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Abstract

According to Piaget’s cognitive development theory and the constructivism learning theory of
education, real learning occurs when students establish long term connections between
disciplines by either adapting or redefining previously acquired knowledge. These ideologies
have important teaching and Ilearning implications that directly influence curriculum
development and the design of a course of study. This thesis explores the interconnectedness of
the subjects required for the successful completion of an undergraduate math program at
Montclair State University. More specifically, it models students’ unique connections through a
learning network and investigates the correlation between the interconnectivity of subjects and
students’ overall performance. Results from this project indicate that participants' GPA is
significantly better when the number of connections between courses is higher. As a result, an
integrated curriculum can provide students with more opportunities to make strong neural

connections between courses and consequently improve their overall performance.

Keywords: connectivity, learning networks, education, mathematics, performance measuring
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1. Introduction

Piaget’s psychology development theory states that our brain is in constant ‘cognitive conflict’ as
it struggles to make sense of new ideas and fits them into pre-existing knowledge structures [5].
Therefore, real learning occurs when students establish long term connections between
disciplines by either adapting or redefining the knowledge they already possess. It makes sense
then that curriculum development should be rooted in a constructivist approach that provides
students with multiple opportunities to forge these connections. In order to understand the
importance of mathematics in the real world, learners “need to be introduced to applications of
mathematics in meaningful contexts” [8]. Still, students are constantly questioning the
usefulness of mathematics and demanding a reason why it is part of college education. This
suggests that undergraduate curricula at the university level are not portraying a high level of
connectivity within subjects or providing students with opportunities to make meaningful
connections. In this paper, I will be investigating how students perceive the interconnectedness
of undergraduate math curricula using Piaget’s developmental framework and the constructivist
theory of education. I am interested in exploring students’ unique learning networks to better
understand how these connections play out in their overall understanding and appreciation of
their education. I hypothesize that connectivity within subjects improves students’ overall
performance in undergraduate math programs and that the highest connected courses consist of
prerequisite classes.

2. Literature Review
2.1 Psychological framework

To this day, Piaget’s cognitive development theory continues to strongly influence educational
practices and curriculum development. This theory of development has been essential in
understanding how our brain constructs knowledge when presented with new ideas and how it
makes meaning out of new information. Essentially, this approach is directly aligned to the
constructivism learning theory, which describes learning as the unique and active process of
linking ideas to pre-existing knowledge, to make meaning out of new situations [9]. Piaget
claimed that new ideas create a state of disequilibrium in our brain and that to stabilize this state,
learners can either accommodate the new information by adding to pre-existing mental
structures; or assimilate the information by reconstructing old mental schema [3]. Hence,
knowledge cannot be transferred from the instructor to the learner, instead; it is constructed by
the learner based on personal experiences, perceptions and previously established structures [1].
Piaget’s contributions gave rise to the decentralization of the teacher in classroom settings and to
the incorporation of students’ unique experiences, backgrounds and knowledge in the learning
process. Multiple methodologies of teaching and learning have emerged from this theoretical
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framework with a focus on discovery learning and unique meaning-making. Project-based,
problem-based, inquiry-based and experiential learning are all examples of student-centered
techniques that introduce the teacher as the facilitator and allow learners to link new ideas to
pre-existing brain structures. In mathematics, these models give students “the opportunity to
explore their thoughts and knowledge, to be able to find their own concepts and formulas under
the guidance of the teacher to make learning become meaningful” [11]. Since students are
discovering and deriving the formulas themselves, they are naturally accommodating and/or
assimilating new ideas into their brain; which makes the knowledge obtained through these
experiences easy to transfer to other situations [11].

2.2 The connected curriculum

It is this easy transfer of knowledge within different subjects that is key in mathematics learning
and should be taken into account in curriculum development. Since abstract mathematical
concepts have no foundation or meaning unless they are connected to previously established
knowledge structures, the enactment of curricula should account for how students construct
knowledge. A curriculum focused on constructivism theory has been shown to improve students’
knowledge and increase their critical thinking, reading and writing skills [19]. Holistic
approaches at the K-12 level such as the Montessori curriculum and the Integrated curriculum
are both examples of curricula that emphasize the interconnectedness of subjects and the
incorporation of students’ interest and personal experiences. The Montessori curriculum focuses
on providing students with choices and encouraging students to explore their natural curiosity. It
removes the teacher as the ‘absolute authority’ in the course material, and focuses on student-led
learning [15]. A key feature of a Montessori school is that students are constantly learning all
subjects at the same time as they discover disciplines and personal interests [15]. Hence,
students’ education becomes autonomous, interesting and relevant. Although not as self-directed,
the integrated curriculum is focused on providing students with ample opportunities to connect to
other disciplines at the same time they are developing 21st century skills. This research-based
model is innovative for its connection to real world skills, and has been shown to match or
surpass the academic success of students in traditional classrooms [6]. The interdisciplinary
approach of an integrated curriculum not only leads to ‘deep learning’ but can also lead to
“increased student engagement and motivation, less absenteeism, and better attitudes towards
school” [6]. It focuses on transferring theoretical knowledge to the application of problems that
are interdisciplinary and relevant for students’ future. Regardless of the method used to offer
students opportunities to make connections, both of these k-12 curriculum models highlight the
interconnectedness of subjects as the main focus of their design.

A lot of effort and research has been placed on changing and improving k-12 curriculum
resources but not as many proposals have been suggested for undergraduate math education. Due
to the increased cognitive demand of courses at the college level, curricular changes have been
less progressive and not many attempts have been made to improve college education. One
interesting attempt however, introduced by Dilly Fung in her book A4 Connected Curriculum for
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Higher Education aligns with the theoretical framework described in this paper [7]. Here, Fung
presents a curriculum that is not only interdisciplinary, but also emphasizes the connections
between students and researchers from all over the world and their collaboration on research
topics of social relevance [7]. She believes that “if diverse students are empowered to collaborate
actively in research and enquiry at every level of the curriculum, engaging others with their ideas
and findings, both education and research will be able to contribute more effectively to the global
common good” [7]. The third domain of her proposal concentrates on making connections within
subjects and across other disciplines [7]. This domain resulted from the realization that many
students narrow down their studies as soon as they begin a higher education program and are not
provided with opportunities to connect to other subjects [7]. To improve the connectivity of
undergraduate programs, Fung suggests the development of majors that are innovative and
interdisciplinary, such as a Bachelors of Arts in Science or an Integrated Engineering program
[7]. These programs will give students other disciplinary perspectives and will create stronger
neural connections, which according to Piaget’s cognitive learning theory comprises real
learning. To analyze the effectiveness of a ‘connected curriculum for higher education’, we can
model these neural connections through unique learning networks as described by students and
measure the connectivity within subjects.

2.3 Concept maps and network modeling

Similarly to the mapping of courses in an undergraduate college program, a concept map defines
the ideas or topics that should be learned in a course, and delineates possible paths within a
network of concepts. It is a powerful tool often used by educators to improve and differentiate
instruction based on sequencing and complexity. In a concept map, “links between concepts are
shown by the hierarchical structure in which the lower concepts are subsumed beneath those
which appear in higher levels, and the superordinate concepts are more general than the
subsumed concepts” [13]. As a result, these maps identify relationships, commonalities and
prerequisites within a module or course. Studies have found that when used to model
connections between topics in science, this powerful tool has the potential to improve the science
curriculum [12,13]. It enables “educators to better identify redundancy, omission, complexity,
misconceptions and which items to assess” [12] and improves “both the process and the product
of curriculum development” [13]. Concept maps have shown the importance of visualizing
students' thinking and anticipating the learning paths students might follow. However, the
structure of concept maps lacks the potential for analytical and statistical analysis which can
provide very useful information when mapping an entire academic degree program.

Knowledge Space Theory (KST) is commonly used in research to support a more in-depth
understanding of concept maps. “It provides a new way to assess students' cognitive organization
of knowledge” and is often used by science educators in the classroom to analyze concept maps
within a course [17,18]. This theory combines ‘combinatorics and stochastic processes’ to
model a particular field of knowledge [13] and to identify possible learning paths. The learning
networks derived from KST are not unique to the student since this approach defines and maps
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all important topics in a course. As a result, the network nodes representing concepts within a
course are all the same. The only unique feature of KST is the students’ learning paths. KST
receives information about students’ background knowledge and places learners in a specific
knowledge state, which in turn is connected to other domains of knowledge. Then the algorithm
finds the learning paths that students might take based on this placement. While this model can
provide great insight about the process of learning a specific module in a course, its hierarchy
structure is not ideal to model unique students’ thinking or to model connections between
courses in an undergraduate program.

Network modeling, on the other hand, allows for explicit representations of unique connections
and “unlocks the ability to perform scalable analysis on the dataset such as a pathway analysis”
for the courses that students are taking in an undergraduate program [16]. It consists of
representing students’ unique courses as nodes in a network and illustrating the transfer of
information between these courses with directed edges. This model has been used to map the
entire curriculum at MIT which led to interesting findings about the connectivity of subjects
within each department. For example, it allowed researchers to analyze subgraphs of prerequisite
courses within their network and gain insights about the maximum path length from one node to
another [16]. This analysis had important implications for students' academic advice and
curriculum writing.

In this thesis, I am interested in using a similar network model to map students’ connections
between courses at Montclair’s undergraduate math program. I will use network modeling to
facilitate the computation of statistical measures and will utilize Piaget's ideas from
developmental psychology and the constructivism approach to education, to make predictions
and conclusions about these networks. Finally, I will interpret the results for this analysis in
terms of an ideal connected and integrated curriculum for undergraduate education.

3. Methodology

To measure the impact of current curriculum designs on students’ ability to make connections
within subjects and students’ overall performance, I have analyzed participants’ unique learning
networks as perceived by them. In these networks, nodes represent courses students have taken
during their undergraduate math program at Montclair State University (MSU), and edges
illustrate connections that participants have made between these courses. Nodes can also be
perceived as previously established schemas in participants’ brains that have been altered and/or
affected by incoming knowledge illustrated by connecting edges. This methodology draws both
on Piaget’s theory of cognitive development and on an ideal undergraduate curriculum that
focuses on interconnectivity. Information for the analysis of these networks will be acquired
through a survey, created in google sheets that is divided into two parts. The first part asks
students to list the courses they have taken during their undergraduate math education and
provides some details about their perceived performance and enjoyment. The second portion
invites students to think about and list the connections that exist between all of their courses.
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Participants are also asked to rate connection strengths and to classify such connections based on
applicability, skills, prerequisite or other (see appendix for more details). Approval for this
research and for the administration of this survey was received by the Institutional Review Board
under research number IRB-FY20-21-2190.

3.1 Data Collection

All acquired data for this project was granted on a voluntary basis. As a result, data collection
was a lengthy and effortful process. This research was introduced to students either by email or
through a small in-person presentation. Students participating in this survey have all completed a
consent form containing the project’s description, instructions and details about privacy and
confidentiality. All contributing participants have agreed to share their information for this study
and make a contribution to research and development in education.

In total, this project received 35 participants. Although I have initially gathered information from
different undergraduate majors, most students completing the survey were part of a math
program. Consequently, some of the surveys that did not meet the criteria for undergraduate math
majors have been dropped. In addition, two more surveys were dropped for incompleteness. This
resulted in 29 data points consisting of 18 female students and 11 male students. On average,
participants have taken 33 undergraduate courses and have made about 27 total connections
between their courses. Their GPA ranges from 3.2 to 4.0 with fifty five percent of students
having a GPA between 4.0 and 3.8 and the remaining students having a GPA between 3.7-3.2
(see figure 1 for details). Out of all participants, 38% of students had a double major or minor,
either in education or in other stem related fields (see table 1 for details).

Figure 1: GPA vs frequency Table 1: Participants’ basic analysis
GPA distribution Average number of connections | 27
6
> 4 Average GPA 3.6
2
w
o
g 2 . :
i I I Multiple majors 38%
. EEmN
8 37 5
439 38 37 36 88 84 83 82 Average number of courses 33
GPA
Describes the frequency of each GPA for all Provides a basic analysis for all 29
29 surveys collected. participants.

3.2 Network Analysis

After acquiring all the necessary data, I have performed a series of mathematical analyses to
determine the Average Path Length (APL) and the Clustering Coefficient (CC) for each unique



STUDENT LEARNING NETWORKS AND CURRICULUM CONNECTIVITY 13

learning network. The APL estimates the average shortest path between any two nodes in the
network and the CC measures the connectivity between the neighbors of any node. In these
computations, loops have been removed since I am only measuring the connectivity within
distinct subjects. In addition, repeated connections between any two courses have not been
considered. These statistical measures were computed in MATLAB using the following
mathematical formulas:

> d(vi,v_)

i) J
[ ] APL = W

J; and n represents the number of nodes in the network. Since the average path length

where d(vl_, v]_) is the shortest path length between any two nodes i and

between a disjointed node and any other node is infinite, it was assumed that the average
shortest path length between disjointed components equals the total number of nodes
present in the original network. That is, d(vi, vj) = n when i and j are disconnected. In

the context of this project, this means that although the student did not find a connection
between disjointed course i and course j, course { is still part of the undergraduate
curriculum and therefore it would take traversing all courses before finding a meaningful
connection between them. In other words, assuming that not all nodes are disjointed, then

the students would need to revisit all n courses again to find a meaningful relationship.

Xc,

A

e (CC = where ¢, =
n 4

v

K (K —1)

and NU describes the number of links (edges) between

neighbors of any vertex v, and K , is the degree of vertex v. Since clustering coefficients

estimate the connectivity between the neighbors of a node; isolated nodes, i.e.
disconnected courses, have also been removed from these computations. This is without
loss of generality since courses that are disconnected from the entire curriculum, do not
have any clusters, and therefore do not add any information to our average clustering
coefficient.

Following the assumptions listed above, a hub has been defined as any course that contains at
least 4 distinct connections. Since most undergraduate math courses have at most 3 prerequisite
courses, this guarantees the existence of at least one additional connection that is not a
prerequisite for the course at hand. In addition, since most undergraduate math programs consist
of about 33 classes, we are defining a Hub to be any course i that connects to at least 12% of the
entire coursework for an undergraduate math degree. Hubs have been calculated for each
independent network to provide insight about the highest connected courses.
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3.3 Research questions

The aforementioned methodology and definitions permit the computation of statistical measures
that can answer relevant questions for the improvement of undergraduate math curricula. In
particular, I am interested in exploring the connection between a network's interconnectedness
(through APL and CC), and students’ overall performance in their undergraduate program. I will
also investigate which courses have the highest degree, i.e. which classes have the largest
number of unique connections; and how these relate to the undergraduate program. Lastly, [ am
interested in visualizing students' unique learning networks in the context of STEM and
Humanity courses to look for emerging patterns. These results can provide a better insight about
how students make meaning and forge long term connections within courses. In addition, results
from this analysis will reveal if the curricular framework of a connected curriculum can
influence the way students learn and perform at the undergraduate level.

4. Results

4.1 Network Images, APL & CC

Presented below (figure 2) are the student’s unique learning networks generated by MATLAB for
all contributors to this project. The red nodes demonstrated on the graphs represent STEM
courses and the blue nodes represent humanity courses. Following these graphs, is a summary of
each participant’s statistical measures. Since there is a variance in the number of courses that
each students takes, NewAPL has been calculated using the following formula: APL/n where n
represents the total amount of courses taken by each participant. NewAPL is a normalized
statistical measure and its values range from 0 to 1. Consistent with my previous predictions,
networks containing many disjointed courses have a larger APL while networks containing less
isolated nodes travel a smaller average path to reach any other course. Another interesting fact
results from the computation of clustering coefficients: Although some graphs might contain a
reasonably small APL between courses, such as participants 1 and 33, this does not guarantee
that there is a path between neighboring nodes. In fact, 62% of participants’ clustering
coefficient is zero. This indicates that most students are ranking courses in a hierarchical order,
making their learning networks a concept map, and therefore are not creating paths between
neighboring nodes.

4.2 STEM vs Humanity Courses

Through the classification of courses, I was also able to notice exciting patterns in students’
learning networks. Such classification consists of labeling courses as STEM or Humanity classes
and coloring them red and blue respectively. It is important to note that psychology was
considered a STEM course but all other social science courses such as anthropology and
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sociology were characterized as humanities classes. In addition, economic related classes were
incorporated into the STEM category but business courses were not. This classification allowed
me to conclude that students' learning networks demonstrate a separation between the
connections they make between STEM courses and the connections they make between
non-STEM courses. Most students’ networks, such as participants’ 4,8,12,15,17,18,30 and 33
reveal that students are able to make connections between STEM disciplines but do not link any
of these disciplines to humanity courses. Although there is an overlap of mathematical concepts
in most math courses, this is not the case for humanities and these courses are also highly
connected. As a result, this outcome can be attributed to a poor undergraduate math curriculum
design, i.e. an unconnected curriculum, or simply because students were not given the
opportunity to make connections between the topics they were learning in the classes. Other
networks such as participants’ 1, 14,16 and 34 illustrate a linkage between humanities and STEM
courses but with a weak connection. With the exception of participant 16, the red and blue trees
are either linked by 1 or 2 courses. In future research, this separation can be measured through
the network's modularity.

Figure 2: Students’ unique learning networks, NewAPL and CC
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Participant 31

Participant 32
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Illustrates student’s unique learning networks created in MATLAB and their corresponding
NewAPL and CC. NewAPL has been calculated by dividing the average path length for the
network divided by the number of courses students have taken during their undergraduate degree.
Red nodes represent stem courses and blue nodes show all humanity courses.

4.3 Average number of connections

To generalize the results presented above and find average values that encompass all data, I have
classified participants by their grade point average using the system described by table 2. This
allowed me to create a fair distribution with an equal number of participants for each category.
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Table 2: Student classification according to GPA

Bins # of participants Average GPA Classification
1 10 3.95 Summa Cum Laude
2 10 3.75 Magna Cum Laude
3 9 3.4 Lowest performing

The top 10 performing participants averaged a GPA of 3.95 which falls under the category of
Summa Cum Laude at MSU. The following 10 participants averaged a GPA of 3.75 and were
labeled Summa Cum Laude. Lastly, the lowest 9 performing students averaged a GPA of 3.4 and
were classified as the lowest performing. Creating these bins helped me explore students’
average number of connections per course and their corresponding GPA. Below, we can see that

19

. . . . . o 2
there is negative linear relationship, withr = 0.98, between students GPA and the average

number of connections per class. This suggests that students that make less connections per
course, are more likely to have a low GPA. We can also conclude from this graph that high

performing students make on average 2 connections between each course in their program of

study.

Figure 3: Average number of connections per course vs Average GPA

Average GPA

Average number of connections per course

Average # connections per course vs GPA
B GPA average

R?=0.976

1.5
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4.4 Clustering Coefficient

The clustering coefficient for these networks gives a deep understanding of how well information
travels within students’ neural structures and how quickly it can reach a neighboring course. In
the context of this project, it helped me understand how likely it is that for any course A,
connected to course B and C; there is also a connection between course B and C. In other words,
the clustering coefficients averaged the number of triangles that can be formed within
participants’ learning networks. In general, the CC was very low or non-existent for most
participants. Nevertheless, the few values obtained in this research show very conclusive results.
Participants with an average GPA of 3.95 have a network with a higher clustering coefficient
than students who fall in the other two categories. This means, they are able to make more
triangular connections between courses than the others. Figure 4 clearly defines this relationship

as negative and linear with =0 99, which indicates that students with less triangular
connections between courses perform worse than those that can link neighboring nodes. Finally,
this analysis suggests that when information does not easily flow between adjacent courses,
weaker connections are built.

Figure 4: Clustering Coefficient vs Average GPA
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4.5 Average Path Length

As theorized, the average path length for these networks also follows a linear trend. This
interesting measure provides information about how quickly, on average, information travels
from one course to another. Since the values have been normalized into NewAPL, they fall
between zero and one, where 1 represents the longest path to reach a node, and 0 represents the
shortest. Figure 5 compares the three GPA categories to the normalized average path length and
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reveals that students with a higher GPA demonstrate a higher connectivity within courses and
therefore have a shorter average path length. On the other hand, lower performing students
display a higher average path length since the average number of connections per course is also
lower. APL analysis leads to the conclusion that students’ ability to transfer information within
courses is directly related to their GPA. As the APL between nodes increases, students’ overall
performance decreases.

Figure 5: Average path length vs Average GPA
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4.6 Hubs

Hubs have been defined as nodes of degree 4 or higher to represent the top connected courses in
students’ learning networks. To investigate hubs, I have analyzed each individual survey to
identify the courses that have 4 or more edges connected to them. I then found how frequently
these courses appear in students’ surveys as top connected courses (see figure 6). For example,
Calculus 1 is a hub (contains 4 or more connections) in 10 out of 29 surveys. Similarly, English
Composition, Calculus 2 and Transition to Advanced Math are all high degree nodes in 7 out of
29 surveys. Finally, Calculus is a hub in 5 student’s surveys and linear algebra is a highly
connected course in 4 participants’ networks. This analysis resulted in very interesting results
about the nature of high degree nodes. Figure 6 displays top connected courses and how
frequently they show up in this study, and suggests that hubs are mostly composed of courses
that are prerequisites to more advanced classes. As expected in an undergraduate math program,
5 out of the 6 highly connected nodes below are major requirements with the exception of
English Composition which is a foundational course. This indicates that the undergraduate math
program at MSU provides ample opportunities for students to connect major courses but lacks
interdisciplinary connectivity.
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Although there is a clear relationship between students’ GPA and their corresponding network’s
average path length, there seems to be no association between students' GPAs and the number of
highly connected nodes. The average GPA for students that have described at least one hub in
their network is 3.7 which is the same as the average GPA for students that did not establish any
hub in their surveys. This result indicates that other factors, besides GPA, might influence the
creation of highly connected nodes. It also shows that hubs can still exist in weakly connected

networks.

Figure 6: Hubs vs frequency

Frequency vs. Top connected courses (hubs)
10

8
6

Frequency

Top connected courses

[llustrates courses with highest degree and how frequent
these courses show up in participants’ learning networks

4.7 Curriculum Implications

The results described above have strong implications in curriculum development at the
undergraduate level. Figure 3, 4 and 5 provide a clear understanding that participants' GPA is
significantly better when the number of connections between courses is higher. On the curricular
level, this means that students who are given more opportunities to make meaningful connections
within courses are more likely to perform better. A connected curriculum as described by Fung,
will not only provide students with more opportunities to make interdisciplinary connections, but
will also address the problem of separation between STEM and Humanity courses. This is made
possible by its emphasis on research and development and through the linking of
interdisciplinary courses to relevant social causes. An integrated curriculum that provides
students with opportunities to make more connections, allows for stronger neural connections,
which according to the constructivism theory, comprises real learning. As suggested by Fung and
supported by the results in this project, MSU and any higher education institution can benefit
from the creation of more unique majors that bridge the gap between STEM and Humanity
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courses. This will improve the APL and CC of students’ unique learning network as more

opportunities to make meaningful connections will emerge.
S. Future Work & Considerations

To further develop this project, I plan on exploring the level of connectivity of individual courses
required by Montclair’s undergraduate math program, and how these connections affect other
aspects of students’ education such as enjoyment and perceived performance. It will also be
interesting to explore how students classify their connections, based on applicability,
prerequisites or important skills, and how this classification correlates to their enjoyment,
perceived performance and overall GPA. Although the survey provided to students has been
modified and optimized for time efficiency, it continues to require quite some time from its
participants, and therefore recruitment for this project has been a great challenge. While I have
narrowed the scope of participants’ to math majors, I have not considered the effect of students’
background and personal experiences on the number of connections they can make. In addition,
some of the participants in this survey were transfer students and/or students double majoring.
Hence, future work consists of applying the same statistical analysis and methods to a larger
sample of students and narrowing the research to students who are not transferring from other
universities or double majoring. To make sure students’ exposure to courses is equally
distributed, the next stage can also include the analysis of networks with the same number of
nodes. Eventually, I plan on expanding this project to different majors within Montclair
University to analyze students’ unique learning networks based on their field of study and
majors. Through this analysis, I can measure how connected or disconnected STEM and
Humanity courses are within themselves and within the two distinct groups, and investigate how
these connections influence students’ GPA. This next phase will require the computation of
networks’ modularity which can be measured through Gephi and describes the strength of
separation within the two groups.

6. Conclusion

Despite its fixed structure, our brain is a complex system of interconnected areas that provide our
body with multiple functions such as enabling action, perception and cognition [10]. As such,
cognition models of learning are commonly associated with neural networks working together to
transmit information, construct meaning and build stronger connections. In an attempt to
simulate these complex systems, I have used network theory to build and analyze the unique
learning structures of students’ connections within courses. This analysis resulted in important
insights about students’ ability to make connections within subjects and their overall
performance. It is clear that students who are provided with more opportunities to make
connections within courses will perform better in their program of study. I have concluded that
higher education institutions need to drastically improve the curriculum programs they offer their
students to improve students’ overall cognition and performance. Such changes need to take
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place at a small level, such as making sure that offered courses are meaningful and highly
connected to other subjects; and at a larger scale, such as creating unique majors that connect
STEM and humanities. The impactfulness of such changes might not be immediately noticeable
but will certainly improve students' learning and information transfer as suggested by this

research project.
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Appendix

Below is a summary of the survey that was created to collect data about students’ undergraduate
educational experience:

Part 1 consists of an empty table with three columns labeled as “Course”, “Performance self-
rating ” and “Enjoyment self-rating”. Students begin by listing all the courses they have taken in
their undergraduate coursework and by rating their performance (based on how much they
believe they have learned) from 1-10 (1 being the lowest and 10 being the highest). They are also
asked to recall the enjoyment of this course and rate them from 1-10 (1 being low enjoyment and
10 being high enjoyment).

Part 2 of the survey is easily accessible on a second tab of the same google sheet, and has already
been coded to pre-fill the first and third column with the list of the courses students have entered
on the first part of the survey. Hence, participants are asked to select a course from the first
column and match it to a course from the third column if they believe there exists a connection
between the two. They are also invited to rate the strength of such connection and to categorize
the connection as: a prerequisite, application, important skill or other. If participants believe a
course is not connected to any other subject, then it is considered an isolated node in the
network with connection strength of zero.

A <« C D E E G H |

p:r::;mance :n:';:;ment When you are done completing this
elf Rating elf-Rating

(1-10 (1-10 dropdown) survey, use the S_HARE button to
Course Name| dropdown) share it with

DROPDOWNS ON
COLUMNS CAND D

+
1]

Table1 ~ Table 2 ~
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Major:

GPA:

DROPDOWN

Note: If a course is not related to
anything and nothing is related
to this course, list it under
column A and select ‘None’
under column C. USE THE

Use the dropdown to
select a category that
describes the type of
connection between the
two courses.

Use the dropdown menu to tell us
how strong you feel the
connection is on a scale of 1-10,
with 1 indicating a very weak
connection and 10 indicating a
very strong connection.

Course Name

Related Course

Why are these courses
connected

Strength of Connection (1-10)
1-weak 10-strong

+
[

Table1 ~

Table2 ~




STUDENT LEARNING NETWORKS AND CURRICULUM CONNECTIVITY 27
Bibliography

[1] Ackermann, E. (2001). Piaget’s constructivism, Papert’s constructionism: What’s the
difference. Future of learning group publication, 5(3), 438.

[2] Beauchamp, G. A. (1968). Curriculum theory. Wilmette, Ill.: Kagg press.

[3] Blake, B. (2015). Developmental psychology: Incorporating Piaget’s and Vygotsky’s theories

in classrooms.

[4] Chaplot, D. S., MacLellan, C., Salakhutdinov, R., & Koedinger, K. (2018, June). Learning
cognitive models using neural networks. In International Conference on Artificial Intelligence in

Education (pp. 43-56). Springer, Cham.

[5] Crossland, J. (2015). Is Piaget wrong. Primary Science, 137, 30-32.

[6] Drake, S. M., & Reid, J. L. (2018). Integrated curriculum as an effective way to teach 21st
century capabilities. Asia Pacific Journal of Educational Research, 1(1), 31-50.

[7] Fung, D. (2017). A connected curriculum for higher education (p. 182). Ucl Press.

[8] Houghton, L. E., & Dawson-Threat, J. (1999). The American Undergraduate Math
Curriculum: Maintaining a Connection with Application. The Journal of General Education,
48(1), 17-37.

[9] Naylor, S., & Keogh, B. (1999). Constructivism in classroom: Theory into practice. Journal
of Science Teacher Education, 10(2), 93-106.

[10] Park, H. J., & Friston, K. (2013). Structural and functional brain networks: from
connections to cognition. Science, 342(6158), 1238411.



STUDENT LEARNING NETWORKS AND CURRICULUM CONNECTIVITY 28

[11] Sari, G., Gistituati, N., & Syarifuddin, H. (2019). The effect of guided discovery learning
method toward students’ ability in understanding math concept. International Journal of
Educational Dynamics, 1(2), 54-60.

[12] Simon, J. (2010). Curriculum changes using concept maps. Accounting Education: an
international journal, 19(3), 301-307.

[13] Stahl, C., & Hockemeyer, C. (2011). Knowledge space theory. 2008-06-18).[2009-12-23].
http://cran. r-project. org/web/packages/kst/vignettes/kst. Pdf.

[14] Starr, M. L., & Krajcik, J. S. (1990). Concept maps as a heuristic for science curriculum
development: Toward improvement in process and product. Journal of research in science
teaching, 27(10), 987-1000.

[15] Ultanir, E. (2012). An epistemological glance at the constructivist approach: Constructivist

learning in Dewey, Piaget, and Montessori. International journal of instruction, 5(2).

[16] Willcox, K. E., & Huang, L. (2017). Network models for mapping educational data. Design
Science, 3.

[17] Taagepera, M., & Noori, S. (2000). Mapping students' thinking patterns in learning organic
chemistry by the use of knowledge space theory. Journal of Chemical Education, 77(9), 1224.

[18] Cathcart, L., Stieff, M., Marbach-Ad, G., Smith, A., & Frauwirth, K. (2010). Using
knowledge space theory to analyze concept maps

[19] Terwel, J. (1999). Constructivism and its implications for curriculum theory and practice.
Journal of curriculum studies, 31(2), 195-199.

[20] John O’Meara and A. Vaidya, A Network Approach to Curriculum Design, Entropy
(Complexity Section), 23(10), 1346, 2021.



STUDENT LEARNING NETWORKS AND CURRICULUM CONNECTIVITY 29

[21] J. Keenan, M. Munakata, J. O’Meara, A. Vaidya and I. Wambacq, On the Impact of the Self
in a Complex Knowledge Network, International Journal of Complexity in Education, 3(2),

2022, 53-78.



	Curriculum Connectivity in Montclair State University’s Undergraduate Mathematics Program
	DaSilva Jesus- Thesis 

