n

�(�� 1) + 1
 '(G)  n� 2

� � 1
.

10



Proof. We first prove the lower bound. Let G2 denote the square of G, i.e., the graph

formed by joining all vertices at distance at most 2 in G. If I is an independent set

in G2, then the vertices of I have disjoint neighborhoods in G. Thus all the vertices

of I can be taken to be of full degree in a spanning tree of G. So

'(G) � ↵(G2) � n

�(G2) + 1
� n

�(�� 1) + 1

where we have used Lemma 2.2.1.

To prove the upper bound, we let T be a spanning tree of G and let dT (v) denote

the degree of vertex v in T . Let X be the set of all full degree vertices in T . Since all

full degree vertices have degree at least � and all non-full degree vertices in T have

degree at least 1,

2(n� 1) =
X

v

dT (v) =
X

v2X

dT (v) +
X

v/2X

dT (v)

� |X| · � + (n� |X|) · 1

= (� � 1)|X|+ n

where we have used Lemmas 1.1.4 and 2.2.2 in the first line. Thus,

|X|  n� 2

� � 1
.

11



Chapter 3

Grid Graphs

The Cartesian product of two sets A and B is given by A⇥B = {(a, b) : a 2 A, b 2 B}.

So for graphs G and H, V (G) ⇥ V (H) = {z = (x, y) : x 2 V (G), y 2 V (H)}. The

graph Cartesian product of graphs G and H, denoted G⇤H, is the graph with vertex

set V (G) ⇥ V (H) such that two vertices u = (u1, u2) and v = (v1, v2) are adjacent

only when either (i) u1 = v1 and u2 is adjacent to v2 in H or (ii) u2 = v2 and u1 is

adjacent to v1 in G.

The m⇥n grid graph is the graph formed by Pm⇤Pn, the graph Cartesian product

of paths on m and n vertices. In other words, let G(m,n) denote the grid graph with

m rows of vertices and n columns of vertices. Each vertex is adjacent to the vertex

immediately above and below it in its column and to the right and left of it in its

row, as illustrated in Figure 3.1.

Figure 3.1: The 3⇥ 4 grid graph G(3, 4)

12



In this chapter, we determine '(G(m,n)) in terms of n for a few di↵erent values

of m. We begin with G(2, n), the graph with 2 rows and n columns of vertices.

Theorem 3.0.1. For G = G(2, n), we have

'(G) = n.

Proof. For j 2 [2] and i 2 [n], let xj,i be the vertex in the j-th row and i-th column

of G = G(2, n). There exists a spanning tree of G with n vertices of full degree (e.g.,

a tree where all x1,i are of full degree, as shown in Figure 3.2). So, '(G) � n.

We will now show that every spanning tree of G has at most n full degree vertices.

Let T be a spanning tree ofG and let Si = {x1,i, x2,i} andBk = {x1,k, x2,k, x1,k+1, x2,k+1}

for k 2 [n� 1]. Let F (H) denote the number of full degree vertices in any graph H.

So, the sum of the number of full degree vertices across all Bk is given by

n�1X

k=1

F (Bk).

Each F (Bk)  2, otherwise there will be a 4-cycle. If F (S1) = 2, then F (B2)  1.

Likewise, if F (Sn) = 2, then F (Bn�2)  1. Let

1F (S)=2 =

8
>><

>>:

1 if F (S) = 2

0 otherwise.

Thus, we have
n�1X

k=1

F (Bk)  2(n� 1)� 1F (S1)=2 � 1F (Sn)=2.

The sum of the number of full degree vertices across all Bk can also be counted by the

sum of the number of full degree vertices across all Si, where S1 and Sn are counted
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once and all others are counted twice. That is, using the fact that F (T ) =
P

n

i=1 F (Si),

n�1X

k=1

F (Bk) = F (S1) + F (Sn) + 2
n�1X

i=2

F (Si)

= F (T ) +
n�1X

i=2

F (Si)

= 2F (T )� F (S1)� F (Sn).

So we have,

2F (T )� F (S1)� F (Sn)  2(n� 1)� 1F (S1)=2 � 1F (Sn)=2.

Solving for F (T ), we obtain

F (T )  1

2
(2n� 2 + [F (S1)� 1F (S1)=2] + [F (Sn)� 1F (Sn))=2]).

For k 2 {1, n}, note that F (Sk)  2. If F (Sk) = 2, then F (Sk) � 1F (Sk)=2 = 1. If

F (Sk)  1, then F (Sk)� 1F (Sk)=2  1. So,

F (T )  1

2
(2n� 2 + [1] + [1]) = n.

Thus, '(G)  n and therefore '(G) = n.

Figure 3.2: Spanning tree with ' full degree vertices on G(2, 6)

An example of a spanning tree that produces ' full degree vertices on G(2, n) is

shown in Figure 3.2. Tree edges are represented by solid lines, non-tree edges are

represented by dashed lines, and full degree vertices are solid.
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The next theorem determines our parameter on G(3, n), the graph with 3 rows

of vertices and n columns of vertices. The proof of this theorem is, although slightly

more complicated, similar to the proof of Theorem 3.0.1.

Theorem 3.0.2. For G = G(3, n), we have

'(G) =

�
4n

3
+

2

3

⌫
.

Proof. For j 2 [3] and i 2 [n], let xj,i be the vertex in the j-th row and i-th column

of G = G(3, n). If we take a tree of G where all x1,i are full degree and every third

x3,i is full degree, then we have a spanning tree of G with
⌅
4n
3 + 2

3

⇧
vertices of full

degree, as shown in Figure 3.3. So, '(G) �
⌅
4n
3 + 2

3

⇧
.

We will now show that every spanning tree of G has at most
⌅
4n
3 + 2

3

⇧
full degree

vertices. Let T be a spanning tree of G(3, n) and let Si = {x1,i, x2,i, x3,i}. For

k 2 [n � 2], let Bk = {xj,r : j 2 [3], r 2 {k, k + 1, k + 2}}. Let F (H) denote the

number of full degree vertices in any graph H. So, the sum of the number of full

degree vertices across all Bk is given by

n�2X

k=1

F (Bk).

Each F (Bk)  4, otherwise there will be a cycle. If F (S1) = 3, then F (B2)  3.

Likewise, if F (Sn) = 3, then F (Bn�3)  3. Let

1F (S)=3 =

8
>><

>>:

1 if F (S) = 3

0 otherwise.

Thus, we have
n�2X

k=1

F (Bk)  4(n� 2)� 1F (S1)=3 � 1F (Sn)=3.
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The sum of the number of full degree vertices across all Bk can also be counted by the

sum of the number of full degree vertices across all Si, where S1 and Sn are counted

once, S2 and Sn�1 are counted twice, and all others are counted thrice. That is, using

the fact that F (T ) =
P

n

i=1 F (Si),

n�1X

k=1

F (Bk) = F (S1) + F (Sn) + 2[F (S2) + F (Sn�1)] + 3
n�2X

i=3

F (Si)

= 3F (T )� 2[F (S1) + F (Sn)]� [F (S2) + F (Sn�1)].

So we have

3F (T )� 2[F (S1) + F (Sn)]� [F (S2) + F (Sn�1)]  4(n� 2)� 1F (S1)=3 � 1F (Sn)=3.

Solving for F (T ), we obtain

F (T )  4n

3
� 8

3
+ a+ b+ c

where we let a =
�1F (S1)=3�1F (Sn)=3

3 , b = 2[F (S1)+F (Sn)]
3 and c = F (S2)+F (Sn�1)

3 for ease of

notation. Note that one of the following must occur in T :

1. F (S1) = 3 = F (Sn). If this occurs, we have a = �2
3 , b = 4, and c = 0. So

a+ b+ c = 10
3 .

2. F (S1) 6= 3 6= F (Sn). If this occurs, we have a + b + c  10
3 . We obtain the

maximum a+ b+ c = 10
3 when F (S1) = 2 = F (Sn), which implies F (S2) = 1 =

F (Sn�1).

3. F (S1) = 3 or F (Sn) = 3 but not both. If this occurs, we have a + b + c  10
3 .

Without loss of generality, assume F (S1) = 3, which implies F (S2) = 0. We

obtain the maximum a+ b+ c = 10
3 when F (Sn) = 2 and F (Sn�1) = 1.
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Thus, in all three cases, we have

F (T )  4n

3
� 8

3
+

10

3
=

4n

3
+

2

3
.

Therefore, since we can only count vertices using whole numbers, '(G) 
⌅
4n
3 + 2

3

⇧

and thus '(G) =
⌅
4n
3 + 2

3

⇧
.

Figure 3.3: Spanning tree with ' full degree vertices on G(3, 7)

An example of a spanning tree that produces ' full degree vertices on G(3, n) is

shown in Figure 3.3. Tree edges are represented by solid lines, non-tree edges are

represented by dashed lines, and full degree vertices are solid.

Our last theorem of this chapter focuses on G(m,n), where m and n are each a

large number tending towards infinity. For two sequences An and Bn, we say An ⇠ Bn

if limn!1
An
Bn

= 1.

Theorem 3.0.3. For G = G(m,n) with m,n tending towards infinity, we have

'(G) ⇠ mn

3
.

Proof. There exists a spanning tree of the grid G = G(m,n), where m and n are

tending towards infinity, with at least mn

3 vertices of full degree (e.g., a tree where

all vertices in every third column of G are of full degree as shown in Figure 3.4). So,

'(G) � mn

3 .

Let V 0 = {v 2 V (G) : dG(v) = 4} and let X ⇢ V 0 be the set of full degree vertices

from V 0 in a spanning tree T of G. Since all vertices in X have degree 4 in T and all

17



non-full degree vertices from V 0 have degree at least 1 in T ,

2(mn� 1) �
X

v2V 0

dT (v) =
X

v2X

dT (v) +
X

v/2X

dT (v)

� 4 · |X|+ 1 · |V 0 \X|

= 4 · |X|+ (mn� 2m� 2n+ 4� |X|).

Solving for |X|, we obtain

|X|  mn+ 2m+ 2n� 6

3
=

mn

3
+O(m+ n).

Therefore, '(G) ⇠ mn

3 .

A portion of a spanning tree that produces '(G) full degree vertices on G =

G(m,n), with m,n tending towards infinity, is shown in Figure 3.4. Tree edges are

represented by solid lines, non-tree edges are represented by dashed lines, and full

degree vertices are solid.

Figure 3.4: Spanning tree portion with '(G) full degree vertices on G(m,n), m,n ! 1
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Chapter 4

Hypercubes

A graph is k-regular if every vertex in the graph has degree k, and so � = k = � in

a k-regular graph. A hypercube Qk is a k-regular graph whose vertices are subsets

of [k] := {1, 2, . . . , k}. Two vertices are adjacent if their subsets di↵er in exactly

one element. Note that Qk has 2k vertices, and we say that Qk is a hypercube in k

dimensions.

Choi and Guan [7] found that '(Qk) = 2k/k if k = 2m for a positive integer m

and '(Qk) < 2k/k if k 6= 2m. We can combine their results with our results from

Section 2.2 as follows in Corollary 4.0.1.

Corollary 4.0.1. For a hypercube Qk, if k = 2m for m 2 Z+
, then

'(Qk) =
2k

k
.

Otherwise,

2k

k2 � k + 1
< '(Qk) <

2k

k
.

Proof. This result follows directly from Theorem 2.2.3 in this thesis and Theorems 2.3

and 2.4 in [7]. We have strict inequality when k is not a power of 2 since ' 2 Z.
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For 1  k  24, Table 4.1 gives values for the number of full degree vertices Fk in

Qk obtained via a construction, which is described below. As our table shows, this

construction yields the exact values of '(Qk) given in Corollary 4.0.1 for k = 2m with

m 2 Z+. Theorem 4.0.6 relates the values given in Table 4.1 to '(Qk), which provide

some improvements over the lower bounds given in Corollary 4.0.1.

k Fk k Fk

1 2 13 512
2 2 14 1024
3 2 15 2048
4 4 16 4096
5 4 17 5120
6 8 18 10240
7 16 19 19456
8 32 20 38912
9 40 21 73728
10 76 22 147456
11 144 23 294912
12 288 24 589824

Table 4.1: Number of full degree vertices in Qk obtained via the construction described below.
Values shown in bold are optimal; all others are lower bounds.

Before we prove Theorem 4.0.6, we will need to prove a few lemmas.

Lemma 4.0.2 (The Pigeonhole Principle). Suppose n and k are positive integers with

n > k. If n pigeons are distributed amongst k pigeonholes, then some hole has at least

2 pigeons.

Proof. Let n and k be positive integers with n > k. Suppose n pigeons are distributed

amongst k pigeonholes and every hole has at most 1 pigeon. Then, if we sum the

number of pigeons in each hole, we have at most k pigeons, a contradiction. Thus,

some hole has at least 2 pigeons.

Lemma 4.0.3. If A and B are each m-element subsets of [n], where n < 2m, then

A \ B 6= ;.
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Proof. Let A and B bem-element subsets of [n], where n < 2m. Let S be the multiset

(which allows elements to be repeated) containing the elements of A and B. So we

have |S| = 2m. By Lemma 4.0.2, where the elements of [n] are the “pigeonholes” and

the elements of S are the “pigeons,” some element of [n] must appear twice in S. Call

this element x. Since elements of sets must be unique, x can be repeated in neither

A nor B. Thus, x must be an element of both A and B, and so A \B 6= ;.

Lemma 4.0.4. If A,B,C are each 3-element subsets of [5], two of A,B,C must

contain 2 common elements.

Proof. Let A,B,C each be 3-element subsets of [5]. Without loss of generality, we

know |B \C| � 1 by Lemma 4.0.3. If |B \C| = 2, then we are done. If |B \C| = 1,

then [k] = B [ C and thus each element of A must be an element of B or C, so the

desired result follows from Lemma 4.0.2 where the elements of A are the “pigeons”

and the sets B,C are the “pigeonholes.”

Lemma 4.0.5. Given a hypercube Qk, each v 2 V (Qk) is adjacent to at most 1 full

degree vertex in a spanning tree of Qk.

Proof. See the proof of Lemma 2.1 in [7].

We now have enough information to prove Theorem 4.0.6, which is stated below.

Theorem 4.0.6. For 1  k  5, '(Qk) = Fk. For 6  k  24, '(Qk) = Fk if k = 2m

for m 2 Z+
and '(Qk) � Fk otherwise, where values of Fk are shown in Table 4.1.

Proof. Note that Q1 is a single edge, i.e., a path on 2 vertices, and so '(Q1) = 2

by Proposition 2.1.1. For all 2  k  24, '(Qk) � Fk since these values are from a

construction. Let m 2 Z+. The results for k = 2m follow from Corollary 4.0.1. Also

from Corollary 4.0.1, '(Q3) < 2.6, and thus '(Q3) = 2.
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We will now show that '(Q5)  4. Let Li be the set of vertices whose labels

are subsets of size i and let fi be the number of full degree vertices in Li. Then the

number of full degree vertices in Q5 is given by
P5

i=0 fi. Pick an initial vertex to be

full degree. Due to the symmetry of the hypercube, this can be any vertex, so pick

vertex ;. Then f0 = 1 and, by Lemma 4.0.5, f2 = 0. Clearly, f5  1. By Lemma

4.0.5, we have f1  1 and f4  1. We have f3  2, since three full degree vertices

from L3 would create a cycle by Lemma 4.0.4. We will now proceed by considering

three cases:

Case 1: Suppose f5 = 1. Then f3 = 0 by Lemma 4.0.5. Thus,
P5

i=0 fi  4.

Case 2: Suppose f5 = 0 = f4. Then
P5

i=0 fi  4.

Case 3: Suppose f5 = 0 and f4 = 1. If f1 = 0, then
P5

i=0 fi  4, so suppose f1 = 1.

Without loss of generality, say that vertex {5} is full degree. By Lemma

4.0.5, no vertex from L3 containing the element 5 may be full degree. That

is, any full degree vertex of L3 must be a subset of [4]. Any two such vertices

S1 and S2 will share two common elements by Lemma 4.0.3. It follows that

if both S1 and S2 are full degree, then a cycle is formed by S1, S2, S1 \ S2,

and any vertex from L4 that contains S1\S2. Thus, f3 < 2 and
P5

i=0 fi  4.

Therefore, '(Q5)  4 and thus '(Q5) = 4.

We will now describe the construction from [7] used to obtain the values given in

Table 4.1. A binary string of length k is a k-digit sequence of 0’s and 1’s. Note that

we may alternatively define the hypercube Qk as a graph whose vertices are binary

strings of length k. Two vertices in a hypercube are adjacent if their strings di↵er in

exactly one position. The star centered at vertex v in graph G, denoted SG(v), is the

graph with vertex set {v} [ NG(v) and edge set {vx : x 2 N(v)}. Stars S1 and S2

are vertex disjoint if V (S1) \ V (S2) = ;. In a spanning tree of a graph, we refer to a
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star as full degree if its center is a full degree vertex. A code is a set of vertex disjoint

full degree stars. Note that to form Qk, we may start with Q = Qk�1 and Q0 = Qk�1,

and then add edges between the vertices of Q and Q0 that share the same label. In

order to find a lower bound for '(Qk), we can construct a spanning tree of Qk by first

finding a code in Q and then finding the same code in Q0. We connect the center of

each star in Q with the center of the star in Q0 that has the same label. Thus, each

center is a full degree vertex, and so a code of size z in Qk�1 gives us Fk = 2z.

In [3], Best et al. present a table for A(n, d), which is the maximum number of

length n binary strings such that any two of the strings di↵er in at least d positions. In

the context of our construction on Qk, we are finding length k� 1 binary strings that

di↵er in at least 3 positions, i.e., our vertex disjoint full degree stars. Then A(k�1, 3)

represents the size of a code in Qk�1. By Theorem 1 in [3], A(k � 1, 3) = A(k, 4).

Thus, Fk = A(k, 3) = 2A(k� 1, 3) = 2A(k, 4). For 5  k  16, the values of Fk given

in Table 4.1 were calculated using values of A(k, 4) given in Table 1 of [3]. Note that

A(6, 4) = 4 = A(5, 3) = F5 by Theorem 1 in [3].

Examples of spanning trees that produce ' full degree vertices on Q3 and Q4 are

shown in Figures 4.1 and 4.2, respectively. Tree edges are represented by solid lines,

non-tree edges are represented by dashed lines, and full degree vertices are solid.

000

100 010 001

110 101 011

111

Figure 4.1: Spanning tree that produces
'(Q3) = 2 full degree vertices

0000

1000 0100 0010 0001

1100 1010 1001 0110 0101 0011

1110 1101 1011 0111

1111

Figure 4.2: Spanning tree that produces
'(Q4) = 4 full degree vertices
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Chapter 5

Random Regular Graphs

Recall that a graph is r-regular if every vertex in the graph has degree r. We have

the following bounds that arise from our results in Section 2.2.

Corollary 5.0.1. For a connected r-regular graph G on n vertices,

n

r2 � r + 1
 '(G)  n

r � 1
.

Proof. These bounds are a direct result of Theorem 2.2.3.

The upper bound in Corollary 5.0.1 is essentially tight as can be seen by taking

G = Kr�1⇤Cn/(r�1). In this construction, one can take one vertex from each of

n/(r � 1) � 2 copies of Kr�1 to be of full degree and so '(G) � n/(r � 1) � 2. See

Section 5.5 for a question about the tightness of the lower bound.

In the case of cubic graphs (i.e., 3-regular graphs), this problem has been studied

before under a di↵erent guise. Note that, for S ⇢ V (G) for any graph G, a subgraph

H of G is induced by S if V (H) = S and E(H) = {uv 2 E(G) : u, v 2 S}. We denote

the subgraph of G induced by S as G[S].
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Let G be a connected graph with n vertices. A dominating set of vertices is a

subset S ✓ V (G) such that every vertex in G is either in S or adjacent to a vertex

in S. If G[S] is connected, then S is said to be a connected dominating set. Let

�C(G) be the minimum number of vertices in a connected dominating set of G and

let �(G) be the maximum number of leaves in a spanning tree of G. Aptly named, the

problem of determining �(G) is known as the many leaves problem and the problem of

determining �C(G) is known as the connected dominating set problem. The following

proposition, which is observed in [6] and [10], shows that the many leaves problem is

equivalent to the connected dominating set problem.

Proposition 5.0.2. For a connected graph G on n vertices,

�(G) = n� �C(G).

Proof. Let G be a connected graph on n vertices. A spanning tree of G exists by

Lemma 1.1.5, so let T be a spanning tree of G with leaf set L. We have that V (T )\L

forms a tree by Lemma 1.1.1. Also, note that every leaf in L is adjacent to a vertex

in V (T ) \L. Thus, V (T ) \L is a connected dominating set and so �(G)  n� �c(G).

Now consider a connected dominating set D of G. Then, by definition, G[D] is

connected. Note that the complement of D is given by D = {x 2 V (G) : x /2 D}.

Let T 0 be a spanning tree of G[D]. We can attach all of the vertices in D to T 0 as

leaves to obtain T , a spanning tree of G. Thus, there is a spanning tree of G in which

V (G) \D is the leaf set and so �(G) � n� �c(G). Therefore, �(G) = n� �C(G).

These parameters have been very well studied (see e.g., [6], [13], [20], and oth-

ers). Some previous results for these problems are given in Chapter 6. We have the

following observation which shows that the problems of finding �,' and �C are all

equivalent in connected cubic graphs.
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Proposition 5.0.3. For any connected cubic graph G, we have �(G) = '(G) + 2.

Furthermore, for any r � 4 and any connected r-regular graph G, we have �(G) �

(r � 2)'(G) + 2.

Proof. Let r � 3 and let G be a connected r-regular graph. Let T be a spanning tree

of G and let xi be the number of vertices in T of degree i for i 2 [r]. Then

2(n� 1) =
X

v2T

dT (v) =
rX

i=1

ixi

= 2

 
rX

i=1

xi

!
� x1 +

rX

i=3

(i� 2)xi

= 2n� x1 +
rX

i=3

(i� 2)xi

� 2n� x1 + (r � 2)xr

where the last inequality is equality in the case r = 3. Thus x1 � (r � 2)xr + 2 and

the result follows.

We seek to understand the average behavior of ' for r-regular graphs by consider-

ing random regular graphs. A random r-regular graph, denotedG(n, r), is a graph cho-

sen uniformly at random from all r-regular graphs on vertex set [n] := {1, 2, . . . , n}.

For background on random regular graphs, see Wormald’s survey [22]. Duckworth [9]

and Duckworth and Mans [10] developed an algorithm for the connected dominat-

ing set problem and analyzed it on random d-regular graphs for d fixed. An event

occurs with high probability (w.h.p.) if the probability that the event occurs tends

towards 1 as n tends towards 1. Duckworth’s algorithm [9] produces a connected

dominating set on the random cubic graph G ⇠ G(n, 3) that w.h.p. has size less than

0.5854n + o(n). Thus, w.h.p. his algorithm gives �C(G)  0.5854n + o(n) and, by

Propositions 5.0.2 and 5.0.3, '(G) = �(G) � 0.4146n+ o(n).
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We approach this problem by providing an algorithm that attempts to maximize

the number of full degree vertices in spanning trees of random regular graphs. Some-

what surprisingly, our simple algorithm gives a decent improvement over the bounds

given in [9, 10] for random cubic graphs. A breadth-first search is an algorithm that

explores all of the vertices on one level of a tree before exploring vertices on the next

level. Algorithm 1 is based on a breadth-first search and thus only explores from

certain vertices. The algorithm iteratively builds a forest T . At each step, a random

vertex v (either a leaf of the current forest or an as-yet unseen vertex) is chosen and

the neighbors of v are exposed. If at most one of v’s neighbors lies in the current

forest T , then v may be safely added to T as a full degree vertex. Recall that SG(v)

represents the star centered at v in G. The main results of this chapter, the bounds

determined by Algorithm 1, are given in Theorem 5.0.4.

Input: Connected r-regular graph G = (V,E).
Output: Tree T with full degree vertices F .
Select arbitrary v 2 V ;
T = SG(v);
L = NG(v), Zr = V \ VT ;
while L [ Zr 6= ; do

if L 6= ; then
Select v 2 L u.a.r.

else
Select v 2 Zr u.a.r.

if |VT \NG(v)|  1 then
T = T [ SG(v);
F = F [ {v};
X = Zr \NG(v);
Move X from Zr to L

else
Zr = Zr \NG(v);
L = L \NG(v);

end
Complete the forest T to a spanning tree arbitrarily;

Algorithm 1: Full Degree Tree
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Theorem 5.0.4. When run on a random cubic graph G ⇠ G(n, 3), Algorithm 1

w.h.p. produces a tree T with at least 0.4591n vertices of full degree. Thus '(G) �

0.4591n,�(G) � 0.4591n, and �C(G)  0.5409n. When run on a random r-regular

graph G(n, r) with 4  r  10, Algorithm 1 w.h.p. produces a tree with at least frn

vertices of full degree, where values of fr are shown in Table 5.1.

r fr ur

3 .4591 .5000
4 .2699 .3333
5 .1811 .2500
6 .1315 .2000
7 .1006 .1667
8 .0799 .1429
9 .0652 .1250
10 .0545 .1111

Table 5.1: Values of fr, ur such that w.h.p. frn  '(G(n, r))  urn. The bounds fr come from
Algorithm 1 and ur = 1/(r � 1), deterministically from Theorem 2.2.3.

In the following sections, we use the di↵erential equations method to prove Theo-

rem 5.0.4. We describe the expected one-step changes of several parameters through-

out the algorithm in Section 5.2. Then, in Section 5.3, we apply a general theorem

of Wormald [21,23] to show concentration of this system of random variables around

their expected trajectories in order to complete the proof of Theorem 5.0.4.

5.1 Setting up the Analysis of Algorithm 1

Note that a matching is a set of non-loop edges with no shared endpoints. The

vertices incident to edges of a matching M are said to be saturated by M . A perfect

matching saturates all vertices in a graph. Also, note that a multigraph is a graph

that is allowed to have multiple edges, which are distinct edges that have the same

endpoints.
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In our set up, we make use of the configuration model to analyze our algorithm

on G(n, r) (see, e.g., [22] for more details on the description that follows). Suppose

rn is even and consider a set of rn configuration points partitioned into n labeled

buckets v1, . . . , vn each of size r. A pairing of these points is a perfect matching of

the configuration points. Given a pairing P , we may obtain a multigraph G(P ) by

contracting each of the buckets to one vertex. It is well known that the restriction of

this probability space to simple graphs is G(n, r) and that for fixed r, the probability

that the pairing generates a simple graph is bounded away from 0 (independently of

n). Thus, any event that holds w.h.p. over the space of random pairings also holds

w.h.p. for G(n, r).

We analyze our algorithm by tracking certain parameters throughout the execution

of the algorithm. We only reveal partial information about G(n, r) (or more precisely,

the pairing) as the algorithm progresses. We let T represent the current forest being

built. Each iteration of the while loop will be called a step. At each step, we process

a vertex v. When v is processed, we reveal its neighbors in the configuration (some of

v’s neighbors may already have been revealed). Let L = L(t) represent the vertices

that are in T and have r � 1 unrevealed configuration points. All vertices of L are

leaves of T , but not all leaves of T are in L. For i 2 [r], let Zi = Zi(t) denote the set

of vertices that are not in T and have i unrevealed neighbors at time step t. Thus,

we either process a vertex that is a leaf of T (when v 2 L) or a vertex that has never

been seen (when v 2 Zr). A step is a success if at most one of v’s neighbors already

lies in T (when v 2 L, the previously revealed neighbor certainly lies in T ). If the

step is a success, we may add v and its neighbors to T . We let F = F (t) represent

the set of vertices of degree r (i.e., the set of full degree vertices) in T at time step t.

We consider our algorithm to have two phases. In Phase 1, we only process vertices

from L. We say Phase 2 begins when the first vertex from Zr is processed. In Phase 2,

we process vertices from both L and Zr. In Figure 5.1, we illustrate the possibilities
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when processing a vertex v from L in the case of a random cubic graph. In that

case, there are three possibilities, shown in Figure 5.1: (1) both of v’s newly revealed

neighbors are not currently in T , (2) only one of these neighbors is currently in T ,

or (3) both of these neighbors are currently in T . If both of these neighbors are not

currently in T (Case 1 in Figure 5.1), then we can make v full degree by adding all

of its neighbors and incident edges to T , i.e., the step is a success. In Cases 2 and

3, adding v and its neighbors to T could potentially create a cycle and so we do not

attempt to do so. We note that since T is a forest, having 2 neighbors in T does not

guarantee the creation of a cycle, but it is simpler for our analysis to err on the side

of caution.

T

v 2 L

T

v 2 L

T

v 2 L

Case 1 Case 2 Case 3

Figure 5.1: Selecting v 2 L and exposing its neighbors

5.2 Expected One Step Changes

We will now use the set up we described above to define some equations for our

parameters that arise from Algorithm 1. In a common abuse of notation, we refer to

L, Zi, and F as the sets they represent as well as the sizes of those sets. Let

Z :=
rX

i=1

iZi

so that Z represents the number of unrevealed configuration points corresponding to

the Zi’s. Let M = M(t) represent the number of unrevealed configuration points at

time step t. There are two types of operations that we perform. Following notation
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from [23], let Op1 denote the operation of processing a vertex from L and let Op2

denote the operation of processing a vertex from Zr. Let opt
2 {Op1,Op2} represent

the operation performed at time step t of the algorithm.

5.2.1 Phase 1

Let Ft represent the revealed part of the configuration model at time t. As mentioned

before, in Phase 1, we only process vertices from L. For random variable X = X(t),

let �X(t) = X(t+ 1)�X(t). For i 2 [r � 1],

E[�Zi(t) | Ft, opt
= Op1] =

(r � 1)·
 
� iZi

M
+

(i+ 1)Zi+1

M
·
 
1�

✓
Z

M

◆r�2
!!

+O

✓
1

n

◆
(5.1)

E[�Zr(t) | Ft, opt
= Op1] = (r � 1) ·

✓
�rZr

M

◆
+O

✓
1

n

◆
(5.2)

E[�L(t) | Ft, opt
= Op1] =

�1 + (r � 1) ·
 
�(r � 1)L

M
+

rZr

M
·
✓
Z

M

◆r�2
!

+O

✓
1

n

◆
(5.3)

E[�F (t) | Ft, opt
= Op1] =

✓
Z

M

◆r�1

+O

✓
1

n

◆
(5.4)

E[�M(t) | Ft, opt
= Op1] = �2(r � 1). (5.5)

To see (5.1) and (5.2), note that the vertex v that we are processing has r � 1

unrevealed configuration points. If any of these points pair with a point in a Zi

vertex, then that vertex is no longer a Zi vertex. This happens with probability

iZi+O(1)
M+O(1) = iZi

M
+ O(1/n), where the error term is O(1/n) since we will assume that

M = ⌦(n). The error terms in the rest of the explanation are similar and will be

ignored. We gain a Zi vertex if the step is not a success but one of the revealed points

pairs with a Zi+1 point. The factor (i + 1)Zi+1/M represents the probability that
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a point pairs with a Zi+1 point and 1 �
�

Z

M

�r�2
represents the probability that the

other revealed points do not all land in Z (which would mean a success).

In (5.3), the �1 accounts for the loss of the L vertex that we are processing. Again,

we will lose L vertices when the revealed points pair to L vertices. We gain L vertices

if the step is a success and one of the points pairs with a Zr vertex. The expected

change in F , given by (5.4), is just the probability that the step is a success, which is
�

Z

M

�r�1
. Finally, note that at each step we reveal r � 1 pairs from the configuration,

which explains (5.5).

5.2.2 Phase 2

The expected one step changes in Phase 2 when processing a vertex from L are given

by equations (5.1)–(5.5).

The expected one step changes when processing a vertex from Zr are as follows.

For ease of notation let P :=
�

Z

M

�r�1
+ (r � 1) ·

�
Z

M

�r�2 ·
�
1� Z

M

�
. Note that this

represents the probability of a success step when performing Op2 conditional on one

revealed point pairing with a Z vertex. For i 2 [r � 1],

E[�Zi(t) | Ft, opt
= Op2] = r ·

✓
� iZi

M
+

(i+ 1)Zi+1

M
· (1� P )

◆
+O

✓
1

n

◆
(5.6)

E[�Zr(t) | Ft, opt
= Op2] = �1 + r ·

✓
�rZr

M

◆
+O

✓
1

n

◆
(5.7)

E[�L(t) | Ft, opt
= Op2] = r ·

✓
�(r � 1)L

M
+

rZr

M
· P

◆
+O

✓
1

n

◆
(5.8)

E[�F (t) | Ft, opt
= Op2] =

✓
Z

M

◆r

+ r ·
✓
Z

M

◆r�1

·
✓
1� Z

M

◆
+O

✓
1

n

◆
(5.9)

E[�M(t) | Ft, opt
= Op2] = �2r (5.10)

The explanations for these are similar to those for Op1. The main di↵erences are
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that (i) we now reveal r pairs from the configuration model rather than r � 1, and

(ii) a step is still a success if one of the revealed points pairs with a T (i.e., “non-Z”)

vertex.

5.3 Trajectories from Di↵erential Equations

For ease of notation, we let a = r+3 and set Z = (Z1, . . . , Za) = (Z1, . . . , Zr, L, F,M).

For i 2 [a] and j 2 [2], we define fi,j(t/n, Z1(t)/n, . . . , Za(t)/n) to be the expression

given on the right hand side shown in (5.1)-(5.10) for E[�Zi(t) | Ft, opt
= Op

j
] ig-

noring the O(1/n) terms so as to remove the dependence on n. So for example,

letting x = t/n, z = (z1, . . . , za) and z =
P

r

i=1 izi where zi(x) = Zi(t)/n, we have

fi,1(x, z) = (r � 1)

✓
� izi

zr+3
+ (i+1)zi+1

zr+3
·
✓
1�

⇣
z

zr+3

⌘r�2
◆◆

for i 2 [r � 1].

To prove concentration of our random variables, we will use the di↵erential equa-

tions method. Wormald proved the following theorem, which is often used as a black

box in such situations. The theorem is stated as it appears in [8].

Theorem 5.3.1 (Wormald [21]). Given random variables Yi, for 1  y  a (where

a > 0 is a constant), representing components of a time discrete Markov process

{Gt}t�0, assume that D ✓ Ra+1
is closed and bounded and contains the set

{(0, y1, . . . , ya) : Pr[Yi(0) = yin, 1  i  a] 6= 0 for some n} .

If for all i and all t, |Yi(t + 1) � Yi(t)|  � for some constant � and |E[Yi(t + 1) �

Yi(t) |Gt]� fi(t/n, Yi(t)/n, . . . , Ya(t)/n|  � for some � = o(1) and some functions fi

which are Lipschitz continuous on an open set containing D, then, for (0, ẑ1, . . . , ẑa) 2

D, the system of di↵erential equations

dzi
dx

= fi(x, z1, . . . , za)
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has a unique solution for zi : R ! R in D satisfying the initial condition zi(0) = ẑi.

Moreover, asymptotically almost surely

Yi(t) = nzi(t/n) + o(n),

uniformly for all t and all i, where zi(0) = ẑi =
1
n
Yi(0).

The details of the following application of the di↵erential equations method are

omitted, but they are by now standard (see for example [10, 11, 22, 23]). In Phase 1,

we have an ordinary application of Theorem 5.3.1. In Phase 2, we have a prioritized

algorithm that performs a mixture of 2 types of steps with preference given to a par-

ticular type of step. The results of Wormald [23] essentially say that we may instead

analyze a deprioritized algorithm that selects vertices according to a pre-determined

probability function (which in e↵ect blends the two types of steps appropriately). We

note that our functions fi,j are well behaved (e.g., they have continuous and bounded

derivatives) as long as zr+3 = M/n stays bounded away from 0. As our numerical

solutions show1, this is the case for all values of r considered in Table 5.1.

We now describe the blending of the steps for Phase 2 as described in [23]. Suppose

in Phase 2, an Op2 creates, in expectation, ↵ many vertices of L and suppose that

performing an Op1 decreases the number of L vertices, in expectation, by ⌧ . Then

we would expect an Op2 to be followed by ↵/⌧ many Op1 steps. Then in Phase 2,

we would expect the proportion of Op2 steps to be 1/(1 + ↵/⌧) = ⌧/(⌧ + ↵) and the

proportion of Op1 steps to be ↵/(⌧ + ↵). Let x = t/n and let z = (z1, . . . , za). Then

(recalling that L is now represented by Zr+1) the asymptotic values of ↵ and ⌧ are

given by

↵ = fr+1,2(x, z), ⌧ = �fr+1,1(x, z).

1A Maple worksheet that can be used to verify the claimed results can be found at https:
//msuweb.montclair.edu/~bald/research.html
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We let

p :=
↵

⌧ + ↵

and

F (x, z, i, k) =

8
>><

>>:

fi,1(x, z) if k = 1

p · fi,1(x, z) + (1� p) · fi,2(x, z) if k = 2.

Then for Phase k 2 [2], and i 2 [a], we let

dz̃i
dx

= F (x, z̃, i, k) (5.11)

with initial conditions for Phase 1 given by z̃i(0) = 0 for i 2 {1, . . . , r � 1, r + 1, r + 2},

z̃r(0) = 1, z̃r+3(0) = r. Numerical solutions of the Phase 1 system show that in this

phase, z̃r+1 increases and then decreases until it hits zero at which time Phase 2 be-

gins. Let ⇢r1 > 0 be the first time when z̃r+1(⇢r1) = 0. The numerical solutions show

that all other tracked variables are bounded away from 0 at time ⇢r1. The initial con-

ditions for Phase 2 are given by the final values of Phase 1, i.e., z̃i(⇢r1) for all i 2 [a].

Numerical solutions of the Phase 2 system then imply that Phase 2 ends at a time

⇢2 = ⇢r2, when z̃r(⇢2) = 0. A more detailed explanation of the solutions in the cases

r = 3 and 4 can be found in Section 5.4. The conclusion of the di↵erential equations

method is that, by Theorem 5.3.1,

Zi(t) = nz̃i(t/n) + o(n)

for all i and for all 0  t  ⇢r2n. The number of full degree vertices can then be

represented by

frn = z̃r+2(⇢
r

2) · n.

We have now completed the proof of Theorem 5.0.4.
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5.4 Discussion of r = 3, 4

 
 
 
 
 
 
 

Figure 5.2: Trajectories for r = 3

 

Figure 5.3: Trajectories for r = 4

In Figure 5.2 we see some of the solutions to the system given in (5.11) for G ⇠

G(n, 3). Phase 1 ends at the vertical line at time ⇢1 ⇡ 0.6485. The initial conditions

for Phase 2 are then given by z̃1(⇢1) ⇡ 0.0193, z̃2(⇢1) ⇡ 0.0536, z̃3(⇢1) ⇡ 0.0498,

z̃4(⇢1) = 0, z̃5(⇢1) ⇡ 0.4375, z̃6(⇢1) ⇡ 0.4060. Thus at the end of Phase 1, the

algorithm has found a forest with ⇡ 0.4375n vertices of full degree. We note that this

already implies that w.h.p. �(G) � 0.4375n and �C(G)  0.5625n, an improvement

over the best known bounds given in [9] for these problems. Phase 2 ends when z̃3 = 0

at time ⇢2 ⇡ 0.6922. As one can see, z̃2 (and hence z̃r+3) is bounded away from 0 at

time ⇢2.

In Figure 5.3 we see some of the solutions to the system given in (5.11) for G ⇠

G(n, 4). Phase 1 ends at the vertical line at time ⇢1 ⇡ 0.4707. The initial conditions

for Phase 2 are then given by z̃1(⇢1) ⇡ 0.0119, z̃2(⇢1) ⇡ 0.0548, z̃3(⇢1) ⇡ 0.1124,

z̃4(⇢1) ⇡ 0.0864, z̃5(⇢1) = 0, z̃6(⇢1) ⇡ 0.2445, z̃7(⇢1) ⇡ 1.1757. Phase 2 ends when

z̃4 = 0 at time ⇢2 ⇡ 0.5397.
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5.5 Further Directions

We point out that some of the functions in the Phase 1 system given in Section 5.2.1

can be solved for analytically. In particular, we have, using the initial conditions

z̃r+3(0) = r and z̃r(0) = 1, that in Phase 1,

z̃r+3(x) = r � 2(r � 1)x

and hence

z̃r(x) =

✓
1� 2(r � 1)

r
x

◆r/2

.

Unfortunately, the equations for the other variables depend on z =
P

i
izi, which we

don’t currently see how to deal with.

It is an intriguing open problem to determine whether random regular graphs

contain full degree spanning trees with an optimal (or asymptotically optimal) number

of full degree vertices.

Problem 5.5.1. Does G ⇠ G(n, r) satisfy '(G) = n

r�1(1 + o(1))?

Perhaps applying the second moment method to a particular tree with only ver-

tices of degree r and 1 could be used to show this. We note that as a function of

r, our fr seem to decay at a rate faster than 1/r, so it seems unlikely that a simple

modification of Algorithm 1 will succeed in proving this.

The lower bound in Theorem 2.2.3 can be thought of as arising from a greedy

algorithm that removes a vertex, and its first and second neighborhoods, at each

step. By analyzing a slightly more sophisticated algorithm (see Lemma 5.2 in [2])

that allows the neighborhoods of the chosen vertices to overlap in one vertex, one can

prove the lower bound '(G) � 2
�2+�+2 · n = (1 + o�(1))

2
�2 · n. This lower bound is

almost tight (up to a constant factor) as can be seen by the following construction
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which essentially appears in [4]. Let G = (K�/2⇤K�/2)⇤C4n/�2 . Here, one can

take at most one vertex to be of full degree from each copy of K�/2⇤K�/2 and so

'(G)  4n/�2. It would be interesting to improve this factor of 2.

Problem 5.5.2. Determine the best possible deterministic lower bound for '(G) for

all connected graphs with �(G) = �.
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Chapter 6

The Many Leaves Spanning Tree

Problem

Recall that the many leaves problem focuses on determining �(G), which is the maxi-

mum number of leaves in any spanning tree of a graph G. The many leaves problem is

related to the FDST problem by Proposition 5.0.3 and is, in general, NP-hard. This

problem has been very well studied. For every connected cubic graph G, Storer [20]

found that �(G) � d(n/4)+2e. As stated in [13], Linial generalized Storer’s result by

conjecturing that, for a graph G with minimum degree �, �(G) � ��2
�+1n+ c�, where c�

depends on �. Kleitman and West [16] proved Linial’s conjecture for � = 3 and c� = 2.

An isomorphism between a graph G and a graph H is a bijection f : V (G) ! V (H)

such that uv 2 E(G) i↵ f(u)f(v) 2 E(H). If there is an isomorphism from G to

H, then G is isomorphic to H. Griggs et al. [13] found that �(G) � d(n/3) + (4/3)e

for every connected cubic graph G that does not have a subgraph isomorphic to K4

with one edge removed. Griggs and Wu [14] determined that �(G) � (2n/5 + 8/5)

for any connected graph G with minimum degree � = 4. They also determined that

�(G) � n/2 + 2 for any connected graph G with � = 5.
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We have the following general upper bound for any connected regular graph, which

gives rise to the deterministic upper bounds ur given in Table 6.1.

Proposition 6.0.1. For a connected r-regular graph G on n vertices,

�(G) 
✓
1� 1

r � 1

◆
n+

2

r � 1
.

Proof. Let G be a connected r-regular graph on n vertices, T be a spanning tree of

G, and L be the leaf set of T . Since all non-leaf vertices have degree at most r in T ,

2(n� 1) =
X

v

dT (v) =
X

v2L

dT (v) +
X

v/2L

dT (v)

 1 · |L|+ r · (n� |L|)

= (1� r) · |L|+ rn.

Solving for |L|, we obtain

|L| 
✓
1� 1

r � 1

◆
n+

2

r � 1
.

Therefore, �(G) 
�
1� 1

r�1

�
n+ 2

r�1 .

Recall that the many leaves problem is equivalent to the connected dominating

set problem by Proposition 5.0.2. The connected dominating set problem has been

well-studied; of the most relevance to our results, Duckworth and Mans [10] developed

an algorithm for the connected dominating set problem and analyzed it on random

d-regular graphs for d fixed, as discussed in Chapter 5. Bounds on �C for various

d � 4 are given in Table 1 of [10], and bounds for � can be obtained from this table

by applying Proposition 5.0.2. These bounds are given by �dm in Table 6.1 of this

chapter.
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In Chapter 5, we studied ' by considering random regular graphs. Here, we will

study the average behavior of � for r-regular graphs in the same manner. We provide

an algorithm that attempts to maximize the number of leaves in spanning trees of

random regular graphs. This algorithm yields a decent improvement over the bounds

in [9,10]. Algorithm 2 is a modified breadth first search and iteratively builds a forest

T . At each step, a random vertex v of a certain type is chosen and v’s neighbors are

exposed (some neighbors may have been previously exposed). If none of v’s newly

exposed neighbors lie in the current forest T , then these neighbors may be safely

added to T , creating new leaves. Theorem 6.0.2 is the main result of this chapter and

gives the bounds determined by Algorithm 2.

Input: Connected r-regular graph G = (V,E).
Output: Tree T with leaves L.
Select arbitrary v 2 V ;
T = SG(v);
Yr�1 = NG(v), L = NG(v), Zr = V \ VT ;
Yk = ; for k 2 {1, 2, . . . , r � 2}, Zk = ; for k 2 {1, 2, . . . , r � 1};
while

S
r�1
j=1 Yj 6= ; do

Select v 2 Yj u.a.r. for the largest j s.t. Yj 6= ;;
Yj = Yj \ {v};
if |VT \NG(v)|  r � j then

T = T [ SG(v);
U = {u 2 NG(v) : u /2 T};
L = {L [ U} \ {v};
for x 2 NG(v) do

if x 2 Zi, move x from Zi to Yi�1;
if x 2 Yi, move x from Yi to Yi�1;

end
else

for x 2 NG(v) do
if x 2 Zi, move x from Zi to Zi�1;
if x 2 Yi, move x from Yi to Yi�1;

end
end
Complete the forest T to a spanning tree arbitrarily;

Algorithm 2: Many Leaves
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Theorem 6.0.2. When run on a random r-regular graph G(n, r) with 3  r  6,

Algorithm 2 w.h.p. produces a tree with at least lrn leaves, where values of lr are

shown in Table 6.1.

r �dm lr ur

3 .41458 .4559 .5000
4 .53439 .5872 .6666
5 .61393 .6524 .7500
6 .66065 .6933 .8000

Table 6.1: Values of lr, ur such that w.h.p. lrn  �(G(n, r))  urn. The bounds lr come from
Algorithm 1 and ur deterministically from Proposition 6.0.1. The bounds �dm are from [10].

As we did for Theorem 5.0.4, we use the di↵erential equations method to prove

Theorem 6.0.2. We describe the expected one-step changes of several parameters

throughout the algorithm in Section 6.2. Then, in Section 6.3, we apply Theorem

5.3.1 to show concentration of this system of random variables around their expected

trajectories in order to complete the proof of Theorem 6.0.2.

6.1 Setting up the Analysis of Algorithm 2

As described in Section 5.1, we make use of the configuration model to analyze our

algorithm on G(n, r). We again track certain parameters throughout the execution

of the algorithm and only reveal partial information about G(n, r) as the algorithm

progresses. Each iteration of the while loop is again called a step. At each step, we

process a vertex v. When v is processed, we reveal its neighbors in the configuration

(some of v’s neighbors may already have been revealed). Let T represent the current

forest being built. For i 2 [r], let Yi = Yi(t) denote the set of vertices that are in T and

have i unrevealed configuration point neighbors at time step t. Define Yr := 0, as a

vertex cannot simultaneously be in T and have r unexposed neighbors. Let Zi = Zi(t)

denote the set of vertices that are not in T and have i unrevealed neighbors at time
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step t. A step is a success if at most r � i of v’s neighbors already lie in T . In this

case, we may add v’s neighbors to T . We let L = L(t) represent the set of all leaves

of T at time step t.

We consider our algorithm to have r�1 phases. In Phase 1, we only process vertices

from Yr�1. We say Phase k begins when the first vertex from Yr�k is processed. In

Phase k, we process vertices from Yr�k, . . . , Yr�2, Yr�1.

6.2 Expected One Step Changes

In a common abuse of notation, we refer to L, Yi, and Zi as the sets they represent

as well as the sizes of those sets. Let

Z :=
rX

i=1

iZi

so that Z represents the number of unrevealed configuration points corresponding to

the Zi’s. Let

Y :=
rX

i=1

iYi

so that Y represents the number of unrevealed configuration points corresponding

to the Yi’s. Let M = M(t) represent the number of unrevealed configuration points

at time step t. There are r � 1 types of operations that we perform. Following the

same notation as used in Section 5.2, for j 2 [r � 1], let Op
j
denote the operation of

processing a vertex from Yj. Let opt
2
�
Op1,Op2, . . . ,Op

r�1

 
represent the operation

performed at time step t of the algorithm.

Let Ft represent the revealed part of the configuration model at time t. In Phase k,

we only process vertices from Yr�k, . . . , Yr�2, Yr�1 and so we only perform operations

from
�
Op

r�k
,Op

r�k+1, . . . ,Op
r�1

 
. For random variable X = X(t), let �X(t) =
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X(t+ 1)�X(t). Recall that Yr := 0 and let

1i,j =

8
>><

>>:

1 if i = j

0 otherwise.

The following equations, which define the expected one step changes for each of our

parameters, hold in all r � 1 phases. For i 2 [r � 1],

E[�Zi(t) | Ft, opt
= Op

j
] =

j·
 
� iZi

M
+

(i+ 1)Zi+1

M
·
 
1�

✓
Z

M

◆j�1
!!

+O

✓
1

n

◆
(6.1)

E[�Zr(t) | Ft, opt
= Op

j
] = j ·

✓
�rZr

M

◆
+O

✓
1

n

◆
(6.2)

E[�Yi(t) | Ft, opt
= Op

j
] =

�1i,j + j·
✓
Zj�1(�iYi + (i+ 1)Yi+1 + (i+ 1)Zi+1)

M j

◆
+O

✓
1

n

◆
(6.3)

E[�L(t) | Ft, opt
= Op

j
] = (j � 1) ·

✓
Z

M

◆j

+O

✓
1

n

◆
(6.4)

E[�M(t) | Ft, opt
= Op

j
] = �2j. (6.5)

In (6.1) and (6.2), note that the vertex v 2 Yj that we are processing has j

unrevealed configuration points. If any of these points pair with a point in a Zi

vertex, then that vertex is no longer a Zi vertex. This happens with probability

iZi+O(1)
M+O(1) = iZi

M
+ O(1/n) where the error term is O(1/n) since we will assume that

M = ⌦(n). The error terms in the rest of the explanation are similar and will be

ignored. We gain a Zi vertex if the step is not a success but one of the revealed points

pairs with a Zi+1 point. The factor (i + 1)Zi+1/M represents the probability that a

point pairs with a Zi+1 point and 1�
�

Z

M

�j�1
represents the probability that the step

is not a success (i.e., the other revealed points do not all land in Z).
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In (6.3), the �1i,j accounts for the loss of the vertex that we are processing if this

vertex is from Yi. Again, we will lose Yi vertices when the revealed points pair to Yi

vertices. We gain Yi vertices if the step is a success and one of the points pairs with

a Zi+1 vertex. We also gain Yi vertices if one of the points pairs with a Yi+1 vertex,

which could happen if the step is a failure. To see (6.4), note that we gain j�1 leaves

when the step is a success, the probability of which is
�

Z

M

�j
. Finally, note that at

each step we reveal j pairs from the configuration, which explains (6.5).

6.3 Trajectories from Di↵erential Equations

For ease of notation, we set Z = (Z1, . . . , Za) = (Z1, . . . , Zr, Y1, . . . , Yr, L,M) where

a = 2r + 2. For i 2 [a] and j 2 [r � 1], we define fi,j(t/n, Z1(t)/n, . . . , Za(t)/n) to be

the expression given on the right hand side shown in (6.1)-(6.5) for E[�Zi(t) | Ft, opt
=

Op
j
] ignoring the O(1/n) terms so as to remove the dependence on n. So for example,

letting x = t/n, z = (z1, . . . , za) and z =
P

r

i=1 izi where zi(x) = Zi(t)/n, we have

fi,r�1(x, z) = (r � 1)

✓
� izi

z2r+2
+ (i+1)zi+1

z2r+2
·
✓
1�

⇣
z

z2r+2

⌘r�2
◆◆

for i 2 [r � 1].

Again, the details of the following application of the di↵erential equations method

have been omitted. Algorithm 2 is a prioritized algorithm that performs a mixture of

r� 1 types of steps, but recall that we may instead analyze a deprioritized algorithm

that e↵ectively blends the steps appropriately. We note that our functions fi,j are well

behaved (e.g., they have continuous and bounded derivatives) as long as z2r+2 = M/n

stays bounded away from 0. As our numerical solutions show, this is the case for all

values of r considered in Table 6.1 until the end of the final phase. Thus, we solve

our equations numerically in the same manner as in [1] and do not obtain strict

inequalities involving the derivatives at the termination of each phase. For all phases

except the last one, z2r+2 stays bounded away from 0, so for the last phase, we only
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consider our equations on the domain where z2r+2 � ✏ for some small fixed ✏ and all

other variables are non-negative.

Below, we describe the blending of the r�1 steps. Again, this process is described

in [23]. Since we generally have more than 2 types of steps in each phase, the blending

done here is necessarily more complicated than the blending done in Section 5.3. For a

fixed k, let ⌧j,k be the proportion of steps that process a vertex from Yj during Phase k.

Then we have the following system of equations for ⌧j,k(x, z1, z2, . . . , za) = ⌧j,k(x, z),

r � k  j  r � 1:

1 =
r�1X

j=r�k

⌧j,k(x, z), (6.6)

0 =
r�1X

j=r�k

⌧j,k(x, z) · fi,j(x, z), for r � k + 1  i  r � 1. (6.7)

Letting x = t/n and zi(x) = Zi(t)/n as described earlier, we have that the solution ⌧j,k

to the system given in (6.6) and (6.7) is the proportion of steps that process a vertex

from Yj during Phase k as desired. Recall that in Phase k, we only process vertices

from Yr�k, . . . , Yr�2, Yr�1 and so
P

r�1
j=r�k

⌧j,k(x, z) = 1, which explains (6.6). Also,

recall that during Phase k vertices from Yr�k+1, . . . , Yr�1 are essentially processed as

soon as they are created. That is, we will never amass these types of vertices and

so we can expect
P

r�1
j=r�k

⌧j,k(x, z) · fi,j(x, z) = 0 for r � k + 1  i  r � 1, which

explains (6.7). Thus, by the di↵erential equations method, we have that each zi

should approximately be z̃i, where the z̃i are deterministic functions that satisfy the

following system of di↵erential equations:

dzi
dx

= F (x, z̃, i, k) :=
r�1X

j=r�k

⌧j,k(x, z̃) · fi,j(x, z̃) (6.8)

with initial conditions z̃i(0) = 0 for i 2 {1, . . . , r � 1, r + 1, . . . , 2r + 1}, z̃r(0) = 1,
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and z̃2r+2(0) = r. Numerical solutions show that in Phase 1, z̃2r�1 increases and then

decreases until it hits zero, at which time Phase 2 begins. Let ⇢r1 > 0 be the first time

that z̃2r�1(⇢r1) = 0. The initial conditions for Phase 2 are given by the final values of

Phase 1, i.e. z̃i(⇢r1) for all i 2 [a]. Likewise, the numerical solutions imply that Phase

k ends at time ⇢k = ⇢r
k
when z̃2r�k(⇢k) = 0. The initial conditions for Phase k+1 are

given by the final values of Phase k, i.e. z̃i(⇢k) for all i 2 [a]. The conclusion of the

di↵erential equations method is that, by Theorem 5.3.1,

Zi(t) = nz̃i(t/n) + o(n)

for all i and for all 0  t  ⇢r
r�1n. The number of leaves can then be represented by

lrn = z̃2r+1(⇢
r

r�1) · n.

We have now completed the proof of Theorem 6.0.2.

6.4 Discussion of r = 3, 4

 

Figure 6.1: Trajectories for r = 3

 

Figure 6.2: Trajectories for r = 4
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Figure 6.1 shows some of the solutions to the system given in (6.8) for G ⇠ G(n, 3).

Phase 1 ends at the vertical line at time ⇢1 ⇡ 0.6485. The initial conditions for Phase 2

are then given by z̃1(⇢1) ⇡ 0.0193, z̃2(⇢1) ⇡ 0.0536, z̃3(⇢1) ⇡ 0.0498, z̃4(⇢1) ⇡ 0.1300,

z̃5(⇢1) = 0, z̃6(⇢1) = 0, z̃7(⇢1) ⇡ 0.4375, and z̃8(⇢1) ⇡ 0.4060. Phase 2 ends when

z̃4 = 0 at time ⇢2 ⇡ 0.8062.

Figure 6.2 shows some of the solutions to the system given in (6.8) for G ⇠ G(n, 4).

Phase 1 ends at the vertical line at time ⇢1 ⇡ 0.4707. The initial conditions for Phase 2

are then given by z̃1(⇢1) ⇡ 0.0119, z̃2(⇢1) ⇡ 0.0548, z̃3(⇢1) ⇡ 0.1124, z̃4(⇢1) ⇡ 0.0864,

z̃5(⇢1) ⇡ 0.1046, z̃6(⇢1) ⇡ 0.1334, z̃7(⇢1) = 0, z̃8(⇢1) = 0, z̃9(⇢1) ⇡ 0.4890, and

z̃10(⇢1) ⇡ 1.1757. Phase 2 ends when z̃6 = 0 at time ⇢2 ⇡ 0.6537, represented

by the second vertical line. The initial conditions for Phase 3 are then given by

z̃1(⇢1) ⇡ 0.0257, z̃2(⇢1) ⇡ 0.0411, z̃3(⇢1) ⇡ 0.0292, z̃4(⇢1) ⇡ 0.0078, z̃5(⇢1) ⇡ 0.1261,

z̃6(⇢1) = 0, z̃7(⇢1) = 0, z̃8(⇢1) = 0, z̃9(⇢1) ⇡ 0.5739, and z̃10(⇢1) ⇡ 0.3526. Phase 3

ends when z̃5 = 0 at time ⇢2 ⇡ 0.7884.

6.5 Further Directions

We note that Table 6.1 does not present bounds for extensive values of r. At present,

our Maple worksheet cannot compute solutions to (6.8) for r � 7. We will be exploring

other means of generating numerical solutions to our system for higher r values.

The bounds for � presented in Table 6.1 are an improvement over the bounds for

� that can be obtained from the ' bounds in Table 5.1 for r > 3. However, for r = 3,

Algorithm 1 produces a better bound than Algorithm 2, which leads us to wonder

whether there is a third algorithm that gives improved bounds for all r.

Problem 6.5.1. Develop an algorithm that produces improved lower bounds on �(G),

where G ⇠ G(n, r), for all values of r.
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