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Abstract

The independence polynomial for a graph G is defined by I(G;x) = Σ
α(G)
k=0 ik(G)xk

where ik(G) is the number of independent sets in G of size k. Engström proved that

the independent polynomial satisfies |I(G;−1)| ≤ 2ϕ(G) where ϕ(G) is the decycling

number of G. The cyclomatic number of a graph G, denoted β(G), is defined as

β(G) = e(G) − n(G) + q(G). If the length of a cycle in a graph G is divisible by 3,

we call it 3̃-cycle, otherwise a non-3̃-cycle. Cao and Ren proved that |I(G;−1)| ≤

2β(G)−β(G). Cutler and Kahl proved Levit and Mandrescu’s conjecture that for every

positive integer k and integer q, with |q| ≤ 2k, there exists a graph G with ϕ(G) = k

and I(G;−1) = q. In this paper, we prove that |I(G;−1)| ≤ 2β(G)−1 for graphs with

non-3̃-cycles. Furthermore, we prove a density result related to this upper bound by

adapting Cutler and Kahl’s results.



MONTCLAIR STATE UNIVERSITY

The Independence Polynomial of a Graph at −1

by

Phoebe Rose Zielonka

A Master’s Thesis Submitted to the Faculty of

Montclair State University

In Partial Fulfillment of the Requirements

For the Degree of

Master of Science

May, 2024

College of Science and Mathematics

Department of Mathematics

Thesis Committee:

Dr. Jonathan Cutler, Thesis Sponsor

Dr. Deepak Bal, Committee Member

Dr. Ashwin Vaidya, Committee Member



The Independence Polynomial of a Graph
at −1

A THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science

by

Phoebe Rose Zielonka

Montclair State University

Montclair, NJ

2024



Copyright © 2024 by Phoebe Rose Zielonka. All rights reserved.



Acknowledgments

I would like to express my deepest appreciation to those without whom my adventure
in mathematics would not be possible.

I am deeply grateful for Dr. Cutler’s patience and ingenious pieces of advice
in guiding me through such intriguing problems. He has been a fantastic mentor,
teaching me how to think like a mathematician since day one of this journey.

I also want to thank Dr. Bal and Dr. Vaidya for being on my Committee and
giving me helpful feedback. I would like to thank Dr. Bal for taking me to different
mathematical universes. I am grateful for Dr. Vaidya’s fascinating classes, where he
shows us the beauty of mathematics in nature, art, and social sciences.

I want to thank Dr. Emas for her advice on becoming a productive researcher.
I am thankful for all the opportunities, challenges, joy, and kindness I received from
professors, colleagues, and students.

I am grateful for my beloved husband Patryk and my sweet child Lucian, whose
love motivates me every day to learn, grow, and share. Thanks to you, I climbed the
mountains and crossed the sea to where I found myself.

This is the beginning of my new journey, and what I learned from you will continue
to guide me in every step I take. It is no secret that the moon reflects light from the
sun like a mirror. I will reflect your kindness and radiate gentle moonlight thanks to
you all.

Where the crystal moon shines and roses bloom, so do I.

i



Contents

Acknowledgments i

List of Figures iii

1 Introduction 1
1.1 Preliminary Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Previous Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Our Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Graph Preliminaries 10
2.1 Independence Polynomials for Pn and Cn . . . . . . . . . . . . . . . . 10

2.1.1 A few results on determining the independence polynomials . 10
2.1.2 Examples of computations for the independence polynomials . 11

2.2 A Few Useful Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Density Results by Cutler and Kahl 21
3.1 (k, q)ϕ-graphs, Brackets, Extensions, and Pasting . . . . . . . . . . . 22
3.2 Results on (k, q)ϕ-graphs . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3 Density Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4 Our Results 38
4.1 Our upper bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.2 Our density result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5 Future Research 51

ii



List of Figures

1.1 Illustration of P6 and C5 . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Loops in a graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Trees - acyclic graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3.1 Rooted graphs Gv and Hw before pasting . . . . . . . . . . . . . . . . 23
3.2 Graph Gv ∧Hw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3 The l-extension of C3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1 P2, P3 and their disjoint union . . . . . . . . . . . . . . . . . . . . . . 42
4.2 Graph Gv and Hw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.3 Gv and Hw pasted at v = w . . . . . . . . . . . . . . . . . . . . . . . 44

5.1 Book graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

iii



Chapter 1

Introduction

1.1 Preliminary Definitions

We will begin with defining the graph theory terminologies essential to this thesis’s

results. First and foremost, we need to define a graph. A graph G is an ordered

pair G = (V,E) where V (G) is the set of vertices and E(G) is the set of edges in

G. If we take a subset from V (G) and E(G), we can form a part of the graph,

which is a subgraph. Formally, a subgraph of a graph G is a graph, say H, such that

V (H) ⊂ V (G) and E(H) ⊂ E(G).

The vertices in V (G) may be isolated or connected to others. Let u, v ∈ V (G)

be arbitrary vertices. If u, v ∈ V (G) are connected in G, we denote the edge formed

by u, v ∈ V (G) as uv ∈ E(G). In this case, u and v are said to be adjacent. That

is to say if there is no edge uv connecting the vertices u and v, then u and v are

non-adjacent. If we collect only the pairwise non-adjacent vertices in G, we get a

subset called an independent set. This subset of V (G) containing only independent

vertices is formally defined as follows. An independent set of G, denoted I(G), is a

subset I ⊂ V (G) such that for every u, v ∈ I, we have uv /∈ E(G). As described
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above, by definition, we know only non-adjacent vertices are contained in I(G).

In this thesis, we study the independence polynomial of a graph. Therefore, it

is essential to know what the independence polynomial of any graph G is. The in-

dependence number α(G) is the size of the largest independent set of a graph G.

Throughout this thesis, we use the following definition of the independence polyno-

mial. The independence polynomial of a graph is defined as

I(G;x) = Σ
α(G)
k=0 ik(G)xk,

where ik(G) is the number of independent sets of the size of k in G.

There are several families of graphs, and the specific independence polynomials for

them vary accordingly. In this thesis, we focus our investigation on common graphs

such as paths, cycles, and graphs that we can construct with them using the operation

introduced in Chapter 3.

We will define the path and cycle class of graphs below. Let n be any arbitrary

integer, then a path Pn with n vertices is a graph with the vertex set V (Pn) =

{v1, . . . , vn}. In a path the first vertex v1 and the last vertex vn are not adjacent.

Formally, a path is a list v0, e1, v1, e2, ..., en, vn of vertices and edges with no repeated

vertices, where ei = vii− 1vi for i = 1, 2, 3, ..., n. In a path, v0 and vn are endpoints.

One may consider a graph using the concept of the length. The length of a graph is

the number of edges contained in it. A graph G is called connected if for each pair of

vertices u, v ∈ V (G) there exists a uv-path with u and v being endpoints in G. The

components of a graph are its maximal connected subgraphs.

A connected graph is a graph G such that for any vertices u, v in G, there exists

a path connecting them. Similarly, a cycle graph is like a path with the first vertex

v1 and the last vertex vn are adjacent to each other (Figure 1.1).
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Figure 1.1: Illustration of P6 and C5

Figure 1.2: Loops in a graph

A vertex not only can be adjacent to other vertices but also to itself. When that

setting happens, we call it a loop. A loop is an edge whose endpoints are equal.

Multiple edges are edges having the same pair of endpoints (Figure 1.2). We define

simple graph as a graph that has no loops or multiple edges. It is important to note

that all graphs considered in this thesis are simple graphs.

In the following subsection, we will explore previous research on the independence

polynomial of a graph which requires familiarity with concepts related to graphs with

or without a cycle. Hence, it is worth to gain an understanding of these concepts.

We will include the definitions and a relevant example. A graph G is considered

acyclic if it contains no cycles. The decycling number of G, denoted ϕ(G), is the

minimum size of a set S ⊂ V (G) such that G− S contains no cycles, i.e., is acyclic.

For example, a forest is an acyclic graph. Figure 1.3 helps visualize acyclic graphs.

A tree is considered a connected acyclic graph.

It is also essential to know the degree of a vertex since we will use it later. In a

graph, each vertex may or may not be incident with edges. The degree of a vertex
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Figure 1.3: Trees - acyclic graphs

v in a graph G, denoted d(v) or dG(v) is the number of edges incident to v. An

important theorem in the next Subsection considers graphs that contain no vertex of

degree one. To help with visualization, in Figure 1.3, all vertices adjacent to only one

other vertex have degree one. In fact, in a tree, a vertex of degree one is called a leaf.

Just as importantly, we will get to know adjacent vertices with the goal of using

them in computing the independence polynomial of a graph. Two adjacent vertices

are called neighbors. The neighborhood or open neighborhood of v, denoted N(v) is

N(v) = {U ∈ V (G) : uv ∈ E(G)}. This neighborhood does not include v itself.

When stated without any qualification, a neighborhood is assumed to be open. In

this case, one may notice that |N(v)| = d(v). The closed neighborhood of v is the

neighborhood of v including v and is denoted as N [v]. The concept of N [v] is crucial

in the computation of independence polynomials of a graph G. We will refer to N [v]

in several tasks throughout this thesis.

1.2 Previous Results

In this Section, we will review the previous results on the independence polynomial of

a graph at −1. The concept of independence polynomial was first defined by Gutman

and Harary [5]. Since then, this topic has been gaining a significant level of attention

in research for its usefulness in finding information on a graph, its connections with

hard-sphere statistical mechanical theory, and other hard-particle models in physics.

Therefore, further research on this topic is not only helpful in expanding mathematical
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knowledge but also in providing background for potential applications. In order to

achieve that goal, a thorough review of what has been found is essential.

Consider an example for the independence number of a graph G below. For any

graph G, at x = −1, then we have

I(G;−1) = i0 − i1 + ...+ (−1)α(G)iα(G).

This equation determines the number of independent sets of even and odd sizes in the

graph G above. Finding α(G) has been proved to be an NP-complete (nondetermin-

istic polynomial-time complete) problem [4]. Polynomial time means its solution can

be guessed and verified in polynomial time; nondeterministic means that no particular

rule can be followed to make the guess. As a result of its complexity as a NP-complete

problem, the computation of the independence polynomial is significantly difficult to

determine.

There have been several projects aimed to shed light on independence polynomials.

A classical question about the independence polynomial is its computation. Hopskin

and Staton proved the formula for determining the independence polynomials for

a path Pn while Engström’s research resulted in significant progress. Specifically,

Engström proved the upper bound on the independence polynomial of a graph G

at −1. It is reasonable that we attempt to find bounds for the absolute value of

the independence polynomial since its explicit computation is difficult to carry out.

Hence, Engström’s results opened up an important approach for tackling this topic.

Theorem 1.2.1 (Engström 2009). For any graph G we have

|I(G;−1)| ≤ 2ϕ(G).

To achieve this result, Engström used techniques from topological combinatorics,
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which is originally the Discrete Morse Theory developed by Robin Forman [3] using

ideas in algebraic topology. Levit and Mandrescu [7] gave an elementary proof of

this same bound. Furthermore, they succeeded in finding a different upper bound for

I(G;−1) using the cyclomatic number of G.

Definition 1.2.1. The cyclomatic number of a graph G, denoted β(G), is defined by

β(G) = E(G)− V (G) + q(G),

where q(G) is the number of components in G.

They proved the following upper bound: relating the independence polynomials

of G to β(G) instead of decycling number ϕ(G).

Theorem 1.2.2 (Levit and Mandrescu 2013). If G is any graph, then

|I(G;−1)| ≤ 2β(G).

Levit and Mandrescu also explored the maximum independent set which is an

independent set of maximum size. A graph G is said to be well-covered if all of its

maximal sets are of the same cardinality defined by α(G). Their work led to a notable

result.

Theorem 1.2.3 (Levit and Mandrescu 2013). If G is a unicyclic well-covered graph,

and G ̸= C3, then we have I(G;−1) ∈ {−1, 0, 1}.

Cutler and Kahl [2] proved the following Theorem which was proposed as a con-

jecture by Levit and Mandrescu [7]. The conjecture essentially asks how sharp the

bound is.

Theorem 1.2.4 (Cutler and Kahl 2016). For every positive integer k and each integer

q such that |q| ≤ 2k, there exists a graph G with ϕ(G) = k and I(G;−1) = q.
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For brevity, Cutler and Kahl defined the graph in Theorem 1.2.4 to be (k, q)ϕ-

graph.

Definition 1.2.2. Let k be a positive integer and q be an integer such that |q| ≤ 2k.

A graph with ϕ(G) = k and I(G;−1) = q is called a (k, q)ϕ-graph.

Cao and Ren [1] generalized and improved Theorem 1.2.2 and figured out a sharper

upper bound. Their method for determining a sharper bound on |I(G;−1)| utilized

the concept of non-3̃-cycles.

We will define the non-3̃-cycles used by Cao and Ren below.

Definition 1.2.3. If length of the graph is defined as the number of edges contained

in the graph. We call a cycle in a graph G a 3̃-cycle if its length is divisible by 3. If

the length of a graph G is not divisible by 3, we call it a non-3̃-cycle.

The theorem below gives us a remarkable improvement in estimating the upper

bound compared to previous studies. Estimation of |I(G;−1)| is now considerably

enhanced for graphs with non-3̃-cycles.

Theorem 1.2.5 (Cao and Ren 2020). If G contains a non-3̃-cycle, then

|I(G;−1)| ≤ 2β(G) − β(G).

In addition, Cao and Ren [1] proposed an upper bound for graphs with non-3̃-

cycles and no vertices of degree one.

Theorem 1.2.6 (Cao and Ren 2020). Let G be a graph with non-3̃-cycles. If G

contains no vertices of degree one, then |I(G;−1)| ≤ 2β(G)−1.

In another special case, if all cycles in G are vertex disjoint, the upper bound can

be estimated using the following theorem also proved by Cao and Ren [1]. First, we

will define vertex disjoint.
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Definition 1.2.4. Two cycles in a graph G are vertex disjoint if they do not share

any common vertices.

This leads to a notable result using 3̃-cycles by Cao and Ren [1].

Theorem 1.2.7. If all cycles of G are vertex disjoint, then |I(G;−1)| ≤ 2k, where k

is the number of 3̃-cycles of G.

Since the beginning of research on the independence polynomials of a graph, sev-

eral ventures have been made to pave the road to a clearer insight into this topic. The

theorems above are highly constructive and serve well as the foundation for future

investigations.

1.3 Our Research

Given the background above, one could ask how to improve the bound. As an attempt

to generalize previous results, in this paper we propose a strengthening on the upper

bound in Theorem 1.2.6. We also prove the density result related to this upper bound

by adapting results of Theorem 1.2.4.

Theorem 1.3.1. If the graph G contains a non-3̃-cycle, for all β(G) ≥ 1 , we have

|I(G;−1)| ≤ 2β(G)−1.

where β(G) is the cyclomatic number of G.

Further experiments suggested that this new bound is sharp. So, we also prove

the density results for this new bound. We use β(G) instead of ϕ(G) in our new

density results. Accordingly, we define the adapted (k, q)β-graph below.
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Definition 1.3.1. Let k be a positive integer and q be an integer such that |q| ≤ 2k.

A graph with β(G) = k and I(G;−1) = q is called a (k, q)β-graph.

Theorem 1.3.2. For each odd integer q ∈ [0, 2k], there is a connected (k, q)-graph

Gv such that either

I(Gv;−1) = ⟨2k−1, 2k−1 − q⟩

or

I(Gv;−1) = ⟨−2k−1 + q,−2k−1⟩

The result in Theorem 1.3.2 helps us tremendously in obtaining the main density

result below.

Theorem 1.3.3. Given a positive integer k and an integer q with |q| ≤ 2k−1, there

is a connected graph G with β(G) = k and I(G;−1) = q.

We will explore the proofs for these theorems in detail in Chapter 4.

9



Chapter 2

Graph Preliminaries

2.1 Independence Polynomials for Pn and Cn

2.1.1 A few results on determining the independence poly-

nomials

We first consider paths and cycles. The proof provided by Hopkins and Staton [6]

helps us determine the independence polynomial for a path Pn explicitly.

Theorem 2.1.1 (Hopkins and Staton). For a graph Pn with n vertices where n ≥ 0,

the independence polynomial for any x ∈ C is given by,

I(Pn;x) =

⌊(n+1)/2⌋∑
k=0

(
n− k + 1

k

)
xk

When considering the cycle graph Cn, Hopkins and Staton also determined the

independence polynomial for Cn.

Theorem 2.1.2 (Hopkins and Staton). For a cycle Cn with n vertices where n ≥ 3,

10



the independence polynomial for x ∈ C is given by

I(Cn;x) = 1 +

⌊n/2⌋∑
k=1

n

k

(
n− k − 1

k − 1

)
xk.

2.1.2 Examples of computations for the independence poly-

nomials

In order to demonstrate how the computation for independence polynomials is done,

we will introduce a few basic examples. We compute the independence polynomials

for path Pn with the number of vertices n ranging from 1 to 6.

I(P1;x) = 1 + x

I(P2;x) = 1 + 2x

I(P3;x) = 1 + 3x+ x2

I(P4;x) = 1 + 4x+ 3x2

I(P5;x) = 1 + 5x+ 6x2 + x3

I(P5;x) = 1 + 6x+ 10x2 + 4x3

11



Using these results, we can evaluate I(Pn;x) at x = −1. When we substitute x = −1

into the polynomials, it easily follows that we get the following equations

I(P1;−1) = 1− 1 = 0

I(P2;−1) = 1− 2 = −1

I(P3;−1) = 1− 3 + 1 = −1

I(P4;−1) = 1− 4 + 3 = 0

I(P5;−1) = 1− 5 + 6− 1 = 1

I(P6;−1) = 1− 6 + 10− 4 = 1

We can observe from the list of the results above the pattern that the values of

independence polynomials I(Pn;−1) ∈ {−1, 0, 1}. A more general pattern can be

noted here if we partition the vertices of Pn into multiples of 3. To be specific,

I(P3n−2;−1) = 0 while

I(P3n−1;−1) = I(P3n;−1) = (−1)n.

We will return to this interesting pattern later after introducing some handy tools

to prove it. Similarly, we can compute the independence polynomials for cycle Cn

except this time with the number of vertices n ranging from 3 to 8 or n ≥ 3. Let’s

12



begin with C3.

I(C3;x) = 1 + 3x

I(C4;x) = 1 + 4x+ 2x2

I(C5;x) = 1 + 5x+ 5x2

I(C6;x) = 1 + 6x+ 9x2 + 2x3

I(C7;x) = 1 + 7x+ 14x2 + 7x3

I(C8;x) = 1 + 8x+ 20x2 + 16x3 + 2x4.

Evaluating the values of the independence polynomials at −1 by substituting −1

yields the following results

I(C3;−1) = 1− 3 = −2

I(C4;−1) = 1− 4 + 2 = −1

I(C5;−1) = 1− 5 + 5 = 1

I(C6;−1) = 1− 6 + 9− 2 = 2

I(C7;−1) = 1− 7 + 14− 7 = 1

I(C8;−1) = 1− 8 + 20− 16 + 2 = −1.

Again, we observe a unique pattern. We can generalize this pattern using the following

identities

I(C3n;−1) = 2(−1)n,

I(C3n+1;−1) = (−1)n,

I(C3n+2;−1) = (−1)n+1.

13



Levit and Mandrescu [7] made notable progress on the topic of independence poly-

nomials at −1 by proving these patterns. We will return to proving these patterns at

the end of Section 2.2.

2.2 A Few Useful Tools

This section’s goal is to provide techniques for constructions and operations on the

considered graphs. We proceed with exploring some key definitions that will be useful

later. First, consider the recursive formulas we found for paths and cycles [7]. We

will start with partitioning the graph into independent sets that contain a selected

vertex, say v, and the ones without it.

We proceed with exploring the subset of any graph G. Consider subset S ⊂ V (G)

of the vertex set and let G− S be the subgraph with vertex set v(G)− S and edges

defined only for these vertices. So for a vertex v ∈ V (G) of a graph G we can consider

the subgraph with v removed, denoted G− {v}, or G− v for convenience. This idea

will be very helpful for proving a recursive identity for independence polynomials.

Also, in order to prove the recursive identity for the independence polynomials,

will introduce the following general tools. First, we prove the formula for counting

independent sets.

Proposition 2.2.1. For any integer k ≥ 0 and a graph G with v ∈ V (G),

ik(G) = ik(G− v) + ik−1(G−N [v]).

Proof. Consider a graph G, let an integer k ≥ 0, and let v ∈ V (G). The idea behind

this proof is to count the number of independent sets in G using partitioning. To be

specific, we can partition the number of independent sets in G into the sets containing

14



v and those that do not contain v. The number of independent sets not containing v

is given by ik(G− v). Notice that in order to count the number of independent sets

containing v, we need to count the independent sets of size k − 1 since v is already

chosen. It follows that we need to exclude v and its neighbors. Hence, the number

of independent sets containing v is given by ik(G − N [v]). Putting the two results

together yields

ik(G) = ik(G− v) + ik−1(G−N [v]).

Using Proposition 2.2.1 we can prove the following result which will take us one

step closer to the proof of recursive identity at the end of Section 2.

Proposition 2.2.2. Let G be a graph with v ∈ V (G), then

I(G;x) = I(G− v;x) + xI(G−N [v];x).

Proof. Let G be a graph with v ∈ V (G). Then, we have

I(G;x) =
∑
k=0

ik(G)xk

Then, by Proposition 2.2.1, we have

I(G;x) =
∑
k

(ik(G− v) + ik−1(G−N [v]))xk

=
∑
k

ik(G− v)xk +
∑
k

ik−1(G−N [v])xk

=
∑
k

ik(G− v)xk + x
∑
k

ik−1(G−N [v])xk−1

= I(G− v;x) + xI(G−N [v];x).

The formula in Proposition 2.2.2 is applicable at any value of x. Now, since our

15



recursive identity only considers particular cases where x = −1, one may find the

following corollary significantly advantageous.

Corollary 2.2.3. Let G be a graph with v ∈ V (G), then

I(G;−1) = I(G− v;−1)− I(G−N [v];−1).

Proof. Let G be a graph with v ∈ V (G). Then, by Proposition 2.2.2, we have

I(G;x) = I(G− v;x) + xI(G−N [v];x).

Substituting x = −1 into the equation in Proposition 2.2.2, yields

I(G;−1) = I(G− v;−1)− I(G−N [v];−1).

Remark. With all the essential tools above, we can now begin exploring the proof of

Levit and Mandrescu [8] for generalizing the patterns in our Examples 1 and 2 that

demonstrated the independence polynomials of paths and cycles at −1. We observe

that certain identities tend to hold if we partition the vertices into consider the length

of modulo 3.

Theorem 2.2.4. Let n ≥ 1. For paths, we have

I(P3n−2;−1) = 0 and I(P3n−1;−1) = I(P3n;−1) = (−1)n.

For cycles, we have

I(C3n;−1) = 2(−1)n, I(C3n+1;−1) = (−1)n, and I(C3n+2;−1) = (−1)n+1.

Proof. We begin with proving the first identity using induction on n. Let n = 1 be

16



given. From the first computation example in Section 2.1, we see that

I(P1;x) = 1 + x

I(P2;x) = 1 + 2x

I(P3;x) = 1 + 3x+ x2.

Hence, it follows that when we substitute x = −1 into the independence polynomials

above we get the following results

I(P1;−1) = 1 + (−1) = 0

I(P2;−1) = 1 + 2(−1) = 1− 2 = (−1)1

I(P3;−1) = 1 + 3(−1) + (−1)1 = 1− 3 + 1 = −1 = (−1)1

Thus, the result holds for n = 1. Suppose that the result holds for positive integers

at most k. Then, evaluate a vertex v in each graph, we get,

I(P3(k+1)−2;−1) = I(P3k+1;−1).

By Corollary 2.2.3,

I(G;−1) = I(G− v;−1)− I(G−N [v];−1).
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Thus, taking v to be an endpoint at P3k+1 − 2, we have

I(P3(k+1)−2;−1) = I(P3k+1 − v;−1)− I(P3k+1 −N [v];−1)

= I(P3k;−1)− I(P3k+1;−1)

= (−1)k − (−1)k

= 0.

Using the above case, we also notice that,

I(P3(k+1)−1;−1) = I(P3k+2;−1)

= I(P3k+2 − v;−1)− I(P3k+2 −N [v];−1)

= I(P3k+1;−1)− I(P3k);−1)

= 0− (−1)k

= (−1)(−1)k

= (−1)k+1.

Similarly, using the two cases above we can also prove that

I(P3(k+1);−1) = I(P3k+3;−1)

I(P3(k+1)−1;−1) = I(P3k+3 − v;−1)− I(P3k+3 −N [v];−1)

= I(P3k+2;−1)− I(P3k+1);−1)

= (−1)k+1 − 0

= (−1)k+1.

The result then follows by induction. For proof of part 2, we apply the result we

achieved in part 1. First, let n ≥ 1, then for every vertex v in each respective graph,
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we have the following.

I(C3n;−1) = I(C3n − v;−1)− I(C3n −N [v];−1)

= I(P3n−1;−1)− I(P3(n−1);−1)

= (−1)n − (−1)n−1

= (−1)n + (−1)(−1)n−1

= (−1)n + (−1)n

= 2(−1)n.

Also,

I(C3n+1;−1) = I(C3n+1 − v;−1)− I(C3n+1 −N [v];−1)

= I(P3n;−1)− I(P3n−2;−1)

= (−1)n − (−1)n−1

= (−1)n − 0

= (−1)n.

Finally,

I(C3n+2;−1) = I(C3n+2 − v;−1)− I(C3n+2 −N [v];−1)

= I(P3n+1;−1)− I(P3n−1;−1)

= I(P3(n+1)−2;−1)− I(P3n−1;−1)

= (−1)n − (−1)n−1

= 0− (−1)n

= (−1)(−1)n

= (−1)n+1.
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In this Subsection, we have investigated the independence polynomial of a graph

in general. One may question how the independence polynomial of the union of two

disjoint graphs looks in relation to the independence polynomials of the individual

graphs. The following result will help us take a closer look into the matter.

Proposition 2.2.5. Let G1 and G2 be disjoint graphs and let G = G1 ∪G2, then

I(G;x) = I(G1;x)I(G2;x).

Proof. Let two disjoint graphs G1 and G2 with G1 ∪G2 = G be given. Consider the

independence polynomial of the graph G we have

I(G;x) =
∑
k

ik(G)xk

=
∑
k

ik(G1 ∪G2)x
k

=
∑
k

(
k∑

l=0

il(G1)ik−l(G2)

)
xk

=

(∑
k

ik(G1)x
k

)(∑
k

ik(G2)x
k

)

= I(G1;x)I(G2;x).

Now, we have gathered several useful tools that we can use in the exploration of

Cutler and Kahl’s density results in the next section.
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Chapter 3

Density Results by Cutler and

Kahl

We aim to prove the following density result.

Theorem 3.0.1. For each odd integer q ∈ [0, 2k], there is a connected (k, q)ϕ-graph

Gv such that either

I(Gv;−1) = ⟨2k−1, 2k−1 − q⟩

or

I(Gv;−1) = ⟨−2k−1 + q,−2k−1⟩.

In order to achieve that goal, we take a closer look at the techniques contributed

by Cutler and Kahl [2] in attempts to prove the following result that Levit and

Mandrescu first conjectured.

Theorem 3.0.2 (Cutler and Kahl 2016). For every positive integer k and each integer

q such that |d| ≤ 2k, there is a graph G with ϕ(G) = k and I(G;−1) = q.

We will see that the techniques used by Cutler and Kahl are noticeably useful in
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proving the density results for our new upper bound.

3.1 (k, q)ϕ-graphs, Brackets, Extensions, and Past-

ing

In order to prove the density results, Cutler and Kahl developed a few operation tools

and techniques. These techniques include a special type of graph called a (k, q)ϕ-graph

along with a few construction tools such as bracket, extension, and pasting. We begin

by introducing the key definitions and then providing examples and illustrations for

each concept.

Definition 3.1.1. Let G be a graph and v ∈ V (G). The rooted graph of G at v,

denoted Gv is defined to be simply the graph G with the vertex v labeled.

Suppose G is a non-empty graph. Consider an arbitrary vertex v ∈ G. By

Corollary 2.2.3, we have

I(G;−1) = I(G− v,−1)− I(G−N [v];−1)

This understanding leads us to the following definition.

Definition 3.1.2. (Bracket). Let G be a graph and v ∈ V (G) be a vertex of graph

G. Let

I(G− v;−1) = a

and

I(G−N [v];−1) = b

We have,

I(G;−1) = a− b
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Figure 3.1: Rooted graphs Gv and Hw before pasting

Now, we can define the bracket of G as I(G;−1) = a− b = ⟨a, b⟩. We will define

the graph obtained by pasting two rooted graphs together below.

Definition 3.1.3. If Gv and Hw are two rooted graphs, we define the graph Gv ∧Hw

to be the graph obtained by pasting Gv and Hw together by identifying v with w.

We write u = v for short.

We will consider the example below for a better comprehension of how the pasting

operation works.

Example 1. Consider the following example of the pasting operation. Let Gv andHw

be two distinct graphs rooted at v and w respectively. The figures below demonstrate

the pasting operation that joins Gv and Hw.

Figures 2 and 3 give us a clear visualization of the pasting operation. The opera-

tion opens up our path for constructing graphs with the brackets we are looking for

and thus, guides us to the pasting lemma below.

Lemma 3.1.1. (Pasting Lemma) Let Gv and Hw be rooted graphs which are disjoint.

Let the brackets of Gv and Hw have brackets I(Gw;−1) = ⟨a, b⟩ and I(Hw,−1) = ⟨c, d⟩

then

I(Gv ∧Hw;−1) = ac− bd = ⟨ac, bd⟩.
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Figure 3.2: Graph Gv ∧Hw

Proof. By definition of the bracket we have

I(G− v;−1) = a

I(Gv −N [v];−1) = b

and

I(Hw − w;−1) = c

I(Hw −N [w],−1) = d.

Then, because Gv and Hw are disjoint and pasted together at v and w, we have

I(Gv ∧Hw;−1) = I(Gv ∧Hw − v;−1)− I(Gv ∧Hw −N [v];−1)

Then, by Proposition 2.2.5, we obtain

I(Gv ∧Hw;−1) = I(Gv − v;−1)I(Hv − v;−1)− I(Gv −N [v];−1)I(Hv −N [v];−1).
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Figure 3.3: The l-extension of C3

Since we know v = w, we can rewrite the equation above as

I(Gv ∧Hw;−1) = I(Gv − v;−1)I(HW − w;−1)

− I(Gv −N [v];−1)I(Hw −N [w];−1)

= ac− bd

= ⟨ac, bd⟩.

Another helpful graph construction tool in our toolbox is the extension operation

which is defined below.

Definition 3.1.4. Let Gv be a rooted graph and integer l ≥ 0. An l-extension,

denoted Gl
v is defined to be the graph obtained by pasting a path of length l to Gv

at v and an endpoint of the path. In this manner, G0
v is an alternative way to denote

Gv.

For a better understanding of how this tool works, we will illustrate this useful

operation in the example below.

Example 2. (l-extension of C3). We hereby illustrate a graph C3. Consider Gv = C3,

then its extensions are G0
v = C0

3 , G
1
v = C1

3 , G
2
v = C2

3 for l = 0, 1, 2 respectively (Figure

3.3).

Having the above construction tools in hand, we now see the relationship between
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ϕ(G) and β(G) with more clarity. The following example is one of the observations

that now become more obvious using the pasting operation.

Example 3. An interesting observation is that β(G) = ϕ(G) for infinitely many

graphsG with non-3̃-cycles. We can use the pasting operation to construct an example

that allows us to join disjoint cycles n times, with n ≥ 1. Consider a non-3̃-cycle C5

extended by 1, we can let

G = C1
5 ∧ C1

5 ∧ ... ∧ C1
5 .

Then, for each integer n ≥ 1, we observe that there exist n disjoint cycles, so the

cyclomatic number for G is β(G) = n. In addition, to make G acyclic, or to make

sure there are no more cycles in G, we need to delete at least one vertex from each

cycle. Therefore, the decycling number ϕ(G) is also n. Since there are infinitely many

integers n, we have as many graphs G with β(G) = ϕ(G). We used C1
5 only, so each

cycle is a C5 where 5 is not divisible by 3, so each cycle in G is a non-3̃-cycle.

We have seen how the tool of pasting sheds light on our exploration of graphs

with cycles. Now, one may ask what happens to the brackets when we apply the

l-extension on a graph. Interestingly, there are changes in the brackets of the graph

in that case. The intriguing pattern for them is shown in the lemma below.

Lemma 3.1.2 (Extension Lemma). Let Gv be a rooted graph with bracket I(Gv;−1) =

⟨a, b⟩ = a− b, then

I(G1
v;−1) = −b = ⟨a− b, a⟩

I(G2
v;−1) = −a = ⟨−b, a− b⟩

I(G3
v;−1) = b− a = ⟨−a,−b⟩ = −⟨a, b⟩ = −I(Gv;−1)
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Proof. Suppose I(Gv;−1) = a− b = ⟨a, b⟩, then, by corollary 2.4

I(G1
v;−1) = I(G1

v − v;−1)− I(G1
v −N [v];−1)

= I(G0
v;−1)− I(G0

v − v;−1)

= (a− b)− a

= −b

= ⟨a− b, a⟩.

Similarly,

I(G2
v;−1) = I(G2

v − v;−1)− I(G2
v −N [v];−1)

= I(G1
v;−1)− I(G0

v − v;−1)

= −b− (a− b)

= ⟨−b, a− b⟩,

and

I(G3
v;−1) = I(G3

v − v;−1)− I(G3
v −N [v];−1)

= I(G2
v;−1)− I(G1

v − v;−1)

= −a− (−b)

= ⟨−a,−b⟩.
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We notice that

−a− (−b) = −(a− b)

= −⟨a, b⟩

= −I(Gv;−1).

Hence, we have I(G3
v;−1 = b− a = ⟨−a,−b⟩ = −⟨a, b⟩ = −I(Gv;−1).

Remark. Alternatively, we can also observe that for a rooted graph Gv, we have

(Gl
v)

1 = Gl+1
v for any integer l ≥ 0. For example, if we extend Gv by 2, we get the

same graph G2
v as extending G1

v by 1. Thus G2
v = (C1

v )
1. So, if we have I(G1

v;−1) =

⟨a− b, a⟩, we can easily obtain that I(G1
v;−1) = ⟨a− b, a⟩. We can reapply the first

statement to the later extension of the graph Gv.

Example 4. Brackets of C6. Now, we will work with an example to get a better

hold of how the bracket and extension work on a cycle graph. Let a vertex v ∈ V (C6)

then,

I(C6;−1) = I(C6 − v;−1)− I(C6 −N [v];−1)

= I(P5;−1)− I(P3;−1)

= (−1)2 − (−1)

= 1− (−1)

= ⟨1,−1⟩.

Then using the extension lemma gives us the following brackets for each extension of
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C6

I(C1
6) = ⟨1− (−1), 1⟩

= ⟨2, 1⟩,

I(C2
6) = ⟨2− 1, 2⟩

= ⟨1, 2⟩,

I(C3
6) = ⟨1− 2, 1⟩

= ⟨−1, 1⟩,

I(C4
6) = ⟨−1− 1, 1⟩

= ⟨−2, 1⟩,

I(C5
6) = ⟨−2− (−1),−2⟩

= ⟨−1,−2⟩,

I(C6
6) = ⟨−1− (−2),−1⟩

= ⟨1,−1⟩

= I(C6;−1).

We observe that I(C6
6 ;−1) = ⟨1,−1⟩ = I(C6;−1). This observation demonstrates

that the patterns of the brackets for extensions of a graph repeat after six times

of extension. We can see that there is a cyclic tendency in the nature of the set

of brackets for these extended graphs. Using the same method, we obtain several

brackets for extensions of a few common graphs summarized in the following table.
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l I(C l
6;−1) I(C l

5;−1) I(P l
5;−1)

0 ⟨1,−1⟩ ⟨0,−1⟩ ⟨0,−1⟩

1 ⟨2, 1⟩ ⟨1, 0⟩ ⟨1, 0⟩

2 ⟨1, 2⟩ ⟨1, 1⟩ ⟨1, 1⟩

3 ⟨−1, 1⟩ ⟨0, 1⟩ ⟨0, 1⟩

4 ⟨−2,−1⟩ ⟨−1, 0⟩ ⟨−1, 0⟩

5 ⟨−1,−2⟩ ⟨−1,−1⟩ ⟨−1,−1⟩

6 ⟨1,−1⟩ ⟨0,−1⟩ ⟨0,−1⟩

Example 5. We consider the extension operation on the path graph P5. Let v ∈

V (P5) be an endpoint of the path. Then,

I(P5; 1) = I(P5 − v;−1)− I(P5 −N [v];−1)

= I(P4;−1)− I(P3;−1)

= 0− (−1)

= ⟨0,−1⟩.

Applying the Extension Lemma yields,

I(P 0
5 ;−1) = ⟨0,−1⟩,

I(P 1
5 ;−1) = ⟨1, 0⟩,

I(P 2
5 ;−1) = ⟨1, 1⟩,

I(P 3
5 ;−1) = ⟨0, 1⟩,

I(P 4
5 ;−1) = ⟨−1, 0⟩,

I(P 5
5 ;−1) = ⟨−1,−1⟩,

I(P 6
5 ;−1) = ⟨0,−1⟩.
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Remark. We again notice that the bracket of an extension of length 6 P 6
5 is the

same as the bracket of the original graph P 0
5 . In fact, we can prove this pattern in a

generalized manner.

Proposition 3.1.3. Let Gv be a rooted graph with I(Gv;−1) = a− b = ⟨a, b⟩, then

I(Gv;−1) = I(G6
v;−1).

Proof. If Gv is a rooted graph at v with I(Gv;−1) = a − b = ⟨a, b⟩, then by the

extension lemma, we have

I(G3
v;−1) = b− a = ⟨−a,−b⟩ = −⟨a, b⟩ = −I(Gv;−1),

I(G4
v;−1) = ⟨−a− (−b),−a⟩ = ⟨b− a,−a⟩,

I(G5
v;−1) = ⟨b− a− (−a), b− a⟩ = ⟨b, b− a⟩,

I(G6
v;−1) = ⟨b− (b− a), b⟩ = ⟨a, b⟩.

Recall that I(Gv;−1) = a − b = ⟨a, b⟩, we conclude that I(G6
v;−1) = ⟨a, b⟩ =

I(Gv;−1).

This proposition illustrates that the bracket of extensions to a graph shows a cycling

phenomenon. In other words, the brackets for the extensions of a graph are cyclic and

repeat every time we complete an extension of 6. Therefore, we can use this result

to find the I(Gl
v;−1) of any length l of extension using mod 6. The bracket for any

length of extension l ≥ 6 can be found in the table of brackets for l < 6.
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3.2 Results on (k, q)ϕ-graphs

Cutler and Kahl were successful at proving the density result that was first conjectured

by Levit and Mandrescu. The techniques they used and their results are helpful for

our density proof. Now that we explored the techniques, we can look at the outline

of the density proof. Since we will alter their result and walk through a detailed

version in Chapter 4 when we show our results, in this subsection we will only briefly

discuss the logic behind their proof to avoid repetition. For brevity, Cutler and Kahl

introduced the (k, q)ϕ-graph definition and a relevant lemma.

Definition 3.2.1. Let k be a positive integer and q be an integer such that |q| ≤ 2k.

A graph with ϕ(G) = k and I(G;−1) = q is called a (k, q)ϕ-graph.

Lemma 3.2.1. Let G and H be disjoint connected (k1, q1)ϕ and (k2, q2)ϕ-graphs,

respectively. Set k1 + k2 = k and q1q2 = q, then there exists a connected (k, q)ϕ-graph

F such that ϕ(F ) = k1 + k2 = k and I(F ;−1) = q1q2 = q = I(G ∪H;−1).

Proof. Let G = Gv and H = Hw and let

I(Gv;−1) = ⟨a, b⟩ = q1

I(Gv;−1) = ⟨c, d⟩ = q2.

By the Extension Lemma, we have that

I(G1
v;−1) = ⟨a− b, a⟩ = ⟨q1, a⟩

I(G2
v;−1) = ⟨−b, q1⟩.
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Similarly, we also have

I(H1
w;−1) = ⟨c− d, c⟩ = ⟨q2, c⟩

I(H2
w;−1) = ⟨−d, q2.⟩.

Now, applying the Pasting Lemma yields

I(G2
v ∧H2

w;−1) = ⟨bd, q1q2⟩.

We apply the Extension Lemma again to get

I((G2
v ∧H2

w)
1;−1) = ⟨bd− q1q2, bd⟩ = −q1q2.

Recall that we can do more than one application of Extension Lemma for the length

of 3,

I((G2
v ∧H2

w)
1)3;−1) = I((G2

v ∧H2
w)

4;−1)

= −I((G2
v ∧H2

w)
1;−1)

= −(−q1q2)

= q.

Set (G2
v ∧H2

w)
4 = F for brevity. Then, we have I(F,−1) = q1q2 = q. Since G and H

are disjoint, we have I(H ∪ G;−1) = I(G;−1)I(H;−1) = q1q2 = q. The operations

of extension and pasting do not add any cycles to the graph F so the decycling

number of F remains unchanged. Thus, we have ϕ(F ) = k1 + k2 = k. Hence, F is a

(k, q)ϕ-graph.

Corollary 3.2.2. If G is a (k, q)ϕ-graph, then there exists
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1. a connected (k + 1, 2q)ϕ-graph

2. a connected (k,−q)ϕ-graph.

Lemma 3.2.3. Let k ≥ 1 be an integer. For every odd integer g ∈ [0, 2k] there is

a (k, q)ϕ-graph Gv such that either I(Gv;−1) = ⟨2k, 2k − q⟩ or I(Gv;−1) = ⟨−2k +

q;−2k⟩.

Proof. The idea is to use induction on k. If k = 1, then ϕ(C1
6) = 1 and I(C1

6 ;−1) =

⟨2, 1⟩ = 2− 1 = 1. Therefore, we have a graph Gv with q = 1 in the form of

I(Gv;−1) = ⟨21, 21 − q⟩.

Thus, the result holds for k = 1. Suppose the result holds for k− 1 and let q ∈ [0, 2k]

be an odd integer. We now consider two cases: q ∈ [2k−1, 2k] and q ∈ [0, 2k].

Case 1: In the first case, if q ∈ [2k−1, 2k] is an odd integer, then there exists an odd

integer r ∈ [0, 2k−1] with q = 2k−r. By assumption, there exists a (k−1, 2k−1−

r)ϕ-graph Gv such that either

I(Gv;−1) = ⟨2k−1, 2k−1 − (2k−1 − r)⟩

= ⟨2k−1, r⟩,

or

I(Gv,−1) = ⟨−2k−1 + (2k−1 − r,−2k−1⟩

= ⟨−r,−2k−1⟩.

If I(Gv;−1) = ⟨2k−1, r⟩, since we have I(C1
6 ;−1) = ⟨2, 1⟩ (see Example 4 for

computation) and ϕ(C1
6) = 1, we can apply the Pasting Lemma to join Gv and
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C1
6 which yields

I(Gv ∧ C1
6 ;−1) = ⟨(2)2k−1, (1)r⟩

= ⟨2k, r⟩

= ⟨2k, 2k − q⟩.

If I(Gv,−1) = ⟨−r,−rk−1⟩, then we can, again, use the Pasting Lemma to join

C2
6 to Gv, and achieve

I(Gv ∧ C2
6 ;−1) = ⟨(1)(−r), (2)(−2k−1)⟩

= ⟨−r,−2k⟩

= ⟨−2k + q,−2k⟩.

Additionally, we have ϕ(Gv∧C2
6) = l−1+1 = k. Hence, Gv∧C2

6 is a k, q-graph

with I(Gv∧C2
6) = ⟨−2k+1,−2k⟩. Thus, it follows by induction for odd integers

q ∈ [2k − 1, 2k].

Case 2: If q ∈ [0, 2k−1] is an odd integer, then q = 2k − r for an odd integer r ∈

[2k−1, 2k]. Now, by Case 1, there is a (k, q)ϕ-graph Gv such that either

I(Gv;−1) = ⟨2k, 2k − r⟩

or

I(Gv;−1) = ⟨−2k + r,−2k⟩.

If I(Gv;−1) = ⟨2k, 2k − r⟩ = ⟨2k, q⟩, then by Extension Lemma, we have

I(G3
v;−1) = ⟨−2k,−q⟩,

I(G4
v;−1) = ⟨−2k + q,−2k⟩
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Therefore, we have G4
v as a (k, q)ϕ-graph with I(G2

v;−1) = ⟨−2k + q,−2k⟩

which yields q using the bracket. Furthermore, if I(Gv;−1) = ⟨−2k + r,−2k⟩ =

⟨−q,−2k⟩, then by the Extension Lemma, we have

I(G1
v;−1) = ⟨2k − q,−q⟩

I(G2
v;−1) = ⟨2k, 2k − q⟩.

Thus, we have G2
v as a (k, qϕ)-graph with I(G2

v : −1) = ⟨2k, 2k − q⟩. The results

then will follow by induction for odd integer q ∈ [0, 2k−1].

3.3 Density Results

In this subsection, we will prove the density results below using previous results from

Chapter 3. This result is foundational to our adaptation.

Theorem 3.3.1 (Cutler and Kahl 2016). Given a positive integer k and an integer

q with |q| ≤ 2k, there is a connected graph G with ϕ(G) = k and I(G;−1) = q.

Proof. By 3.2.1, we know disconnected (k, q)-graphs are suffice. Thus, it is not re-

quired to produce connected (k, q)-graphs for all |q| ≤ 2k.

Since I(G ∪ K1;−1) = 0 for all G, we can consider the case q = 0 done for all

integers k. The goal now is to prove this claim using induction on k. When k = 1

then I(C6;−1) = 2 = ⟨1,−1⟩ and, as noted in Table 1, when taking extensions of C6

we rotate through all members of {2, 1,−1,−2}. Thus, the theorem holds for k = 1.

Suppose (k, q)ϕ-graphs are constructible for all q with |q| ≤ 2k−1. By Corollary

3.2.2 (a), we have (k, q)ϕ-graphs that are constructible for all even integers q. By

Corollary 3.3.2.2(b), we only need to construct a (k, q)ϕ-graphs with positive q ≤ 2k.
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Thus, if we can construct (k, q)ϕ-graphs for each odd integer q ∈ [0, 2k]. Now, in the

proof of Lemma 3.2.3 we already show that it is constructible. Thus, by Lemma 3.2.3,

we complete the induction which completes the proof.
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Chapter 4

Our Results

We have gathered the tools and concepts needed to prove the results we introduced

earlier in the first section. We will present our proofs of the upper bound, the density

proof related to it, and the two lemmas that help us arrive at the density proof for

which we adapt Cutler and Kahl’s method in the previous sections. We begin with

a step-by-step proof of the new bound in Section 4.1. The idea is to use previous

results by Levit and Mandrescu on the graphs with non-3̃-cycles used by Cao and

Ren. Then we prove the relevant density results in Section 4.2.

4.1 Our upper bound

Using previous results by Cao and Ren, and Levit and Mandrescu, we are able to

remove the condition that G must contain no vertices of degree one. This result

helps us strengthen the upper bound which will be proved below using induction on

the cyclomatic number β(G). Given that the graph G contains non-3̃-cycle, we will

consider two main cases of whether or not there are intersecting cycles in G.

Theorem 4.1.1. If a graph G contains a non-3̃-cycle, for all β(G) ≥ 1, we have
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|I(G;−1)| ≤ 2β(G)−1.

Proof. We want to show that in graphs with non-3̃-cycles, for all β(G) ≥ 1,

|I(G;−1)| ≤ 2β(G)−1.

We establish the proof by induction on β(G). If β(G) = 1, we can evaluate both sides

as follows. For the left hand side, by Theorem 1.2.5 we have |I(G;−1)| ≤ 2β(G)−β(G).

Thus,

|I(G;−1)| ≤ 21 − 1 = 1.

Computing the right hand side yields 2β(G)−1 = 21−1 = 20 = 1. Therefore, we have

that |I(G;−1)| ≤ 2β(G)−1 holds for β(G) = 1.

Now, let G be a graph with β(G) ≥ 2. Let β(G) = k + 1 where β(G) ≥ 2, then

we have k = β(G) − 1. We need to consider two cases: if G has intersecting cycles

and if all cycles in G are pairwise disjoint.

Case 1: If there are intersecting cycles, then there exists a vertex v that is on at least

two cycles. It follows that when we remove this vertex v, we will delete at least

two cycles in G. Thus, we can choose this vertex v such that β(G− v) ≤ k− 1.

Using Proposition 2.2.2 we know I(G;−1) = I(G− v;−1)− I(G−N [v];−1).

But then, by triangle inequality we have

I(G;−1) = |I(G−v;−1)− I(G−N [v];−1| ≤ |I(G−v;−1)|+ |I(G−N [v];−1|.

Thus, we can write

|I(G;−1)| ≤ |I(G− v;−1)|+ |I(G−N [v];−1)| = 2k−1 + 2k−1 = 2(2k−1) = 2k.
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Since k = β(G)− 1, by substituting k = β(G)− 1, we get

|I(G;−1)| ≤ 2β(G)−1.

Case 2a If there are 3̃-cycles in G and all cycles are vertex disjoint. Then, there

exists an arbitrary 3̃-cycle, say C, in G. We can pick a vertex u on cycle C in

G. Then, by induction hypothesis β(G − u) ≤ k and G − u contains a non-3̃-

cycle. We consider when β(G−N [u]) ≤ k − 1 and when β(G−N [u]) = k.

Subcase 2a(i) Consider when removing the neighborhood including u, we have

β(G− [u]) ≤ k − 1.

Then,

|I(G;−1) ≤ |I(G− u;−1)|+ |I(G−N [u],−1)|.

It is enough to prove that I(G − u;−1) ≤ 2k−1 and |I(G − N [u],−1)| ≤ 2k−1.

By induction hypothesis, we have I(G−u;−1) ≤ 2k−1. Also, by Theorem 1.2.2,

|(G−N [u],−1)| ≤ 2k−1. Thus, we have

|I(G;−1)| ≤ 2k−1 + 2k−1 = (2)2k−1 = 2k

Recall that β(G) = k + 1 by assumption. We get

|I(G;−1)| ≤ 2β(G)−1.

Subcase 2a(ii) If β(G) − N [u]) = k then G − N [u] contains a non-3̃-cycle. In

that case, we have

|I(G;−1) ≤ |I(G− u;−1)|+ |I(G−N [u],−1)|.
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Then by induction hypothesis we have,

|I(G;−1) ≤ 2k−1 + 2k−1 = 2(2k−1) = 2k = 2β(G)−1.

Case 2b If all cycles in G are non-3̃-cycles, then we can apply the induction hypoth-

esis. Specifically, we have β(G−u) ≤ k and β(G−N [u]) ≤ k Let u be a vertex

on the 3̃-cycle, then β(G− u) ≤ k and G− u contains non-3̃-cycles.

Then by induction hypothesis, we have I(G − u;−1) ≤ 2k−1. Also, if G −

N [u] contains a cycle then it must be a non-3̃-cycle, thus, induction hypothesis

applies, yields I(G−N [u];−1) ≤ 2k−1. If there is no cycle, then using Theorem

1.2.2 we have

|I(G−N [u];−1) ≤ 2β(G) = 20 = 1.

Otherwise, we know 1 < 2k−1. Thus, using Theorem 1.2.2, we achieve

|I(G;−1)| ≤ 2k−1 + 2k−1 = 2(2k−1) = 2k = 2β(G)−1.

We have proved the upper bound for all graph G that contains non-3̃-cycle. In

the next subsection, we will prove the density results related to this strengthened

bound.

4.2 Our density result

In this subsection, we aim to adapt Cutler and Kahl’s density result [2] for the new

bound above. We will include a detailed proof after introducing and proving two

lemmas below. These two lemmas will be useful in proving the density theorem later.

Lemma 4.2.1. Let G and H be two disjoint graphs. The cyclomatic number of the
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Figure 4.1: P2, P3 and their disjoint union

disjoint union of G and H is equal to the sum of their respective cyclomatic numbers.

β(G ∪H) = β(G) + β(H)

Proof. The cyclomatic number β of a graph G is given as,

β(G) = e(G)− n(G) + q(G),

where e(G) is the number of edges, n(G) is the number of vertices, and q(G) is the

number of components of G. Let G be a graph and H be another graph disjoint from

G. Let I be the disjoint union of graphs G and H, so that I = G∪H. (See Figure 5

for an example.)

Then, we have

e(I) = e(G) + e(H),

n(I) = n(G) + n(H),

q(I) = q(G) + q(H).
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Figure 4.2: Graph Gv and Hw

Then the cyclomatic number β(I) is given by

β(I) = e(I)− n(I) + q(I)

= e(G) + e(H)− (n(G) + n(H)) + q(G) + q(H)

= e(G)− n(G) + p(G) + e(H)− n(H) + q(H)

= β(G) + β(H).

The next lemma shows the cyclomatic number of a graph constructed by pasting

two rooted graphs together.

Lemma 4.2.2. Let two rooted graphs Gv and Hw be rooted at v and w respectively.

If we paste Gv and Hw together at v and w, then

β(Gv ∧Hw) = β(Gv) + β(Hw).

Proof. The two graphs Gv and Hw are pasted at v and w. Consider e(Gv ∧Hw). The

number of edges remains unchanged, so

e(Gv ∧Hw) = e(Gv) + e(Hw).

Now, consider the number of vertices, since after pasting v = w, we lose one vertex.

Thus, we have n(Gv∧Hw) = n(Gv)+n(Hw)−1. Consider the number of components

43



Figure 4.3: Gv and Hw pasted at v = w

of Gv ∧Hw. When the two disjoint graphs are pasted together, two components are

now joined at v = w, so, the initial disjoint two components containing v and w

become one component. Hence, we have

q(Gv ∧Hw) = q(Gv) + q(Hw)− 1.

Now, by definition, the cyclomatic number of Gv ∧Hw is given as:

β(Gv ∧Hw) = e(Gv ∧Hw)− n(Gv ∧Hw) + q(Gv ∧Hw).

Hence, the cyclomatic number of (Gv ∧Hw) can also be expressed as:

β(Gv ∧Hw) = e(Gv) + e(Hw)− [n(Gv) + n(Hw)− 1] + [q(G) + q(Hw)− 1]

= e(Gv) + e(Hw)− [n(Gv) + n(Hw)] + 1 + [q(G) + q(Hw)]− 1

= e(Gv) + e(Hw)− n(Gv)− n(Hw) + q(G) + q(Hw)

= e(Gv)− n(Gv) + q(Gv) + e(Hw)− n(Hw) + q(Hw)

= β(Gv) + β(Hw)
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Recall that by Lemma 4.2.1, we have

β(Gv ∪Hw) = β(Gv) + β(Hw).

So, we also have

β(Gv ∧Hw) = β(Gv) + β(Hw) = β(Gv ∪Hw).

Definition 4.2.1. Let k be a positive integer and q be an integer such that |q| ≤ 2k.

A graph with β(G) = k and I(G;−1) = q is called a (k, q)β-graph.

With Lemma 4.2.1 and Lemma 4.2.2 confirmed, we now begin proving the density

result for the following theorem adapted from Cutler and Kahl. The idea is to find

(k, q)β-graph for each pair of integer k, q. We define (k, q)β-graph above. Our goal is

to prove that for every pair of integers k and q we can find the desired (k, q)β-graph,

including the cases for even and odd integers. To achieve this goal, we first prove

that it is possible to construct such a graph for odd integers in the theorem below.

Theorem 4.2.3. For each odd integer q ∈ [0, 2k], there is a connected (k, q)β-graph

Gv such that

1. I(Gv;−1) = ⟨2k−1, 2k−1 − q⟩

2. I(Gv;−1) = ⟨−2k−1 + q,−2k−1⟩.

Proof. We will follow the proof of Theorem 3.2.3 by Cutler and Kahl [2] explained in

Chapter 3. The proof uses induction on k. For k = 1, we see that that the bracket

C0
5 has the necessary form,

I(C0
5 ;−1) = ⟨0,−1⟩ = 0− (−1) = 1
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and

β(C0
5) = ⟨1, 0⟩ = ⟨20, 20 − 1⟩.

Suppose the hypothesis of the statement is true for k−1; we aim to find a (k, q)β-

graph for each odd q ∈ [0, 2k−1] with bracket ⟨2k−1, 2k−1 − q⟩ or ⟨−2k−1 + q,−2k−1⟩.

We consider two cases as follows.

Case 1: If q ∈ [2k−2, 2k−1], then q = 2k−1−r for some r ∈ [0, 2k−2] then we can prove

the lemma by induction. Specifically, by induction, there exists a (k− 1, 2k−2−

r)β-graph Hw such that either (subcase A)

I(Hw;−1) = ⟨2k−2, 2k−2 − (2k−2 − r)⟩

or (subcase B)

I(Hw;−1) = ⟨−2k−2 + (2k−2 − r,−2k−2⟩.

For subcase A, we have

I(Hw;−1) = ⟨2k−2, 2k−2 − (2k−2 − r)⟩ = ⟨2k−2, r⟩.

But then, we know I(C1
6 ;−1) = ⟨2, 1⟩ (see Example 4 for computation) and

β(C1
6) = 1. Thus, using the Pasting Lemma we get

I(Hw ∧ C1
6 ;−1) = ⟨2k−2(2), r(1)⟩

= ⟨2k−1, r⟩

= ⟨2k−1, 2k−1 − q⟩.

Note that by Lemma 4.2.2, we proved that for any pair of distinct rooted graphs
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Gv and Hw,

β(Hw ∧ C1
6) = β(Hw) + β(C1

6) = k − 1 + 1 = k.

Hence, Hw ∧ C1
6 is a (k, q)β-graph with I(Hw ∧ C1

6) = ⟨2k−1, 2k−1 − q⟩ which

yields q using the bracket. Thus, it follows by induction for odd integers q ∈

[2k−2, 2k−1].

For subcase B, we have

I(Hw;−1) = ⟨−r,−2k−2⟩.

But then, we can use the pasting operation and Pasting Lemma on Hw and C2
6 .

Since I(C2
6) = ⟨1, 2⟩, we have

I(Hw ∧ C2
6 ;−1) = ⟨−r(1),−2k−2(2)⟩

= ⟨−r,−2k−1⟩

= ⟨−2k−1 + q,−2k−1⟩.

Note that by Lemma 4.2.2, we also know

β(Hw ∧ C2
6) = β(Hw) + β(C2

6)

= k − 1 + 1 = k.

Case 2: If q ∈ [0, 2k−2], then there exists an odd r ∈ [2k−2, 2k−1] such that

q = 2k−1 − r.

By Case 1, we know that there exists at least a (k, q)β-graph Hw with a bracket
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determined as either (subcase A)

I(Hw;−1) = ⟨2k−1, 2k−1 − r⟩

or (subcase B)

I(Hw;−1) = ⟨−2k−1 + r,−2k−1⟩.

For subcase A we have independence polynomial for Hw at −1 determined with

bracket

I(Hw;−1) = ⟨2k−1, q⟩ = ⟨2k−1, 2k−1 − r⟩

Recall that we can extend any rooted graph with extension operation as many

times as we need. Then, using the Extension Lemma, we can determine brackets

for each case as follows,

I(H0
w;−1) = ⟨2k−1, q⟩

I(H1
w;−1) = ⟨2k−1 − q, 2k−1⟩

I(H2
w;−1) = ⟨−q, 2k−1 − q⟩

I(H3
w;−1) = ⟨−2k−1,−q⟩

I(H4
w;−1) = ⟨−2k−1 + q,−2k−1⟩.

Note that when we use extension operation on Hw, each extended vertex adds

one edge to the graph. In addition, we add no new components in this operation.

Thus, the cyclomatic number

β(H2
w) = e(H2

w)− n(H2
w) + q(H2

w)

= β(Hw) + 2− 2

= k − 2 + 2 = k.
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Therefore, we have β(Hw) = β(H2
w) = β(H4

w) = k. Thus H4
w is a (k, q)β-graph

with I(H4
w;−1) = ⟨−2k−1 + q,−2k−1⟩ which yields q using the bracket.

For subcase B, we have that the independence polynomial for Hw can be deter-

mined using the bracket I(Hw;−1) = ⟨−q,−2k−1⟩. Then, using the Extension

Lemma, we get the following results,

I(H0
w;−1) = ⟨−q,−2k−1⟩

I(H1
w;−1) = ⟨2k−1 − q, q⟩

I(H2
w;−1) = ⟨2k−1, 2k−1 − q⟩.

Thus, we have H2
w as a (k, q)β-graph with I(H2

w;−1) = ⟨2k−1, 2k−1 − q⟩. The

results then follow by induction for odd integer q ∈ [0, 2k − 1].

We now confirmed that the (k, q)β-graphs are constructible for all odd integers.

With 4.2.3 in hands, we can prove the density result below.

Theorem 4.2.4. Given a positive integer k and an integer q with |q| ≤ 2k−1, there

is a connected graph G with β(G) = k and I(G;−1) = q.

Proof. We follow the proof to Theorem 3.3.1. Let G = ∧k
i=1C

2
5 which means joining

C2
5 together k times using the pasting operation. We have

G = ∧k
i=1C

2
5 = C2

5 ∧ C2
5 ∧ ... ∧ C2

5 .

Then, we have β(G) = k and I(G;−1) = ⟨1, 1⟩ = 0. Thus, consider q = 0 true for all

k.

Our proof proceeds inductively on k. When k = 1 then I(C6;−1). When k = 1

then I(C1
6 ;−1) = ⟨2, 1⟩ = 2 − 1 = 20 = 1 as noted in Table 3.1. Now, assume that

(k − 1, q)β-graphs are constructible for all q ≤ 2k−1. We have that (k, q)β-graphs for
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even integers and negative integers q with |q| ≤ 2k−1 are constructible. Thus, we only

need to construct (k, q)β-graphs for odd integers in [0, 2k−1]. However, in the proof of

Theorem 4.2.3 above, we have proved, in detail, that such graphs are constructible.

Thus, by Theorem 4.2.3, we complete the induction for the proof.
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Chapter 5

Future Research

In this section, we discuss some questions for further research in both theoretical and

applied manners. As mentioned above, a significant result by Cao and Ren [1] has

led to new paths for investigation in the topic.

Theorem 5.0.1 (Cao and Ren 2020). Let G be a graph with non 3̃-cyles. If G

contains no vertices of degree one, then |I(G;−1)| ≤ 2β(G)−1.

Our results improved the bound by removing the condition of having no vertices of

degree one. Additionally, we proved a density result for the new bound. Cao and Ren

proved several other interesting results in their research. These results significantly

contribute to our knowledge of the independence polynomial of a graph at −1. For

example, Cao and Ren also proved the following results.

Theorem 5.0.2 (Cao and Ren 2020). If all cycles of G are pairwise disjoint, then

|I(G;−1)| ≤ 2k, where k is the number of 3̃-cycles of G.

This theorem by Cao and Ren suggests an interesting question for further inves-

tigation. The bound in Theorem 5.0.2 is for graphs whose all cycles are pairwise

disjoint. It will be helpful to check if we can improve this theorem to include graphs
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whose cycles are not pairwise disjoint. Furthermore, it is worth investigating whether

or not there is a density result for this new theorem. Exploration in these directions

will potentially help generalize the results and expand our current knowledge of the

topic.

In this thesis, we considered the upper bound of |I(G;−1)| in graphs that contain

non-3̃-cycles. A graph may contain several cycles with different lengths. It is possible

that a graph has both non-3̃-cycles and 3̃-cycles. We are interested in exploring how

the upper bound looks like for a graph containing both non-3̃-cycles and 3̃-cycles.

Let ϕ3̃(G) be the minimum number of vertices needed to remove from G so that G

contains no 3̃-cycles. Is it true that |I(G,−1)| ≤ 2ϕ3̃(G)?

On the mission of further investigation on the independence polynomial of a graph

at −1, we tested a preliminary question for this problem. We checked if it is true that

if ϕ3̃(G) = 0 then |I(G;−1) ≤ 1. Some experiments on the preliminary questions

suggest that the statement holds for some graphs with ϕ3̃ = 0.

Consider the following examples to further explore this topic. The graph C4

contains no 3̃-cycles, hence, we do not need to remove any vertex to destroy its 3̃-

cycles. Thus, we have ϕ3̃(C4) = 0. Evaluate the independence polynomial of C4 at

−1 yields

I(C4;−1) = 1 + 4x+ 2x2

= 1 + 4(−1) + 2(−1)2

= 1− 4 + 2 = −1.

Similarly, we have the independence polynomials of a few other non-3̃-cycles as follows.
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Computing the independence polynomial of C5, we get

I(C5;−1) = 1 + 5x+ 5x2

= 1 + 5(−1) + 5(−1)2

= 1− 5 + 5 = 1.

Carrying out the same task for C7 yields

I(C7;−1) = 1 + 7x+ 14x2 + 7x3

= 1 + 7(−1) + 14(−1)2 + 7(−1)3

= 1− 7 + 14− 7 = 1.

Similarly, for C8 we have

I(C8;−1) = 1 + 8x+ 20x2 + 16x3 + 2x4

= 1 + 8(−1) + 20(−1)2 + 16(−1)3 + 2(−1)4

= 1− 8 + 20− 16 + 2 = −1.

There seems to be a pattern that I(G,−1) ≤ 1 and rotating between −1 and 1 for

cycle graphs with ϕ3̃(G) = 0. The intriguing pattern above suggests that further

investigation into this direction is necessary. Note that besides cycle graphs like the

examples above, it will be helpful to experiment with more classes of graph with

ϕ3̃(G) = 0 such as book graphs (see Figure 5.1). If the base case can be proved, the

proof for graphs with ϕ3̃(G) ≥ 1 can be achieved by induction.

The topic of independence polynomials of graphs at −1 has been researched not

only for theoretical reasons but also for its usefulness in hard-sphere particle physics.

Therefore, collaborations between graph theorists and statistical physicists may also
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Figure 5.1: Book graphs

help with developing effective applied research and more applications of the topic.
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