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Abstract

We consider the dynamics of inertial and non-inertial particles in various flows.
We investigate the underlying structures of the flow field by examining their
Lagrangian coherent structures (LCS), which are found by computing finite-
time Lyapunov exponents (FTLE). We compare the behavior of massless non-
inertial particles using the velocity fields from four models, the Du�ng oscilla-
tor, the Bickley jet, the double-gyre flow, and a quasi-geostrophic geophysical
flow model, with that of inertial particles. For inertial particles with finite size
and mass, we use the Maxey-Riley equation to describe the particle’s motion.
We explore the preferential aggregation of inertial particles and demonstrate
how particle clustering depends on the density ratio, the Stokes number, and
the particle size. We also study the e↵ect of the Faxén correction and an of-
ten used assumption whereby the material derivative is set equal to the total
derivative.
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1 Introduction

The study of oceanic and atmospheric circulation is important for understanding a
wide range of phenomena, such as weather and climate patterns, marine ecosystems,
and the transport of contaminants. The atmospheric transport of particles (contam-
inants, dust, or other materials) is driven by atmospheric circulation patterns, and
can range from spanning a localized area to spanning entire continents. A few ex-
amples include (a) an intense dust-storm, located over the Gobi desert on April 19,
1998, crossed the Pacific ocean in 5 days and settled down along the mountain ranges
between the province of British Columbia in Canada and the state of California in
the United States of America (USA) [1, 2], (b) during the 1970s and 1980s, lead iso-
topes which originated from Europe were transported southwards to Africa, and then
westward via the trade winds to the island of Barbados in the Lesser Antilles [2], and
(c) hurricane Ivan caused the transportation of soybean rust from South America to
the Gulf coast of the USA [3].

Similarly, ocean circulation drives ocean transport with two significant examples
being the Gulf stream transport and the Antarctic Circumpolar Current (ACC). Ma-
terial transport across the Gulf stream is crucial for the North Atlantic climate as
it drives mixing processes that influence sea surface temperature and chlorophyll [4].
Likewise, the ACC is the driving force for air–sea exchanges of heat, fresh water and
atmospheric trace gases, and has a significant impact on global climate [5]. As such,
the study of material transport in atmospheric and oceanic flows is of significant
research interest. In particular, we would like to enhance our understanding of trans-
port with one goal being accurate forecasting and prediction of various real-world
situations, including how oil spills spread in the ocean, how di↵erent contaminants
or rubbish is transported in the ocean [6], and how airborne microorganisms can be
advected by atmospheric flows [3].

The accurate prediction of material transport requires an understanding of the
underlying coherent structures within the flow. Coherent structures for geophysical
fluid dynamics (GFD) flows provide a lower-dimensional description of the flow and
enable the estimation of the fluid dynamics. Specifically, Lagrangian coherent struc-
tures (LCS) are important since they can be used to quantify material transport [7].
Because LCS provide a skeleton of the fluid flow, the study of coherent structures has
proven to be important for many applications in a wide variety of fields, including
atmospheric science [8], engineering [9], pollution reduction [9], population dynam-
ics [10], oceanography [11], vehicle loitering [12], path planning [13, 14], and wave
propagation [15]. Figure 1 shows four images which depict coherent structures that
can be found in nature.

LCS are material lines that organize fluid-flow transport and may be viewed as the
extensions of stable and unstable manifolds to general time-dependent systems [6,20].
LCS describe the most repelling, attracting, and shearing material surfaces of a flow
field which leads to a simpler understanding of flow geometry, an accurate under-
standing of material transport, and the potential to predict large-scale flow patterns
and mixing events [21]. In two-dimensional (2D) flows, LCS are one-dimensional (1D)
separating boundaries analogous to ridges defined by local maximum instability, and
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Figure 1: Four instances of coherent structures seen in nature. Starting from the top
left and moving clock-wise: (a) temperature of the sea’s surface in the Gulf Stream
on April 18, 2005. The yellow colors signify warm waters, which appear to move in
a snakelike pattern from the bottom left of the image to the top right of the image,
forming a closed eddy at the northernmost end. The blue colors indicate colder waters
dipping into the warmer waters of the Gulf Stream [16]; (b) coherent structures seen
as the surface ocean current blows from the South Atlantic to the North Atlantic via
the Gulf stream [17]; (c) a phytoplankton bloom o↵ the coast of New Zealand’s South
Island as captured by NASA’s Aqua satellite on November 13, 2017 [18]; and (d)
lightly, moderately, and heavily oiled regions for the Gulf-facing beachfront of several
barrier islands in eastern Mississippi on June 27, 2010, as captured by NASA’s Earth
Observing-1 satellite [19].

can be quantified by local measures of finite-time Lyapunov Exponents (FTLE) [7,21].
Numerous studies have been performed over the past few decades to find LCS and

to understand the role they play in a variety of atmospheric and oceanic flows. There
has also been a number of studies in which unmanned aerial vehicles (UAVs) [3],
autonomous underwater vehicles (AUVs) and autonomous surface vehicles (ASVs)
have been used to track LCS [6, 20], and to use knowledge of LCS for a wide array
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of sensing tasks [7, 12, 22, 23]. The use of unmanned sensors and vehicles in this way
enables improvements in our knowledge of ocean dynamics which then enables better
understanding of ocean ecosystems and ocean health. In particular, the knowledge
gleaned from the di↵erent sensing tasks will lead to improved understanding of how
natural and man-made materials (algae, oil, rubbish, etc.) are transported on the
surface and underwater, and will improve our understanding of weather and climate
prediction.

Importantly, the tracking and sensing strategies mentioned above were derived
using a highly abstracted kinematic model of the vehicle which neglects shape and
inertial e↵ects due to the finite size and mass of the vehicle or sensor. In fact, nearly
all existing techniques for extracting and analyzing coherent structures are limited to
theoretical point particles which are neutrally buoyant. Since LCS, computed via the
FTLE, describe the transport of infinitesimal, massless objects in a flow, finite-size
particles with mass do not follow these same trajectories. Instead, one must compute
inertial FTLE (iFTLE) to find the inertial LCS which describe the transport of inertial
particles. Therefore, in this thesis, we will investigate the interplay between inertial
e↵ects and transport in a variety of flows. We will use the Maxey-Riley (MR) equation
to generate velocity fields for inertial particles, and show how the FTLE and iFTLE
di↵er for each flow as a function of particle density ratio and Stokes number. We
will also perform studies of how particles aggregate relative to the LCS for di↵erent
parameter values. Lastly, we undertake a study of the e↵ect of several assumptions
often made when working with the MR equation.

2 Lagrangian Coherent Structures (LCS)

As mentioned in the Introduction, LCS are material lines that organize fluid-flow
transport and may be viewed as the extensions of stable and unstable manifolds
to general time-dependent systems [6, 20]. LCS can be studied by (a) identifying
uniformly hyperbolic trajectories on a fixed portion of time and then growing their
associated finite-time invariant manifolds, (b) constructing stable and unstable man-
ifolds of fluid flows, or (c) deriving a measure of hyperbolic stretching and defining
LCS as the most hyperbolic structures [24]. The third approach is the most com-
monly used approach to study LCS in the literature. A commonly used quantity
to measure hyperbolic stretching is the finite-time Lyapunov exponent (FTLE) [8],
which calculates the rate of separation between two nearby passive tracer particles
over a finite time period [15]. The ridges of the FTLE represent the material lines in
the flow field that are the most kinematically active [25]. Specifically, LCS explains
the attracting, repelling, and shearing behavior of material lines over time and is a
useful tool for describing complex flow dynamics [26].

To compute the finite-time Lyapunov exponent field, we consider an arbitrary
two-dimensional velocity field defined on a domain D and a defined time interval
I = [t0, t0 + T ]. Fixing the initial time, t0, and a desired finite time, T , a flow map
advects a particle starting at time t0 from its initial position x0 to its corresponding
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position at the final time t0 + T . The flow map, �t

t0
, is given as

�t

t0
: r0 7! r (r0, t0, t) = r0 +

Z
t

t0

u(r(⌧), ⌧)d⌧, (1)

where u(r, t) is the fluid velocity field and r(t) is the particle trajectory [12]. The
FTLE is then given as

� (x, t0 + T, T ) =
1

|T | ln
⇣p

�max(�), (2)

where

� (x, t0 + T, T ) =

 
d�t0+T

t0
(x(t))

dx(t)

!⇤ 
d�t0+T

t0
(x(t))

dx(t)

!

is the right Cauchy-Green deformation tensor, ⇤ denotes the adjoint, and �max(�) is
the associated maximum eigenvalue of � [12].

We compute FTLE values at every point in the domain to obtain the FTLE
field for the flow for a chosen finite time. Areas in which nearby particles separate
exponentially over time will have high FTLE values, while regions where nearby
particles stay close together will yield low FTLE values. Ridges of high FTLE values
will correspond to LCS.

3 Maxey-Riley Equations

As discussed in the Introduction, the dynamics of inertial particles is di↵erent to that
of passive tracer particles in a fluid flow as the motion of inertial particles can depict
behavior such as clustering and dispersion [27]. The study of preferential aggregation
of inertial particles in specific regions of a flow is of great significance due to its
practical implications [28]. Our objective in this work is to explore the preferential
aggregration of inertial particles and their corresponding iFTLE field in various flows
for varying Stokes number and density ratios.

To obtain the FTLE field for inertial particles (iFTLE), we use the Maxey-Riley
(MR) equation [29], given as

mpv̇ = mf

D

Dt
u(r(t), t)� 1

2
mf

d

dt
[v � u(r(t), t)� 1

10
a2r2u(r(t), t)]

�6⇡aµX(t) + (mp �mf ) g � 6⇡a2µ

Z
t

0

d⌧
dX(⌧)
d⌧p

⇡v(t� ⌧)
,

(3)

with

X(t) = v(t)� u(r(t), t)� 1

6
a2r2u.

Equation (3) is valid for two-dimensional (2D) or three-dimensional (3D) flows, where
r(t) denotes the position of a spherical particle at time t, v(t) = ṙ(t) is the corre-
sponding velocity of the particle, mp is the mass of the inertial particle, mf is the
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mass of the fluid displaced by the particle, u(r(t), t) is the velocity of the fluid at
the location r(t) and time t, µ is the viscosity of the underlying fluid, a is the radius
of the particle, and g is the acceleration due to gravity. In Eq. (3), the derivative
Du/Dt is the material derivative, and d/dt is the usual total derivative.

We non-dimensionalize the MR equation given by Eq. (3) using the velocity scale,
U , and the length scale, L, of the external flow. As demonstrated by Cartwright et
al. [30], we introduce the non-dimensional variables r̂, û, and t̂ in the following way:
r ! r̂L, u ! ûU , and t = L

U
t̂. Thus, ṙ = U ˙̂r and r̈ = U

2

L

¨̂r. The a2r2u term
is the Faxén correction term. The Faxén correction term is non-dimensionalized as
r2u ! U

L2 r̂û. The integral term on the right-hand side of Eq. (3) is the Basset-
Boussinesq history term. However, we choose to neglect it based on the assumption
that the time interval for a particle to revisit a region it has visited earlier is large in
comparison to the time scale of the problem [31]. Removing the Basset-Boussinesq
term from Eq. (3) leads to a simplified form of the Maxey-Riley equation, given as

mpv̇ = mf

D

Dt
u(r(t), t)� 1

2
mf

d

dt
[v � u(r(t), t)� 1

10
a2r2u(r(t), t)]

�6⇡aµ[v(t)� u(r(t), t)� 1

6
a2r2u] + (mp �mf ) g.

(4)

Writing Eq. (4) in terms of the non-dimensional scalings as stated previously, one
obtains

U2

L
mp

¨̂r = mf

U2

L

Dû

Dt̂
� 1

2
mf

U2

L
¨̂r +

1

2
mf

U2

L

dû

dt̂
+

1

20
mfa

2U
2

L3

d(r̂2û)

dt̂

�6⇡aµ[U ˙̂r � ûU � 1

6
a2

U

L2
r̂2û] + (mp �mf ) g.

(5)

Collecting the ¨̂r terms on the left-hand side of Eq. (5), one has

U2

L
mp

¨̂r +
1

2
mf

U2

L
¨̂r = mf

U2

L

Dû

Dt̂
+

1

2
mf

U2

L

dû

dt̂
+

1

20
mfa

2U
2

L3

d(r̂2û)

dt̂

�6⇡aµ[U ˙̂r � ûU � 1

6
a2

U

L2
r̂2û] + (mp �mf ) g,

(6)

which can be rewritten as

(
U2

L
(mp +

1

2
mf ))¨̂r = mf

U2

L

Dû

Dt̂
+

1

2
mf

U2

L

dû

dt̂
+

1

20
mfa

2U
2

L3

d(r̂2û)

dt̂

�6⇡aµ[U ˙̂r � ûU � 1

6
a2

U

L2
r̂2û] + (mp �mf ) g.

(7)
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The material derivative, given by

Du

Dt
=
@u

@t
+ (u ·r)u =

@u

@t
+ ux

@u

@x
+ uy

@u

@y
, (8)

is the hydrodynamical derivative taken along the path of a fluid element, where as
the total derivative

du

dt
=
@u

@t
+ (v ·r)u =

@u

@t
+
@u

@x

@x

@t
+
@u

@y

@y

@t
, (9)

is taken along the particle’s trajectory [30].

We reorder the terms in Eq. (7) in the form of particle acceleration term = ac-
celeration of the fluid element term + Stokes drag term + buoyancy e↵ect term +
terms involving the Faxén correction so that

(
U2

L
(mp +

1

2
mf ))¨̂r = mf

U2

L

Dû

Dt̂
+

1

2
mf

U2

L

dû

dt̂
� 6⇡aµU [ ˙̂r � û] + (mp �mf ) g

+
1

20
mfa

2U
2

L3

d(r̂2û)

dt̂
+ ⇡aµa2

U

L2
r̂2û,

(10)

which can be rewritten as

¨̂r =
mf

U
2

L

(U
2

L
(mp +

1
2mf ))

Dû

Dt̂
+

mf
U

2

L

(U
2

L
(mp +

1
2mf ))

1

2

dû

dt̂
+

6⇡aµU

(U
2

L
(mp +

1
2mf ))

[û� ˙̂r]

+
(mp �mf )

(U
2

L
(mp +

1
2mf ))

g +
1
20mfa2

U
2

L3
d(r̂2

û)
dt̂

(U
2

L
(mp +

1
2mf ))

+
⇡aµa2 U

L2 r̂2û

(U
2

L
(mp +

1
2mf ))

.

(11)

Further algebraic simplification of Eq. (11) leads to

¨̂r =
mf

(mp +
1
2mf )

Dû

Dt̂
+

mf

(mp +
1
2mf )

1

2

dû

dt̂
+

6⇡aµL

U(mp +
1
2mf ))

[û� ˙̂r]

+
(mp �mf )

(U
2

L
(mp +

1
2mf ))

g +
1

20

a2

L2

mf

mp +
1
2mf

d(r̂2û)

dt̂
+

1

6

a2

L2

6⇡aµL

U(mp +
1
2mf )

r̂2û.

(12)

The non-dimensional MR equation, including buoyancy and the Faxén correction, is
given as

r̈(t) = R
D

Dt
u(r(t), t) +

1

2
R

d

dt
u(r(t), t) +

1

St
[u(r(t), t)� ṙ(t)] +Wn

+
1

20
P 2R

d(r2u)

dt
+

1

6

P

St
r2u,

(13)
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where

St�1 =
6⇡aµL�

mp +
1
2mF

�
U
, R =

mf

mp +
1
2mf

, W =
mp �mf

6⇡aµUSt
g, and P =

a

L
.

(14)
In Eq. (14), St is the Stokes number, defined as the ratio of the characteristic time
of a particle to a characteristic time of the flow, R is the density ratio parameter, P
is the ratio of the radius of particle size to the characteristic length of the flow, and
n is the unit vector pointing in the direction of gravity [28]. If R = 2/3, the particles
have the same density as that of the carrier fluid, and we refer to those particles as
neutrally buoyant. If R > 2/3, then the particles are lighter than the carrier fluid,
and we refer to them as bubbles. Similarly, particles with R < 2/3 are denser than
the carrier fluid, and we refer to them as aerosols [28].

For the sake of simplicity, we ignore buoyancy e↵ects, and the non-dimensional
MR equation with Faxén correction has a final form given by

r̈(t) = R
D

Dt
u(r(t), t) +

1

2
R

d

dt
u(r(t), t) +

1

St
[u(r(t), t)� ṙ(t)]

+
1

20
P 2R

d(r2u)

dt
+

1

6

P

St
r2u.

(15)

If the Faxén correction term, used to justify nonuniform flow e↵ects encountered by
the inertial particle is ignored, Eq. (15) simplifies to

r̈(t) = R
D

Dt
u(r(t), t) +

1

2
R

d

dt
u(r(t), t) +

1

St
[u(r(t), t)� ṙ(t)]. (16)

It is often assumed that for su�ciently small particles, the total derivative d/dt
is equal to the material derivative D/Dt. In that case, Eq. (16) reduces further to

r̈(t) =
3

2
R

D

Dt
u(r(t), t) +

1

St
[u(r(t), t)� ṙ(t)], (17)

which is the form of the MR equation used by Sudharsan et al. [28]. In our work, we
will consider Eqs. (15)-(17) to understand how the iFTLE and particle aggregation
is a↵ected by the Faxén correction and the assumption that the material derivative
equals the total derivative. In sections 4, 5, and 6 we will consider three di↵erent
types of flow, and explore the preferential aggregation of inertial particles and their
iFTLE fields.

4 The Du�ng Oscillator

The Du�ng oscillator, or Du�ng equation, is a relatively simple second-order dif-
ferential equation used to describe the motion of a damped oscillator which has a
potential more complicated than that used for the simple harmonic oscillator. Un-
like the following examples, it does not describe a geophysical flow, but because its
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solutions can exhibit chaotic behavior, the Du�ng oscillator is a good example with
which to begin our analysis. The most general form of the Du�ng oscillator, can be
written as

..

x+ �
.

x+ (�x3 ± !2
0x) = � cos(!t+ �), (18)

where � is the damping term, the term on the right-hand side is the forcing term, and
the parameter � represents a ‘hard spring’ for � > 0 and a ‘soft spring’ for � < 0 [32].

For our work, setting � = 1,!0 = 1, and � = 0, and using the negative sign for
the ± option, Eq. (18) can be written as

ẍ+ �ẋ+
�
x3 � x

�
= � cos(!t). (19)

The second-order ordinary di↵erential equation (ODE) given by Eq. (19) can be
written as the system of first-order ODEs

ẋ = y,

ẏ = x� x3 � �y + � cos(!t).
(20)

If we consider the unforced case, then the system of equations given by Eq. (20)
reduces to

ẋ = y,

ẏ = x� x3 � �y.
(21)

In Eq. (21), ẋ represents the x-component and ẏ represents the y-component of the
velocity field for the Du�ng oscillator.

4.1 Preferential Aggregation of Non-Inertial Particles

To explore the preferential aggregation of non-inertial particles in a Du�ng oscillator
flow field, we construct a [�2⇥2]⇥ [�2⇥2] grid and initialize passive tracer particles
on the mesh grid with a step size of 0.0625. Using a 4th-order Runge-Kutta method
with a time integration step size of 0.01, the particle trajectory is then calculated by
advecting the particles according to the velocity field. Figure 2 shows the preferential
aggregation of the non-inertial particles at t = 2.5. We can observe the chaotic
behavior of the particles as they are attracted toward the strange attractor.

4.2 Preferential Aggregation of Inertial Particles

To understand how the finite size and mass a↵ects the dynamics of inertial particles in
a Du�ng oscillator flow model, we solve the MR equation, and explore the preferential
concentration of inertial particles for various Stokes numbers and density ratios. As
in the non-inertial case, 4096 inertial particles are initialized uniformly on a [�2⇥2]⇥
[�2 ⇥ 2] grid. Using a 4th-order Runge-Kutta method with a time integration step
size of 0.01,1 the inertial particle trajectories are computed by integrating the MR

1Although higher accuracy Runge-Kutta (RK) methods, including the Runge-Kutta-Fehlberg
method (RKF45) or 4th-order RK method (RK4) with adaptive step sizes and error control, can be
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Figure 2: Preferential aggregation of non-inertial particles at time t = 2.5. A uniform
grid of 64⇥ 64 non-inertial particles was seeded at time t = 0 throughout the domain
of the Du�ng oscillator with � = 0.5.

equation given by Eq. (17). Figure 3 shows the results for three di↵erent values of
Stokes number (St = 0.1, 0.2, 0.5), and two di↵erent types of inertial particle, namely
aerosols (R = 0) and bubbles (R = 1). One can see in the figure, paying attention to
the scale of the axes, that aerosol particles spread throughout much of the domain,
while bubbles coalesce in the center of the domain. It can also be noticed that with
the increase in Stokes number, particles aggregate more rapidly towards their flow
structures. Also, one can see that although aerosols are spread out across the domain,
they have a denser core in the middle, while the opposite is true for bubbles. These
density e↵ects become more prominent as the Stokes number is increased.

used for more precise numerical solutions, we are forced to use a standard RK4 method with constant
step-size due to the nature of the problem. Velocity field data is prescribed for a specified grid of
constant step-size. Because the FTLE and iFTLE codes advect non-inertial and inertial particles
respectively according to the grid used for the fluid velocity field, a constant step size must be used.
Through the advection process, bi-linear interpolation is employed to obtain the fluid velocity data
for non-grid points.
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St = 0.1 St = 0.2 St = 0.5

R = 0

R = 1

Figure 3: Preferential aggregation of inertial particles at time t = 2.5. A uniform grid
of 64⇥ 64 non-inertial particles were initialized at time t = 0 throughout the domain
of the Du�ng oscillator with � = 0.5. (Top) aerosols (R = 0) spread throughout
much of the domain, while (bottom) bubbles (R = 1) coalesce near the center of
the domain of the Du�ng oscillator for Stokes numbers of (left) St = 0.1, (middle)
St = 0.2, and (right) St = 0.5. The definitions of Stokes number and density ratio
can be found in Eq. (14).

4.3 FTLE and iFTLE Fields

We have also computed the FTLE and iFTLE fields to find the coherent structures of
the Du�ng oscillator for non-inertial and inertial particles. For both the FTLE and
iFTLE computations, we construct a uniform mesh grid with step size of 0.03125 on
the spatial domain of [�2⇥ 2]⇥ [�2⇥ 2] and initialize the particles on the mesh grid.
Using a 4th-order Runge-Kutta method with a time integration step size of 0.01, we
calculate the non-inertial particle trajectories by advecting the particles according to
the velocity field given by Eq. ((21)), while the inertial particle trajectories are com-
puted for varying Stokes numbers and density ratios by integrating the MR equation
given by Eq. (17). Then, the FTLE and iFTLE fields are calculated using Eq. (2)
and the method described in section 2.

The non-inertial FTLE field, as shown in Fig. 4, highlights the strong arc-shaped
coherent structure. For St = 0.1, the iFTLE field for bubbles (R = 1) is similar
to the non-inertial case with a strong arc-shaped coherent structure. However, for
aerosols (R = 0), the coherent structures become more spread out, showing the high
separation of inertial particles throughout the center of the domain.
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Non-inertial St = 0.1, R = 0 St = 0.1, R = 1

Figure 4: Forward-time FTLE and iFTLE fields in a Du�ng Oscillator with � = 0.1
at t =2.5 for (left) non-inertial particles, and for inertial particles with St = 0.1 and
(middle) R = 0 and (right) R = 1.

5 The Bickley Jet

We now switch to the first of three types of geophysical fluid flows, a zonal flow. A
zonal flow is a natural large-scale flow that follows latitudinal lines and occurs in both
the ocean and the atmosphere [33]. Some examples of zonal flows are the Gulf stream,
the polar night jet above Antarctica [33], and the East-West winds of Jupiter, Saturn,
and Neptune [34]. We will consider the Bickley jet, which is an idealized model used
to study the eastward zonal jet that is flanked by counter-rotating vortices. The
Bickley jet is modeled by a time-dependent Hamiltonian, which is comprised of a
steady background flow superimposed with a time-dependent perturbation [8, 35].

The stream function is therefore modeled as

 (x, y, t) =  0(y) +  1(x, y, t), (22)

with
 0(y) = �UL tanh

⇣ y
L

⌘
, (23)

and

 1(x, y, t) = UL sech2
⇣ y
L

⌘
Re

"
3X

n=1

fn(t) exp (iknx)

#
, (24)

where fn(t) = ✏n exp(�ikncnt). The steady background flow is given by  0(y),
and  1(x, y, t) is the time-dependent perturbation. It is often convenient to expand
 1(x, y, t) as

 1(x, y, t) = UL sech2
⇣ y
L

⌘
(✏1 cos(k1(x�c1t))+✏2 cos(k2(x�c2t))+✏3 cos(k2(x�c2t))).

(25)
The velocity field for the Bickley jet model is computed as

.

x = �@ 

dy
and

.

y = @ 

dx
.

In Eqs. (22) - (24), U and L are the characteristic velocity scale and the characteristic
length scale, respectively, and kn, cn, and ✏n represent the wave number, speed, and
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Figure 5: Preferential aggregation of non-inertial particles at (top) t=7, and (bottom)
t=10 in a Bickley jet flow model.

amplitude, respectively, of the traveling Rossby waves. In our analysis, we use the
parameter values of [8, 36, 37], which are set as U = 5.413824 Mm·day�1, L = 1.77
Mm, kn = 2/r0 where r0 = 6.371 Mm is the mean radius of the earth, ✏1 = 0.075,
✏2 = 0.4, ✏3 = 0.3, c3 = 0.461U , c2 = 0.205U , and c1 = c3 + (

p
5� 1)(k2/k1)(c2 � c3).

The parameters values are chosen to model how the stratospheric polar night jet
stops the movement of ozone depleted air in the Southern hemisphere’s late winter
and early spring [37].

5.1 Preferential Aggregation of Particles

Just as was done for the Du�ng oscillator, we explore the aggregation of non-inertial
and inertial particles in a Bickley jet. For both scenarios, we consider 9000 particles
initialized uniformly on a [0 ⇥ 20] ⇥ [�3 ⇥ 3] grid. Using a 4th-order Runge-Kutta
method with a time integration step size of 0.01, the non-inertial particle trajectories
are computed by advecting the particles according to the velocity field, while the
inertial particle trajectories are computed by integrating the MR equation given by
Eq. (17). Figure 5 shows the preferential aggregation of the non-inertial particles at
t = 7 and t = 10. The aggregation of non-inertial particles follows the strong jet core
and the counter-rotating vortices.

Figure 6 shows the preferential aggregation of aerosols (R = 0) and bubbles (R =
1) for St = 0.1 at t = 10. For aerosols, most particles aggregate in the strong jet
core, and the vortices become enlarged, covering more of the spatial domain. In
contrast, for bubbles, we do not see a strong aggregation of particles in the jet core.
Rather, there is more of a blending of the vortices with the core, forming a spiral like
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Figure 6: Preferential aggregation of inertial particles in a Bickley jet flow model
at time t=10 with St = 0.1 and (top) R=0, and (bottom) R=1. The definitions of
Stokes number and density ratio can be found in

Eq. (14).

structure. For both aerosols and bubbles, no appreciable di↵erence can be found by
varying the Stokes number.

5.2 Non-Inertial FTLE Field

As with the Du�ng oscillator, we calculate the FTLE field to find the coherent struc-
tures associated with the Bickley jet flow field. We initialize 9000 passive tracer
particles uniformly on a [0⇥20]⇥ [�3⇥3] grid. The velocity fields [

.

x,
.

y] are obtained
by computing derivatives of the stream function using central finite di↵erences. Us-
ing a 4th-order Runge-Kutta method with a time integration step size of 0.01, we
calculate the non-inertial particle trajectories by advecting the particles according to
the velocity field. Since the particles inside the strong eastward zonal jet are quickly
advected out of the domain, we implement periodic boundary conditions in the x
direction. Thus, particles which leave the domain on the right-hand side of the jet,
re-enter the jet on the left-hand side. Then, the FTLE fields are calculated using Eq.
(2) and the method described in section 2.

Figure 7 shows the forward-time FTLE field for the Bickley jet at t=7 and t=10.
The coherent structures seen in the figure highlight the strong eastward zonal jet, as
discussed previously. Fluid particles inside the jet are swept away by the jet, while
particles outside the jet can become trapped inside the vortices. Thus, the LCS,
highlighted by yellow ridges of maximal FTLE, demarcates the separation between
the jet core and the vortices. The jet core, therefore, acts as a particle transport
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Figure 7: Forward-time FTLE field for non-inertial particles in a Bickley jet flow at
(left) t = 7, and (right) t = 10.

barrier [8]. Fluid particles within the jet core stay together in the core, which leads
to lower FTLE values within the core. As time increases, the FTLE ridges become
stronger, as highlighted by the brighter yellow FTLE ridges on the right-most figure
of Fig. 7.

5.3 Inertial iFTLE Field

To study the dynamics of inertial particles in a Bickley jet, we explore the iFTLE
field computed for varying Stokes numbers and density ratios. We use the same com-
bination of Stokes numbers and density ratios that was used in the Du�ng oscillator
flow model. As in the non-inertial case, 9000 inertial particles are initialized uni-
formly on a [0⇥ 20]⇥ [�3⇥ 3] grid. Using a 4th-order Runge-Kutta method with a
time integration step size of 0.01, the inertial particle trajectories are computed by
integrating the MR equation given by Eq. (17).

Figure 8 shows the inertial iFTLE fields for the three Stokes numbers and for
aerosols (R = 0) and bubbles (R = 1). In the case of aerosols, we see a band of
maximal iFTLE ridges around the jet core as was seen in the FTLE field for non-
inertial particles. However, the iFTLE ridges appear to be much denser in Fig. 8. As
the Stokes number increases, both the maximal and minimal iFTLE values decrease
slightly as seen from the color bar. There is not a significant di↵erence in LCS
structure for Stokes numbers lying between St = 0.2 and St = 0.5.

For bubbles, we see a band of maximal iFTLE ridges around the jet core, but the
jet core is strongly preserved, and thus acts as a particle transport barrier as seen
in Fig. 8. As the Stokes number increases, both the maximal and minimal iFTLE
values increase slightly as seen from the color bar.
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St = 0.1 St = 0.2 St = 0.5

R = 0

R = 1

Figure 8: Forward-time iFTLE for inertial particles in a Bickley jet computed at
t = 10 for (top) aerosols (R = 0), and (bottom) bubbles (R = 1) for Stokes numbers
of (left) St = 0.1, (middle) St = 0.2, and (right) St = 0.5.

6 Double-Gyre Fluid Flow

We continue our analysis with the second geophysical flow, the double-gyre. The
double-gyre flow is a simple and very well-studied fluid model consisting of two
counter-rotating vortices, where the separatrix between vortices oscillates periodi-
cally to emulate wind forcing. The double-gyre flow is characterized by the stream
function [12]

 (x, y, t) = A sin(⇡f(x, t)) sin(⇡y), (26)

where
f(x, t) = a(t)x2 + b(t)x,

a(t) = ✏ sin(!t),

b(t) = 1� 2✏ sin(!t).

(27)

Taking derivatives of the streamfunction, the velocity field for the double-gyre model
is found to be

ẋ = �@ 
@y

= �⇡A sin(⇡f(x, t)) cos(⇡y),

ẏ =
@ 

@x
= ⇡A cos(⇡f(x, t)) sin(⇡y)

df

dx
,

(28)

where !

2⇡ is the frequency of the separatrix oscillation, A is the approximate amplitude
of the velocity vectors, and ✏ determines the amplitude of the left-right motion of the
separatrix between the two gyres. When ✏ = 0, the flow becomes time-independent,
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and if ✏ 6= 0, the gyres undergo a periodic expansion and contraction in the x direction
[12]. In this work, we mostly focus on the time-dependent flow as it is more interesting
and also more relevant to the more realistic quasi-geostrophic flow considered in the
following section.

The double-gyre flow is usually studied on the rectangular spatial domain of ⌦ :
[0 ⇥ 2] ⇥ [0 ⇥ 1]. For the time-independent case, one finds a steady flow with two
counter-rotating gyres. One of the time-independent gyres is located on part of the
domain at ⌦1 : [0 ⇥ 1] ⇥ [0 ⇥ 1], while the second time-independent gyre is located
on the part of the domain at ⌦2 : [1 ⇥ 2] ⇥ [0 ⇥ 1]. In the time-dependent case, the
two gyres are separated by a heteroclinic manifold which connects the equilibrium
points at (1, 0) and (1, 1). Thus, the separatrix acts as a barrier to particle transport.
Figure 9 shows snapshots of the time-dependent velocity field at three di↵erent time
instances which highlight the periodic left-right motion of the separatrix. In the time-
independent case, the velocity field is steady and always has the form shown in Fig.
9 (a).

6.1 FTLE for Non-Inertial Particles

To calculate the FTLE field for non-inertial particles in a double-gyre flow, we ini-
tialize 500 ⇥ 250 passive tracer particles uniformly throughout the spatial domain.
Using a 4th-order Runge-Kutta method with a time integration step size of 0.01, we
calculate the non-inertial particle trajectories by advecting the particles according to
the velocity field given in Eq. (28). Then, the FTLE fields are calculated using Eq.
(2) and the method described in Sec. 2.

Figure 10 shows the FTLE field for the time-independent and time-dependent
cases for finite times of t = 7.5, t = 15, and t = 22.5. For the time-independent case,
one can see a ridge associated with maximal FTLE values which forms a transport
barrier between the two gyres. This is the separatrix discussed previously. Infinites-
imally close passive tracer particles located on opposite sides of the separatrix are
advected exponentially far away from each other as time evolves. This FTLE ridge
acts as a repelling coherent structure in forward time and as an attracting coherent
structure in backward time. Looking at the FTLE fields at di↵erent times in the top
row of Fig. 10, one sees that the FTLE field remains constant in time. This clearly
makes sense since in the time-independent case, the flow is steady, and the velocity
field is not changing in time.

However, for the time-dependent case, the flow is changing in time, and thus we
see an FTLE field which evolves in time as seen in the bottom row of Fig. 10. One
can also see the deformation of the ridge associated with the maximal FTLE values.
Di↵erent from the time-independent case, the LCS denoted by the ridge of maximal
FTLE values, is much more complicated, and cannot be seen by observing the velocity
field. Note also that the density of high FTLE ridges increases with an increase in
the finite time of integration.
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a

b

c

Figure 9: Velocity field of the time-dependent double-gyre flow that demonstrates the
periodic expansion and contraction of the gyres. The velocity fields are shown (top)
at t = 0, with the separatrix located in the middle at x = 1, (middle) at t = 2, with
the separatrix located in the left half of the domain, and (bottom) at t = 7, with the
separatrix located in the right half of the domain

.
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Figure 10: Forward-time FTLE field for (top panel) the time-independent case at
(left) t = 7.5, (middle) t = 15, and (right) t = 22.5, and (bottom panel) the time-
dependent case at (left) t = 7.5, (middle) t = 15, and (right) t = 22.5. The parameter
values used in the computation are A = 0.1, ! = 6⇡/10, and ✏ = 0.25.

6.2 Dynamics of Inertial Particles

To understand the dynamics of inertial particles in a double-gyre flow model, we
explore the preferential concentration of inertial particles and the inertial FTLE fields
for various Stokes numbers and density ratios using Eq. (17). As described in Sec. 3,
if R = 2/3, the particles are neutrally buoyant, and have the same density as that of
the carrier fluid. If R > 2/3, then the particles are lighter than the carrier fluid, and
we refer to them as bubbles. Lastly, particles with R < 2/3 are denser than the carrier
fluid, and we refer to them as aerosols. Figure 11 shows the particle aggregation of
aerosols and bubbles at time t = 15 after advecting the inertial particles using the MR
equation given by Eq. (17) for varying Stokes number. We see that aerosols (R = 0)
aggregate toward the maximal FTLE ridges while bubbles (R = 1) are repelled from
the maximal FTLE ridges. Instead, bubbles form clusters in the center of the gyres.
It can also be noticed that with the increase in Stokes number, particles aggregate
more rapidly towards the FTLE ridge or gyre center, depending on whether they are
bubbles or aerosols.

Qualitatively, there is excellent agreement between Fig. 11 and the results shown
by Sudharsan et al. for these choices of St and R [28]. In Eq. (17), which is the
form of the MR equation used by Sudharsan et al., it is assumed that for su�ciently
small particle size, the total derivative and the material derivative are the same.
However, in general, it is not necessarily the case that the material derivative and
total derivative are identical. Therefore, we also examine the preferential aggregation
for inertial particles using Eq. (16) which does not assume the two derivatives are
equal.

For aerosols (R = 0) the particle trajectory doesn’t depend on the fluid accelera-
tion as the first term on the right hand side of Eq. (17) goes to 0. Thus, no e↵ect of
the di↵erence between the total derivative and the material derivative is seen. Fig-
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St = 0.1 St = 0.2 St = 0.5

R = 0

R = 1

Figure 11: Preferential aggregation for inertial particles at t = 15 for (top panel)
aerosols, and for (bottom panel) bubbles, for a Stokes number of (left) St = 0.1,
(middle) St = 0.2, and (right) St = 0.5. A uniform grid of 500⇥250 inertial particles
were initialized at time t = 0 throughout the domain of the double-gyre flow. The
parameter values used in the computation are A = 0.1, ! = 6⇡/10, and ✏ = 0.25.

St = 0.1 St = 0.2 St = 0.5

R = 1

Figure 12: Preferential aggregation for inertial particles with R = 1 (bubbles) at
t = 15 for the scenario where the total derivative is not assumed to be equal to the
material derivative. The computations are performed for Stokes numbers of (left)
St = 0.1, (middle) St = 0.2, and (right) St = 0.5. The parameter values used in the
computation are

A = 0.1, ! = 6⇡/10, and ✏ = 0.25.

ure 12 shows the particle aggregation of bubbles (R = 1) at t = 15 when the total
derivative and the material derivative are not assumed to be identical. Comparing
the bottom panel of Fig. 11 with Fig. 12, we notice that even though the preferen-
tial aggregation is similar in that the particles are accruing in the gyre centers, the
aggregation is occurring more slowly.
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Figure 13: Forward-time FTLE field at time t = 15 for (top panel) aerosols, and for
(bottom panel) bubbles, for a Stokes number of (left) St = 0.1, (middle) St = 0.2,
and (right) St = 0.5. The parameter values used in the computation are A = 0.1,
! = 6⇡/10, and ✏ = 0.25.

We have also examined the inertial iFTLE fields for aerosols and bubbles in a
double-gyre flow for varied Stokes numbers and density ratios. The forward-time
iFTLE fields at t = 15 are shown in Fig. 13. For aerosols (R = 0), the iFTLE field
looks similar to non-inertial particles up to St = 0.2. For St = 0.5, we see that there
is a significant di↵erence in the iFTLE field and the particles all end up clustering
along an LCS which runs between the two gyres. For bubbles (R = 1), we see low
FTLE values in the center of the gyres. This is consistent with particle aggregation
inside each of the gyres as seen in Fig. 11.

As previously discussed in Sec. 3, the Faxén correction terms are typically ignored
for small particle sizes. To study the e↵ect of particle size in a double-gyre flow, we
examine the iFTLE fields for aerosols and bubbles by including the Faxén correction
terms in our computation. Initializing 500 ⇥ 250 inertial particles uniformly on our
domain, and using a 4th-order Runge-Kutta method with a time integration step size
of 0.1, the inertial particle trajectories are computed by integrating the MR equation
given by Eq. (13) with nondimensional particle size parameter P = 10�9. We use
the same combinations of Stokes number and density ratio as used in the iFTLE
computation when the Faxén corrections terms were not included, and the reuslts are
shown in Fig. 14. For aerosols (R = 0), the iFTLE field looks similar as without
Faxén correction with only di↵erence between the iFTLE field for St = 0.5. With
the inclusion of the Faxén correction, particles aggregate more slowly towards the
LCS, and thus no significant di↵erence can be seen in the iFTLE field at time t = 15.
For bubbles (R = 1), the iFTLE field looks similar as without the Faxén correction
with the exception that stronger FTLE ridges are seen around the boundary of the
gyres. There is no significant di↵erence in the coherent structures with the increase
in Stokes number. Note that the results do not appreciably change for a wide range
of P values from P = 10�15 � 10�6.
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Figure 14: Forward-time iFTLE field computed with the MR equation including
Faxén correction terms at time t = 15 for (top panel) aerosols, and for (bottom
panel) bubbles, for a Stokes number of (left) St = 0.1, (middle) St = 0.2, and (right)
St = 0.5, and P = 1e�9. The parameter values used in the computation are A = 0.1,
! = 6⇡/10, and ✏ = 0.25.

7 Quasi-Geostrophic Flow Model

The study of the overall circulation patterns of oceans and the collection of oceano-
graphic data has been a topic of research for many years. One model, which is closely
related to the double-gyre model, is a reduced ocean model known as the barotropic
quasi-geostrophic (QG) model. Unlike the double-gyre model, the QG model is a
partial di↵erential equation (PDE) derived from first principles. The QG model has
been used to describe the nature and variability of the Western boundary currents
seen in the ocean [38], and continues to be a powerful model in studying emergent
applications in ocean and climate research [11].

Although the derivation can be found in detail in Ref. [38], for completeness we
provide a brief overview. The derivation begins by considering Sverdrup theory to
obtain the relationship for geostrophic balance. We consider the momentum equation
written in a rotating reference frame with the earth at an angular velocity ⌦, given
as

D~u

Dt
+ 2~⌦⇥ ~u = �rp

⇢
+ ~g +

=
⇢
, (29)

where ~u is the velocity seen in the rotating frame, p is the pressure, ⇢ is the density,
~g is the acceleration due to gravity, and = is an implicit representation of turbulent
momentum mixing e↵ects of smaller scale motions.

A homogeneous layer of fluid of constant thickness, D, lies beneath a mixed layer
in which the wind-driven turbulent stresses drive an Ekman transport. Under the
layer, and in contact with the bottom, lies another viscous boundary layer in which
viscous stresses produced by the motion couple the fluid to the solid bottom. If we
assume that the flow is in geostrophic balance everywhere, the North-South scale of
the motion is large enough to make the Rossby number small and, at the same time,
small enough that the � plane approximation is valid. Then, the stream function can
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be written as
 =

p

⇢f0
, (30)

where the fluid pressure is p, its density is ⇢, and f0 is the Coriolis parameter at the
central latitude of the gyre. Similarly, the velocities can be found by di↵erentiating
the streamfunction so that

u = �@ 
@y

, v =
@ 

@x
. (31)

The � plane approximation is the first-order approximation of the Coriolis force
given as

f = f0 + �y. (32)

The relative vorticity is defined as

⇣ =
@v

@x
� @u

@y
, (33)

and it satisfies the momentum equation given as

d(⇣ + �y)

dt
= (f0 + �y + ⇣)

@w

@z
+ AHr2⇣. (34)

The vorticity production caused by the stretching of the total vortex filaments by
the vertical velocity is given by (f0 + �y + ⇣) @w

@z
, while AHr2⇣is the lateral di↵usion

of vorticity. Using a � plane approximation and geostrophic approximation, we obtain

f0 + �y + ⇣ ⇡ f0. (35)

Integrating Eq. (34) over the layer thickness, D, gives

d⇣

dt
+ �v =

f0
D

(wE � wB) + AHr2⇣, (36)

where wB is the velocity pumped out of the lower boundary layer, and wE is the
Ekman velocity pumped out of (or into) the upper mixed layer. Ekman layer theory
is used to represent wB as

wB =
�E
2
⇣, (37)

where �E << D. Now the vorticity equation can be written in terms of the stream
function as

@

@t
r2 + J

�
 ,r2 

�
+ �

@ 

@x
=

f0
D
wE � rr2 + AHr4 , (38)

where ⇣ = r2 , and where J is the Jacobian operator given as

J(f, g) :
@f

@x

@g

@y
� @g

@x

@f

@y
, (39)

describing the advection of relative vorticity by the motion field.
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We assume the upper Ekman pumping velocity to have the form used in Ref [39],
so that

wE = � sin(2⇡y) + 2↵⇡ sin(!t). (40)

We also assume that the flow is contained in a basin of characteristic length scale L
and the Sverdrup balance is achieved for the interior. If U is a characteristic scale
for the horizontal velocity, and WE is a characteristic scale for the Ekman pumping,
then in order to balance those two terms, we must have

U = WE

f0
�D

. (41)

By non-dimensionalizing the stream function,  , and x and y, and scaling t by
1/�L, one obtains

@

@t
r2 + "J

�
 ,r2 

�
+
@ 

@x
= wE � µr2 + Er4 , (42)

where the non-dimensional parameters are

" =
U

�L2
=

✓
�I
L

◆2

,

µ =
r

�L
=

✓
�s
L

◆
,

E =
AH

�L3
=

✓
�M
L

◆3

.

(43)

The parameters ", µ, and E measure the relative importance of nonlinearity, bot-
tom friction, and lateral di↵usion, respectively. We can see that the non-dimensional
parameters are formulated with respect to the relative length scales of three impor-
tant boundary layers: Stommel (�S), Munk (�M), and Inertial (�I). A combination of
parameters is used to study di↵erent QG models, but we will study only the Stommel
model in this work. The Stommel model is a steady state flow to resemble the North
Atlantic basin by utilizing wind stress and the Coriolis force to create a boundary
layer similar to the Gulf Stream [11]. The Stommel form of our model can be written
as

@

@t
r2 + "J

�
 ,r2 

�
+
@ 

@x
= wE � µr2 , (44)

where wE provides the forcing of the model.

7.1 FTLE Field for Non-Inertial Particles

We study three di↵erent cases of the Stommel variant of the QG flow model with
respect to its forcing frequency, namely ! = 1, 3, 9. These frequencies represent low
periodic forcing (! = 1), moderate periodic forcing (! = 3), and high periodic forcing
(! = 9). The stream function of the QG model given by Eq. (44) involves a PDE,
unlike the flows examined in Secs. 4, 5, and 6. PDEs are known for their complexity,
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Figure 15: Velocity field of the Stommel variant of the QG model with low periodic
forcing (! = 1) at time t = 3.73. The velocity field shows two vertical gyres, namely
the north gyre and the south gyre. There is a stronger flow magnitude on the left
boundary of the domain as denoted by the color bar, which indicates the presence of
the western boundary current in the QG model.

and often do not have a closed-form analytical solution. The stream function of the
QG model also does not have an analytical solution with which to find velocity field
data. Therefore, the QG model was solved numerically to generate time-dependent
velocity data with time stepping of 0.01. Figure 15 show a velocity field snapshot at
time t = 3.73 of our QG model with ! = 1.

As with the other flows studied in Secs. 4, 5, and 6, we calculate the FTLE
field using the velocity field data generated by solving the QG model. We initialize
128⇥ 128 passive tracer particles uniformly on a [0⇥ 1]⇥ [0⇥ 1] grid. Using a 4th-
order Runge-Kutta method with a time integration step size of 0.01, we calculate the
non-inertial particle trajectories by advecting the particles according to the velocity
field data.

From our numerical computation, we have velocity field data at every grid point
for our desired time interval. As the particles are advected for each time step, they
will generally be positioned between the grid points. Therefore, we use a bi-linear
interpolation scheme to calculate the velocity field data for particles which reside
outside of grid points, which enables the continued advection of the particles for the
next integration time step. Then, the FTLE fields are calculated using Eq. (2) and
the method described in Sec. 2.

Figure 16 shows the FTLE field at low frequency (! = 1) computed at three
di↵erent time intervals. We see LCS demarcating the structure of the gyres and
almost no separation between the nearby particles inside the gyres. Similarly, Fig. 17
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Figure 16: Forward-time FTLE fields for the QG model with frequency ! = 1 after
advecting the fluid particles through the flow map �2.1

0.1 (left), �3.25
1.25 (middle), and

�4.5
2.5 (right) respectively. Low periodic sloshing preserves the gyre structure with high

band of LCS encircling the gyres, and low FTLE values inside the gyres.

shows the FTLE field at moderate frequency (! = 3) computed at three di↵erent time
instances. We see there are bands of LCS around the gyres, and more mixing between
the gyres compared to the low frequency case. Finally, Fig. 18 shows the FTLE field
at high frequency (! = 9) computed at di↵erent time periods. We observe thin FTLE
ridges within the gyres, in addition to the band of LCS encircling the gyres. This is
in contrast to the cases of low frequency and moderate frequency.

Unlike the other flows we have studied, we do not have the results for the dynamics
of inertial particles in the QG flow. The dynamics of inertial particles in the QG flow
is complex as the QG model is formulated in a rotating frame while the MR equation
is not. However, because of the way the QG model is derived it is not straightforward
to implement a Coriolis force in the MR equation. We are working on developing
a method that enables us to match the Coriolis force from the QG model to a new
Coriolis force term that we add to the MR equation. If one were to use the MR
equation without a Coriolis force with QG velocity data, all of the inertial particles
in the QG flow quickly aggregate on the boundaries, rather than aggregating along
LCS or within gyres as expected.

Figure 17: Forward-time FTLE fields for the QG model with frequency ! = 3 after
advecting the fluid particles through the flow map �2.1

0.1 (left), �
3.25
1.25 (middle), and �4.5

2.5

(right) respectively. Moderate periodic sloshing slightly distorts the gyre structure,
but bands of LCS remain around the gyres.
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Figure 18: Forward-time FTLE fields for the QG model with frequency ! = 9 after
advecting the fluid particles through the flow map �2.1

0.1 (left), �
3.25
1.25 (middle), and �4.5

2.5

(right) respectively. High periodic sloshing results in complicated LCS structure with
ribboning of the LCS inside the gyres. We still observe the band of LCS around the
gyres similar to the cases with low and moderate sloshing frequency.

8 Conclusions and Future Work

In this work, we wish to improve our understanding of material transport in various
atmospheric and oceanic flows, which in turn enable us to make more accurate predic-
tions for a variety of physical, biological and man-made phenomena. To do this, we
explored the Lagrangian Coherent Structure (LCS) in various flows, namely the Du↵-
ing oscillator, Bickley jet, double-gyre flow, and quasi-geostrophic (QG) flow model,
by computing their finite-time Lyapanov exponent (FTLE) field. Over the years in
the literature, much work has been performed with infinitesimal passive tracer parti-
cles to understand the behavior of di↵erent flows. However, particles in the real-world
have finite size and mass. These particles, also known as inertial particles, do not
follow the same trajectory as passive tracer particles in a flow. Since little work
has been performed to understand the relationship between inertial particles and the
FTLE field, we implented a comprehensive study. We used the Maxey-Riley equation
in various forms to describe the particle’s motion and compare the particles’ behavior
in various fluid flow models. We also explored the preferential aggregation of inertial
particles and demonstrate how particle clustering depends on the density ratio and
the Stokes number. The results were compared and contrasted with those of passive
tracers.

We began our exploration with the Du�ng oscillator whose solution can depict
chaotic dynamics. Preferential aggregation of non-inertial particles in the Du�ng
oscillator displayed chaotic behavior of the particles as they aggregated onto the
strange attractor. Similarly, we found that aerosols (R = 0) spread throughout much
of the domain, while bubbles coalesced near the center of the domain. The FTLE
field and iFTLE field for bubbles highlighted a strong arc-shaped coherent structure,
while the iFTLE field for aerosols became more spread out in the domain.

Similarly, for the Bickley jet, non-inertial particles were swept along the strong
jet core or moved throughout the counter-rotating vortices. In contrast, for inertial

31



particles, aerosols aggregated in the strong jet core and the vortices become enlarged
covering more of the spatial domain. For bubbles, there was more of a blending of
the vortices with the core, forming a spiral like structure. Non-inertial FTLE fields
in the Bickley jet highlighted the strong eastwards zonal jet and the jet core where
the jet core acted as a particle transport barrier. The iFTLE field for aerosols was
found to be similar to the FTLE field, but iFTLE ridges appear to be much denser.
Similarly, for bubbles we found the maximal iFTLE ridges around the jet core, but
the jet core was strongly preserved which acted as a particle transport barrier.

We then explored the dynamics of non-inertial and inertial particles in the well
studied double-gyre flow, which has a periodic left-right expansion and contraction
of the gyres for the time-dependent case. We explored the FTLE field for the time-
independent case, and showed how the maximal FTLE ridge denoting the LCS, which
remains stationary in time, acts as the particle transport barrier. However, the FTLE
field in the time-dependent case shows a deformation of the LCS. We also explored
the aggregation of aerosols and bubbles in the double-gyre flow model. We found
that aerosols aggregated toward the LCS while bubbles formed clusters in the center
of the gyres.

One of the most common assumptions made when using the MR equation is that
the total derivative and material derivative are identical. Since this is not true in
general, we explored the preferential aggregation in bubbles when those two deriva-
tives aren’t assumed to be identical. We found that particle aggregation was identical
although the fluid particles were slowly aggregating to their flow structure. Addition-
ally, we explored the iFTLE field for varying Stokes number and density ratios where
the forward time iFTLE ridges highlighted the repelling coherent structures. We also
explored the iFTLE field including the Faxén correction terms in the MR equation.
We found that the iFTLE field looks similar to the results without the Fax én correc-
tion, where the only di↵erence is that the particles aggregated more slowly towards
their flow structure. For bubbles, the iFTLE field looked similar as the case without
the Faxén correction, with the exception that stronger LCS were seen around the
boundary of the gyres.

Lastly, we explored the dynamics of non-inertial particles in a more realistic geo-
physical quasi-geostrophic flow. The QG flow model mimics the North Atlantic ocean
with a strong western boundary current representing the Gulf Stream. We studied
three di↵erent cases of the Stommel variant of the QG flow model with respect to its
forcing frequency, namely ! = 1, 3, 9. We found that a low periodic frequency (! = 1)
preserved the gyre structure with a band of LCS encircling the gyres. A moderate
periodic frequency (! = 3) slightly distorted the gyre structures and allowed more
mixing between the gyres. A high periodic frequency (! = 9) highlighted even more
mixing between the gyres and created more complicated looking coherent structures.

In the future, we plan to study the iFTLE field and aggregation dynamics for
inertial particles in a QG flow by incorporating a rotating frame of reference with
Coriolis force in the MR equation. Once completed, we will be able to perform
a comprehensive study of inertial particle dynamics with varying Stokes number,
density ratio, and particle size, as was performed here for the other types of flow.
Also, as mentioned previously, the Basset-Boussinesq term in the original form of the
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MR equation is often neglected. It is tricky to include this history term, but since
it may play an important role in the dynamics, it is well-worth incorporating into
our work. The we will be able to understand the role of this term in the dynamics
of inertial particles for all of the flows we have studied as well as additional flows of
interest.

Also of interest in the future is the exploration of machine learning (ML) method-
ologies. Fueled by large volumes of data, machine learning and data analytics have
revolutionized a wide range of scientific disciplines in the last few years [11, 40–43].
We would like to extend the range of applications to the identification of coherent
structures. Notably, reliable and e�cient recognition of coherent structures can in-
form a fleet of autonomous vehicles to sample the ocean environment most e↵ectively,
and thus can significantly advance ocean prediction.
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[10] I. Benczik, G. Károlyi, I. Scheuring, and T. Tél, “Coexistence of inertial competi-
tors in chaotic flows,” Chaos: An Interdisciplinary Journal of Nonlinear Science,
vol. 16, no. 4, p. 043110, 2006.

[11] K. Yao, E. Forgoston, and P. Yecko, “Learning ocean circulation models with
reservoir computing,” Physics of Fluids, vol. 34, no. 11, p. 116604, 2022.

34



[12] E. Forgoston, L. Billings, P. Yecko, and I. B. Schwartz, “Set-based corral con-
trol in stochastic dynamical systems: Making almost invariant sets more invari-
ant,” Chaos: An Interdisciplinary Journal of Nonlinear Science, vol. 21, no. 1,
p. 013116, 2011.

[13] D. Kularatne, E. Forgoston, and M. A. Hsieh, “Using control to shape stochas-
tic escape and switching dynamics,” Chaos: An Interdisciplinary Journal of
Nonlinear Science, vol. 29, no. 5, p. 053128, 2019.

[14] T. Salam, D. Kularatne, E. Forgoston, and M. A. Hsieh, “Adaptive sampling and
energy e�cient navigation in time-varying flows,” in Autonomous Underwater
Vehicles, pp. 493–537, Institution of Engineering and Technology, 2020.

[15] G. You, T. Wong, and S. Leung, “Eulerian methods for visualizing continu-
ous dynamical systems using Lyapunov exponents,” SIAM Journal on Scientific
Computing, vol. 39, no. 2, pp. A415–A437, 2017.

[16] Norman Kuring, MODIS Ocean Team, “The Gulf Stream.” https://
earthobservatory.nasa.gov/images/5432/the-gulf-stream, 2005. [Online;
accessed April-2023].

[17] Lori Perkins, NASA/Goddard Space Flight Center Scientific Visualization Stu-
dio, “Aquarius studies Ocean and Wind Flows.” https://svs.gsfc.nasa.gov/
3829, 2011. [Online; accessed April-2023].

[18] Je↵ Schmaltz, LANCE/EOSDIS Rapid Response, “Bloom o↵ of
New Zealand.” https://earthobservatory.nasa.gov/images/91274/
bloom-off-of-new-zealand, 2017. [Online; accessed April-2023].

[19] Jesse Allen and Robert Simmon, “Oil Slick Around Mississippi Bar-
rier Islands.” https://earthobservatory.nasa.gov/images/44466/
oil-slick-around-mississippi-barrier-islands/, 2010. [Online; ac-
cessed April-2023].

[20] M. A. Hsieh, E. Forgoston, T. W. Mather, and I. B. Schwartz, “Robotic manifold
tracking of coherent structures in flows,” in 2012 IEEE International Conference
on Robotics and Automation, pp. 4242–4247, IEEE, 2012.

[21] G. Haller, “Lagrangian coherent structures,” Annual review of fluid mechanics,
vol. 47, pp. 137–162, 2015.

[22] K. Mallory, M. A. Hsieh, E. Forgoston, and I. B. Schwartz, “Distributed alloca-
tion of mobile sensing swarms in gyre flows,” Nonlinear Processes in Geophysics,
vol. 20, no. 5, pp. 657–668, 2013.

[23] M. A. Hsieh, K. Mallory, E. Forgoston, and I. B. Schwartz, “Distributed allo-
cation of mobile sensing agents in geophysical flows,” in 2014 American Control
Conference, pp. 165–171, IEEE, 2014.

35



[24] F. Lekien, S. C. Shadden, and J. E. Marsden, “Lagrangian coherent structures
in n-dimensional systems,” Journal of Mathematical Physics, vol. 48, no. 6,
p. 065404, 2007.

[25] M. R. Allshouse and T. Peacock, “Refining finite-time Lyapunov exponent ridges
and the challenges of classifying them,” Chaos: An Interdisciplinary Journal of
Nonlinear Science, vol. 25, no. 8, p. 087410, 2015.

[26] A. Aucoin, “Inertial particle transport by Lagrangian coherent structures in geo-
physical flows,” 2018.

[27] G. Haller and T. Sapsis, “Where do inertial particles go in fluid flows?,” Physica
D: Nonlinear Phenomena, vol. 237, no. 5, pp. 573–583, 2008.

[28] M. Sudharsan, S. L. Brunton, and J. J. Riley, “Lagrangian coherent structures
and inertial particle dynamics,” Physical Review E, vol. 93, no. 3, p. 033108,
2016.

[29] M. R. Maxey and J. J. Riley, “Equation of motion for a small rigid sphere in a
nonuniform flow,” The Physics of Fluids, vol. 26, no. 4, pp. 883–889, 1983.
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