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Abstract

This thesis investigates various problems related to the number of strong domi-
nating sets in a graph. Given a graph G, a set of vertices D is said to be dominating
if every vertex outside of D has a neighbor in D. Bród and Skupień proved that the
number of dominating sets in a tree T on n vertices is at most 2n�1 + 1. A set S of
vertices in a graph G is a strong dominating set if every vertex x outside of S has
a neighbor y 2 S with d(y) � d(x). We investigate the number of strong dominat-
ing sets in paths and binary trees. We also give bounds on the number of strong
dominating sets in regular graphs and trees.
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Chapter 1

Introduction

This chapter aims to introduce fundamental concepts of graph theory concerning

strong dominating sets and to explore existing questions associated with these sets.

We begin by defining key graph theory terminology crucial for the results presented

in this thesis. A graph G is an ordered pair G = (V,E), where V is a non-empty,

finite set and E ✓
�
V
2

�
, where

�
V
2

�
= {X ✓ V : |X| = 2}. The vertex set of G,

denoted V = V (G), is the set of all vertices in G. The edge set is denoted E = E(G)

and the elements of E are called edges [10]. Suppose u, v 2 V are the endpoints

of an edge. This edge is denoted uv and we say u and v are adjacent or they are

neighbors, denoted u ⇠ v. If e = uv, then the edge e is incident to the vertices u

and v. In the graph in Figure 1.1 the vertex set is {u, v, w, x, y} and the edge set is

{uv, uw, ux, vw, vx, wx, xy}. Furthermore, vertices u and v are neighbors whereas u

and y are not neighbors.

We will only deal with simple undirected graphs, graphs with no loops or multiple

edges. A simple graph is graph having no loops or multiple edges as shown in Figure

1.1. The degree of a vertex v in a graphG, denoted d(v) is the number of edges incident

to v. A leaf is a vertex of degree 1. The open neighborhood of v is the set of vertices
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Figure 1.1: An example of a simple graph.

which are adjacent to v. Symbolically we can represent the open neighborhood of v

as N(v) = {u 2 V (G) : uv 2 E(G)}, On the other hand, the closed neighborhood

of a vertex v is N [v] = N(v) [ {v}. For example, N(x) = {u, v, w, y}, whereas

N [x] = {x, u, v, w, y}. The size of the neighborhood, denoted |N(v)| is equal to d(v).

In the graph in Figure 1.1, we have d(x) = 4.

Our study is focused on dominating sets, specifically strong dominating sets in

particular classes of graphs. The study of dominating sets in graphs began around

1960, however, the subject has roots dating back to 1862 when de Jaenisch studied

the minimum number of queens necessary to dominate a chessboard [5]. In a broader

context, dominating sets find applications in diverse fields such as determining bus

routes, designing computer communication networks, and analyzing social network

dynamics [5]. Moreover, dominating sets are important in routing computations,

especially in the context of mobile networks.

Definition 1.0.1 (Dominating set). A subset D of the vertex set V (G), of a simple

graph G, is a dominating set if every vertex x 2 V \ D has a neighbor in D. We

denote the set of all dominating sets in a graph G by D(G) and @i(G) = |D(G)| be

the number of dominating sets in G.

In any simple graph G, there is at least one dominating set, namely the entire

vertex set V (G). For instance, consider the graph in Figure 1.1 once more. In this
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graph V (G) is {u, v, w, x, y} and to verify if V (G) is a dominating set D, we need each

vertex z 2 V (G)\D to have a neighbor inD. But every vertex z 2 V (G) is an element

of the dominating set D, so V \D is empty and by definition V (G) = {u, v, w, x, y}

is a dominating set. Another example of a dominating set is {x}. Since vertex x is

adjacent to the all the vertices in the graph, every other vertex has a neighbor in the

dominating set. To better understand dominating sets we will consider another graph

called the complete graph. A complete graph is a simple graph where all vertices are

pairwise adjacent; the complete graph with n vertices is denoted Kn. So, K3 is the

complete graph with 3 vertices as shown in Figure 1.2. We will list the dominating

sets in K3:

1. {x, y, z}; V (G) of a simple graph G is always a dominating set.

2. {x, y}; z which is an element of V \D has two neighbors in D namely x and y

or we say z is dominated by x and y.

3. {x, z}; y 2 V \D is dominated by x and z.

4. {y, z}; x 2 V \D is dominated by y and z.

5. {x}; y, z 2 V \D are dominated by x

6. {y}; x, z 2 V \D are dominated by y

7. {z}; x, y 2 V \D are dominated by z

So, there are 7 dominating sets in K3 or @i(K3) = 7. In short, the dominating sets

of K3 are all the subsets of V (K3) except for the empty set. So, @i(K3) = 23 � 1 = 7.

Note, in general @i(Kn) = 2n�1.

Now that we listed the dominating sets in K3, let’s consider a graph with more

dominating sets such as the graph in Figure 1.1. Notice x is adjacent to all the vertices
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in Figure 1.1 and is the only neighbor to y. Consequently every dominating set must

include either x or y, otherwise y will not be dominated:

As we have seen V (G) always forms a dominating set.

1. {u, v, w, x, y}

Any subset of V (G) of 4 vertices is a dominating set and there are
�
5
4

�
= 5 such

subsets.

2. {u, v, w, x}; y is dominated by x.

3. {u, v, w, y}; x is dominated by u, v, w, and y.

4. {u, v, x, y}; w is dominated by u, v, x, and y.

5. {u, w, x, y}; v is dominated by u, w, x, and y.

6. {v, w, x, y}; u is dominated by v, w, x, and y.

Any subset of V (G) with 3 vertices will form a dominating set except for {u, v, w}.

So there are
�
5
3

�
� 1 = 10� 1 = 9 such subsets:

7. {u, v, x}; w, y are dominated by x.

8. {u, v, y}; x, w are dominated by u.

9. {u, x, y}; v, w are dominated by x.

10. {u, w, x}; v, y are dominated by x.

11. {v, w, x}; u, y are dominated by x.

12. {v, w, y}; u, x are dominated by w.

13. {w, x, y};u, v are dominated by x

14. {v, x, y}; u, w are dominated by x

15. {u, w, y}; v, w are dominated by x

There are
�
5
2

�
= 10 subsets of size 2, however, {u, w}, {u, v}, and {v, w} do not

dominate y. The following subsets with 2 vertices do form dominating sets:
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16. {x, u}; v, w, y are dominated by x

17. {x, v}; u, w, y are dominated by x

18. {x, w}; u, v, y are dominated by x

19. {x, y}; u, v, w are dominated by x

20. {y, u}; v, w, x are dominated by u

21. {y, w}; u, v, x are dominated by w

22. {y, v}; u, w, x are dominated by v

Finally, the only subset of V (G) of size 1 that dominates G is {x}. There are 23

dominating sets in the graph in Figure 1.1.

A well-studied graph parameter in the context of domination is the domination

number, the smallest size of a dominating set. The domination number of a graph

denoted �(G), has been obtained for di↵erent classes of graphs. When we listed the

dominating sets in the graph in Figure 1.1, the smallest set was {x}. In this case, the

domination number is 1. Moreover, many upper and lower bounds on the domination

number have been obtained over the years [2]. We are interested in graphs that have

a substantial number of dominating sets or those with very few dominating sets. A

natural question one might ask is can we find lower and upper bounds of @i(G) over

various classes of graphs.

Since our focus has been on paths, trees, binary trees, and bipartite graphs we

define them now. A path is a list v0, e1, v1, e2, v2, . . . , ek, vk of vertices and edges with

no repeated vertices, where ei = vi�1vi for i = 1, 2, . . . , k. A path on n vertices is

denoted Pn. For example, P4 is displayed in Figure 1.3. A graph G is connected if for

each pair of vertices u, v 2 V (G) there is a path with endpoints u and v or a uv-path.

A cycle is a closed path - that is a path where the endpoints are the same vertex. On

the other hand a graph is acyclic if it contains no cycle. A forest is an acyclic graph

and a tree is a connected acyclic graph. A graph G is bipartite if V (G) is the union

of two disjoint independent sets; the vertices can be partitioned into independent
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Figure 1.2: The complete graph on 3 vertices, K3.
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c

d

Figure 1.3: P4

sets, called partite sets, such that there are no edges within the same partite set.

Furthermore, a complete bipartite graph is a type of bipartite graph in which every

vertex in one partition is connected to every vertex in the other partition, denoted

Kr,s, where r and s represent the number of vertices in each partition. A complete

balanced bipartite is a complete bipartite graph where the partitions are equal in size

or r = s. When r = s = 3 we have K3,3 as shown in Figure 1.5.

y

x

w

v

u

q r

Figure 1.4: An example of a tree.

a

d

e

c

e

b

f

Figure 1.5: An example of a complete balanced bipartite graph, specifically K3,3.
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Proposition 1.0.1. If G is a simple graph on n vertices then,

1  @i(G)  2n � 1.

Proof. For any simple graph G, the vertex set of the graph V (G) is a dominating set.

Then any simple graph has at least one dominating set. Any subset of V (G) could

be a dominating set apart from the empty set; the empty set is not a dominating set

D because each v 2 V \ D does not have a neighbor in D. For a simple graph G

on n vertices there is 2n � 1 non-empty subsets of V (G) or there is a most 2n � 1

dominating sets.

In Proposition 1.1, equality is attained on the left by the empty graph and on

the right by the complete graph. These bounds are in fact tight if there are no

restrictions imposed on the graph other than the number of vertices. Bród and

Skupień [2] determined upper and lower bounds for the number of dominating sets

in a tree. Recall a leaf is a vertex of degree 1. In Figure 1.4 vertices q, r, u, and y are

leaves.

Theorem 1.0.2. (Bród, Skupień 2006). If T is a tree on n vertices, then

cn5
bn/3c  @i(T )  2n�1 + 1,

where cn =

8
>>>>>><

>>>>>>:

1 if n ⌘ 0 (mod 3)

9/5 if n ⌘ 1 (mod 3)

3 if n ⌘ 2 (mod 3)

.

In Theorem 1.0.2 the maximum of the inequality, for a tree on n vertices, is

attained by the star. A star is tree consisting of one vertex adjacent to all the others

as shown in Figure 1.6. Note, when n = 4 and n = 5 the maximum is also attained
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x

y z s t

Figure 1.6: An example of a star.

by the path.

Inequalities that relate a graph and its complement are usually referred to as

Nordhaus-Gaddum inequalities. The following theorem from Wagner [9] provides

such an inequality for the number of dominating sets.

Theorem 1.0.3 (Wagner 2006). For any graph G on n vertices and its complement

@i(G), the inequality

@i(G) + @i(G) � 2n

holds, and this inequality is sharp.

Note equality is attained when G is the complete graph or the star. Wagner

proposed that determining the maximum of @i(G)+@i(G) as G ranges over all possible

graphs on n vertices would be much more di�cult. But Keough and Shane [6] proved

the next theorem.

Theorem 1.0.4 (Keough , Shane 2019). If G is a graph on n vertices, then

@i(G) + @i(G)  2n+1 � 2b
n
2 c � 2d

n
2 e�1

. (1.1)

Keough and Shane [6] conjecture the extremal graph is the complete balanced

bipartite graph, which leads to the following conjecture.
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Conjecture 1. For a graph G on n vertices,

@i(G) + @i(G)  2
⇣
2b

n
2 c � 1

⌘⇣
2d

n
2 e � 1

⌘
+ 2 (1.2)

= 2n+1 � 2b
n
2 c+1 � 2d

n
2 e+1 (1.3)

= @i(Kbn
2 c,d

n
2 e) + @i(Kbn

2 c,d
n
2 e) (1.4)

We say Kbn
2 c,d

n
2 e is almost a complete balanced bipartite graph. If n is even, as

described in the definition of a complete balanced bipartite graph, every vertex in

one part is connected to every vertex in the other part, and both parts have the same

number of vertices. If n is odd, then one part in Kbn
2 c,d

n
2 e has one more vertex than

the other part; we say it is as balanced as possible. Keough and Shane [6] verified

the conjecture computationally for all graphs on at most 10 vertices. Wagner sug-

gested that this conjecture is heuristically reasonable, as both the complete balanced

bipartite graph and its complement can be dominated by only two vertices. We can

compare the upper bound in Theorem 1.0.4 to the upper bound in the conjecture

in Keough and Shane’s conjecture by examining (1.1) and (3). Since, 2n+1 = 2n+1,

2b
n
2 c+1

> 2b
n
2 c, and 2d

n
2 e+1

> 2d
n
2 e�1 we have,

2n+1 � 2b
n
2 c+1 � 2d

n
2 e+1

< 2n+1 � 2b
n
2 c � 2d

n
2 e�1

.

So Keough and Shane’s conjecture provides a looser upper bound.

Definition 1.0.2. A set S of vertices of a simple graph G = (V,E) is a strong

dominating set if for every vertex x 2 V \ S there is a vertex y 2 S with xy 2 E(G)

and d(x)  d(y).

We denote the set of all strong dominating sets in G as Dst(G) and let @st(G) =

|Dst(G)| be the number of strong dominating sets. It was common to rely on our
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existing understanding of dominating sets, (see, e.g., [5]) and use similar techniques

to determine @st(G). We are concerned with determining the number of strong dom-

inating sets and determining the bounds on the number of strong dominating sets in

paths, binary trees, trees, and regular graphs. This thesis delves into an alternative

perspective on dominating sets.

As with dominating sets, we begin with an example of finding the strong dom-

inating sets of a graph. Consider the graph in Figure 1.1 once more. We will now

determine its strong dominating sets. Notice d(x) is greater than the degree of any of

its neighbors and any vertex in the graph for that matter. Then a strong dominating

set must include x. As with dominating sets, the entire vertex set or {u, v, w, x, y}

forms a strong dominating set. Any subset of four vertices will be a strong dominat-

ing set if x is an element of the set; such sets are {u, v, w, x}, {u, v, x, y}, {u, w, x, y},

and {v, w, x, y}. Similarly for subsets of size 3 we have {u, v, x}, {u, w, x}, {u, y, x},

{x, y, v}, {x, y, w}, and {w, v, x}. Any subset of two vertices, where one of the vertices

is x forms a dominating set - that is {x, u}, {x, w}, {x, y}, and {x, v} are dominating

sets. The only singleton that forms a strong dominating set is {x}. We have 16 strong

dominating sets. In this case, the number of strong dominating sets, 16, is less than

the number of dominating sets, 23. Every strong dominating set is a dominating set,

but not every dominating set is a strong dominating set as we saw in the previous

example. In general for any simple graph G, we have @i(G) � @st(G). We attain

equality if G is a regular graph, where all the vertex degrees are equal.
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Chapter 2

Paths

Our focus lies in exploring the count of strong dominating sets within paths, initiating

our investigation by counting the number of dominating sets. We would like to find

a closed formula for @i(Pn) and begin by counting the number of dominating sets for

Pn. For P1 there is one dominating set, namely the set that contains the only vertex

in P1. A dominating set for P2 is a set containing both vertices of V (P2) or any subset

of V (P2) containing one vertex; so there are three dominating sets for P2. In the case

of P3, any subset of V (P3) with two vertices will form a dominating set and there

are three such subsets. The vertex that is not a leaf, which is then adjacent to the

remaining two vertices, will form a dominating set. And all three vertices in V (P3)

form a dominating set. Then we have five dominating sets for P3. For P4 any subset

of three vertices will form a dominating set; so we have
�
4
3

�
= 4 dominating sets so

far. The two leaves in V (P4) form a dominating set as well as the two non-leaves.

For instance, for P4 in Figure 1.3 subsets {a, c} and {b, d} form dominating sets. As

we have seen in the previous cases, V (P4) forms a dominating set. There are nine

dominating sets for P4.

In Table 2.1 we have summarized our counts thus far and included the number of

11



dominating sets for higher values of n. Notice the number of dominating sets appear

Table 2.1: The number of dominating sets in paths of lengths n = 1 to n = 7.

n @i(Pn)
1 1
2 3
3 5
4 9
5 17
6 31
7 57

to be the Tribonacci numbers, where the number of dominating sets of path n vertices

is the sum of the three preceding counts. As an example we will list the number of

dominating sets for P5, see Figure 2.1. V (P5) = {q, r, s, t, u} forms a dominating set.

Any subset of V (P5) with four vertices will form a dominating set and there are 5 such

subsets: {q, r, s, t}, {q, r, s, u}, {q, r, t, u}, {q, s, t, u}, {r, s, t, u}. There are 10 subsets

of size 3 of V (P5), but not all these subsets will form a dominating set. Take for in-

stance {q, r, s}. Vertex u does not have a neighbor in the dominating set, so {q, r, s} is

not a dominating set. Similarly {s, t, u} is not a dominating set. The following subsets

with 3 vertices do form dominating sets: {q, r, t}, {q, r, u}, {q, s, t}, {q, s, u}, {q, t, u},

{r, s, t}, {r, s, u}, {r, t, u}. There are 10 subsets of size 2 of V (P5), but 7 of these

subsets do not form dominating sets. The following subsets with 2 vertices do form

dominating sets: {q, t}, {r, u}, and {r, t}. And no subset with 1 vertex forms a dom-

inating set. There are 17 dominating sets of P5. Because the number of dominating

sets seem to be follow a tribonacci sequence we have,

@i(P5) = @i(P4) + @i(P3) + @i(P2) = 9 + 5 + 3 = 17

Notice the actual count of @i(P5) equals the number of dominating sets obtained from

the recursion. Before we prove Proposition 2.0.1, we define @
⇤
i (Pn) as the number

of dominating sets in Pn containing exactly one of its endpoints. Without loss of

12



q

r

s

t u

Figure 2.1: A path on 5 vertices, P5

generality we choose the left endpoint for our illustration. Consider P8 in Figure 2.2.

Note that in Figure 2.2, a red vertex indicates the corresponding vertex will be an

element of every dominating set. If we wanted to determine @i(P8) we could count

the number of dominating sets in the top path in Figure 2.2. Notice the endpoint

a has to be in the dominating set or its neighbor b must be in the dominating set,

otherwise a is not dominated. An alternative to counting the number of dominating

sets in P8 is to consider @⇤
i (P8) and @

⇤
i (P7). The number of dominating sets containing

a, denoted @
⇤
i (P8), which are the sets where a is dominated by itself. If a is not in

the dominating set, it can only be dominated by its neighbor, so b must be in the

dominating set. This latter case is represented by @
⇤
i (P7) the number of dominating

sets on a path with one less vertex where its left endpoint is in every dominating set.

In this scenario n = 8 but in general for a path on n vertices we have @
⇤
i (Pn�1). In

either case @
⇤
i (Pn) or @⇤

i (Pn�1) contains the endpoint or its neighbor, respectively, in

the dominating set so that the left endpoint is dominated.

Proposition 2.0.1. For a path on n vertices,

@i(Pn) = @i(Pn�1) + @i(Pn�2) + @i(Pn�3)

Proof. Consider a path on n vertices, Pn. Let the left endpoint be v1 and its neighbor

be v2. We will count the dominating sets in Pn according to whether the set contains

v1 or does not contain v1. To ensure v1 is dominated, v1 is either in the dominating

set or its neighbor v2 must be in dominating set. With this objective in mind, let

@
⇤
i (Pn) be the number of dominating sets in Pn that contain v1.We are left to count

13



the number of dominating sets in Pn that do not contain v1. If v1 is not in the

dominating set, then v2 must be in the dominating set. Let @⇤
i (Pn�1) be the number

of dominating sets in Pn that do not contain v1 but contain v2 . So we can think of

the number of dominating sets in Pn as the sum of the number of dominating sets in

@
⇤
i (Pn) and @

⇤
i (Pn�1) or

@i(Pn) = @
⇤
i (Pn) + @

⇤
i (Pn�1). (2.1)

We would like to find a recurrence for @⇤
i (Pn) so that we could rewrite (5) in terms of

@i(Pk) for k < n. Recall for @⇤
i (Pn) we think of every dominating set containing one

of its endpoint; in this case the endpoint is v1, so we know v1 dominates its neighbor

v2. Then for v2 there is some choice in the sense that it can either be in or out of

the dominating sets in Pn. If v2 is in the dominating set, then @
⇤
i (Pn) is equal to the

number of dominating sets on a path of one less vertex, v1, and its left endpoint is

in every dominating set - that is @⇤
i (Pn�1). Otherwise v2 is not in the dominating set

and @
⇤
i (Pn) is equal to the number of dominating sets on a path with two less vertices,

v1 and v2, or @i(Pn�2). We have,

@
⇤
i (Pn) = @

⇤
i (Pn�1) + @i(Pn�2). (2.2)

By (2.1),

@i(Pn�2) = @
⇤
i (Pn�2) + @

⇤
i (Pn�3). (2.3)

By substituting (2.3) into (2.2), we obtain

@
⇤
i (Pn) = @

⇤
i (Pn�1) + @

⇤
i (Pn�2) + @

⇤
i (Pn�3). (2.4)

Now we can rewrite @i(Pn) by applying (2.4) to @
⇤
i (Pn) and @

⇤
i (Pn�1) in (2.1):

@i(Pn) = @
⇤
i (Pn�1) + @

⇤
i (Pn�2) + @

⇤
i (Pn�3) + @

⇤
i (Pn�2) + @

⇤
i (Pn�3) + @

⇤
i (Pn�4)
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Figure 2.2: A visual to aid our discussion of @⇤
i (P8)

By rearranging and grouping terms we have,

@i(Pn) = (@⇤
i (Pn�1) + @

⇤
i (Pn�2)) + (@⇤

i (Pn�2) + @
⇤
i (Pn�3)) + (@⇤

i (Pn�3) + @
⇤
i (Pn�4)) .

(2.5)

Notice by (2.1), @i(Pn�1) = @
⇤
i (Pn�1)+@

⇤
i (Pn�2), @i(Pn�2) = @

⇤
i (Pn�2)+@

⇤
i (Pn�3), and

@i(Pn�3) = @
⇤
i (Pn�3) + @

⇤
i (Pn�4). Then (2.5) becomes

@i(Pn) = @i(Pn�1) + @i(Pn�2) + @i(Pn�3).

Thus, the number of dominating sets in a path on n vertices is given by

@i(Pn) = @i(Pn�1) + @i(Pn�2) + @i(Pn�3).

We attempted to apply a similar idea to find a closed formula for the number of

strong dominating sets in paths, however, it was not as clear. In the case of strong

dominating sets we have to be more careful when it comes to the endpoints unlike

the case with dominating sets. Strong dominating sets have an additional property

related to the degree of the vertices in the graph; a vertex v in a graph G is strongly

dominating an adjacent vertex, say x, only if d(v) � d(x).
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We begin by counting the number of strong dominating sets in paths Pn for small

values of n. We start with a case that may initially seem redundant, but its relevance

will become evident shortly. The path on no vertices, P0, has one strong dominating

set, the null set or V (P0). So @st(P0) = 1. For P1, there is only strong dominating set

V (P1) and @st(P1) = 1. For P2, any non-empty subset of V (P2) will be a dominating

set, so @st(P2) = 22 � 1 = 3. For n � 3 we are dealing with vertices of degree

greater than 1. For a path on 3 vertices suppose we have v1, e1, v2, e2, v3. Since

d(v2) > d(v1) and d(v2) > d(v3), we must have v2 in every strong dominating set

because its neighbors v1 and v3 cannot dominate v2. There are four subsets of V (P3)

containing v2, so @st(P3) = 4. We will refer to vertices that are not leaves as non-

leaves. In this case of P4, notice v2 and v3 are non-leaves. In the case of P4 at

least one the non-leaves, must be in every strong dominating set because the degree

of a non-leaf is greater than the degree of a leaf. We know V (P4) forms a strong

dominating set. Any subset of three vertices will include one of the non-leaves so

any subset of three vertices will be a strong dominating set; there are 4 such sets.

There are 6 subsets of V (P4) of size 2 but only 3 of them are strong dominating sets -

namely {v2, v3}, {v2, v4}, and {v1, v3}. There is no subset containing one vertex that

is a strong dominating set, so @st(P4) = 8. In Table 2.2 we have summarized our

counts thus far and included the number of strong dominating sets for higher values

of n.

Table 2.2: The number of strong dominating sets in paths of lengths n = 1 to n = 7.

n @st(Pn)
0 1
1 1
2 3
3 4
4 8
5 13
6 27
7 56
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With the help of OEIS, we investigated further. Our values for @st(Pn) correspond

to sequence A049893 in OEIS [7]. Earlier we included @st(P0) so that the sequences in

Table 2.2 and from OEIS would be easier to compare. Starting with a(1) = a(2) = 1

and a(3) = 3, the i
th term of the sequence is found by

a(i) = a(1) + a(2) + · · ·+ a(i� 1)� a(m), (2.6)

for i � 4, wherem = 2p+1+2�i and p is the unique integer such that 2p < i�1  2p+1.

Note in Table 2.2 we started our index with n = 0 but the sequence in OEIS starts

with i = 1. This is a matter of o↵setting the index, that is i = n + 1. For instance

suppose we wanted to use the sequence to find the number of strong dominating sets

for P4. Then we want i = 4 + 1 = 5 and we compute a(5):

a(5) = a(1) + a(2) + a(3) + a(4)� a(m),

where

m = 2p+1 + 2� 5 and 2p < 4  2p+1
. (2.7)

The only value of p that satisfies the inequality in (2.7) is 1 because 2 = 21 < 4 

22 = 4. Then m = 22 + 2� 5 = 1 and we have,

a(5) = a(1) + a(2) + a(3) + a(4)� a(1)

= 1 + 1 + 3 + 4� 1

= 8

So @st(P4) = 8 and confirms our count from earlier. We explored the sequence

more by considering the behavior of a(i) as i increases. First we looked at the ratio
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of successive terms, a(i+1)
a(i) .

Table 2.3: Using a(i+1)
a(i) to compare successive terms.

i a(i) a(i+1)
a(i)

1 1 —
2 1 1
3 3 3
4 4 1.333
5 8 2
6 13 1.6250
7 27 2.0769
8 56 2.07401
9 112 2
10 169 1.50893
11 367 2.1716
12 748 2.03815
13 1501 2.00668
14 3006 2.00266
15 6013 2.00033
16 12028 2.00033
17 24056 2
18 36085 1.50004
19 78185 2.16669

From Table 2.3, there is an observed growth factor ranging approximately from

1.5 to 2.2 between successive terms, a(i) and a(i + 1). Notice for i > 4 the growth

factor decreases until it reaches 1.5 and then jumps back up to 2. For instance at

i = 6 the growth factor is 1.6250 but then for i = 7 the growth factors increases to

2.0769. There is a similar trend at i = 7, i = 8, i = 9, i = 10 where the growth

factors are 2.0769, 2.07401, 2, and 1.50893 respectively. The next term i = 11 has

a corresponding growth factor of 2.1716. We see this behavior as i increases to 18,

the growth factor decreases to 1.50004 and then there is a spike once more. The

trend is more evident in Figure 2.3. We attempted to create an exponential function

to approximate the behavior, however, when we examined the percent error of the

model it was too significant to establish a reliable model. The rationale behind this

lies in the erratic behavior exhibited by the growth factors.
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Figure 2.3: Scatterplot of a(i+1)
a(i) versus i.

The left and right endpoints of a path have degree 1 while their neighbors have

degree two (unless we are considering P1 or P2). For paths with more than 2 vertices,

either endpoint could be in a strong dominating set, but neither would be strongly

dominating its neighbor. In some sense knowing the left or right endpoint is in the

strong dominating set does not help as it did before. Consider a path Pn as in Figure

2.4 with vertices v1, v2, v3, . . . , vn�1, vn. If the left point, v1 is in the strong dominating

set then @st(Pn) is equal to number of strong dominating sets in Pn containing the

endpoint or @
⇤
st(Pn). If v1 is not in the strong dominating set then @st(Pn) is equal

to the number of dominating sets where v2 is contained in the strong dominating

set, which we denote @
0
st(Pn). In general @

0
st(Pn) is the number of strong dominating

sets such that the first vertex of V (Pn) contained in the strong dominating set is the

second vertex from the left endpoint. Then we have

@st(Pn) = @
⇤
st(Pn) + @

0

st(Pn). (2.8)

We compare the recursive functions for the number of dominating sets versus
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. . . vn�2 vn�1

vn

Figure 2.4: An illustration of Pn.

strong dominating sets. The recursion used to find the number of dominating sets

in Pn is sum of three terms, namely the number of dominating sets for Pn�1, Pn�2,

and Pn�3. Meanwhile, (2.6) shows the number of strong dominating sets in Pn is sum

the number of dominating sets for P1 up to Pn and then subtract a term depending

on the value of m that satisfies the inequality. As the path grows, we sum more

than three terms in (2.6). So for n � 4, it may appear that the number of strong

dominating sets is greater than the number of dominating sets. However, we know

that every strong dominating set is also a dominating set, but a dominating set is

not necessarily a strong dominating set. This distinction arises because the degrees

of the vertices significantly impact the establishment of a strong dominating set. We

tried to translate the idea we used in the case of dominating sets to find a recursion

for strong dominating sets. In our attempt, we included terms such as @
0
st(Pn�1) or

@
0
st(Pn�2). As a result, we removed vertices and distorted the degrees of the remaining

vertices, and complicated the process of finding a strong dominating set. In summary,

the recursion may not be feasible because we are uncertain about the appropriate

recursive approach in this case.
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Chapter 3

Regular Graphs

We present the foundational concepts of entropy that will be used in this thesis.

Though separate from the concept of entropy in physics, there exist similarities that

warrant the shared name. In physics, entropy is a fundamental concept related to

the measure of disorder or randomness in a system. Claude Shannon later integrated

entropy into information theory [1]. In a structure that is randomized, entropy is a

measure of uncertainty. In broad terms, greater uncertainty typically corresponds to

increased entropy, while low entropy is characteristic of situations where everything

is fully determined. Entropy has become a significant tool in combinatorics [4]; we

will use entropy to help determine the maximum number of strong dominating sets

in regular graphs. A graph G is k-regular is the common degree is k.

We introduce some probability vocabulary to formalize entropy. The set of all

possible outcomes of an experiment is called the sample space and is denoted by ⌦.

A discrete random variable is a mapping X : ⌦ ! R ✓ R. This means R is some

countable subset of R. The term “discrete” is included because of this restriction

on R. The random variable X is just a function which attaches a number to each

outcome in the sample space. In the following definition and throughout this thesis
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all logarithms are base two.

Definition 3.0.1. Suppose we have a finite sample space denoted ⌦ = {x1, x2, . . . , xn}

and X is a discrete random variable where P(X = xi) = pi. The entropy of X is

given by

H(X) =
nX

i=1

�pi log (pi),

where we let 0 · log 0 = 0.

To gain some insight into the nature of entropy consider the following example of

tossing a coin. We will find the entropy H(X) when the coin is biased so that the

probability of a head is 0.95 and when the coin is fair so that the probability of a

head is 0.5. In either case there are two outcomes, head or tail; let the probability of

head and tail be p1 and p2, respectively. Then we have,

H(X) = �p1 log p1 � p2 log p2.

Because p2 = 1� p1, we have

H(X) = �p1 log p1 � (1� p1) log (1� p1).

In the case the coin is biased, where p1 = 0.95 and p2 = 0.05, the entropy Hb(X) is

Hb(X) = �(0.95) log 0.95� (0.05) log 0.05 ⇡ 0.2864.

When the coin is fair, p1 = p2 = 0.5 and the entropy Hf (X) is

Hf (X) = �(0.5) log 0.5� (0.5) log 0.5 = 1.

We can consider the previous two cases from the perspective of an individual who

22



is trying to make some money by gambling with coin tosses. In the instance of a

biased coin, the gambler is fairly certain of winning when it lands on heads, resulting

in low entropy. When the coin is fair, the gambler in a state of maximum uncertainty

and the entropy is greater.

We will now examine the two extreme cases of H(X). Imagine X takes one of its

values with certainty such that p1 = 1 and p2 = · · · = pn = 0. Then,

H(X) =
nX

i=1

�pi log (pi) = (�1)(log 1) = 0.

On the other hand suppose X is uniformly distributed over {1, 2, 3, . . . , n} so that

p1 = p2 = · · · = pn = 1
n . Then we have

H(X) =
nX

i=1

�1

n
log

1

n
=

�n

n
log n = � log

1

n
= log n = log |range(X)|.

The following theorem states the aforementioned cases are the extreme values of

H(X).

Theorem 3.0.1. If X is a random variable then

0  H(X)  log |range(X)|,

with equality if X is uniform on its range.

We will use entropy, H(X), and Shearer’s Lemma [3] to determine an upper

bound on the number of strong dominating sets in a regular graph. Before in-

troducing Shearer’s Lemma, we’ll outline some key vocabulary. A random vector

X = (X1, X2, . . . , Xn), where each coordinate of the vector is random variable. Let

A ✓ {1, 2, . . . , n} and XA = (Xi)i2A. We denote the set of integers from 1 to n or

{1, 2, 3, . . . , n} as [n]. Then P([n]) denotes the power set of [n], which is the power
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set of the integers from 1 to n.

Lemma 3.0.2 (Shearer’s Lemma). Let X = (X1, X2, . . . , Xn) be a random vector. If

A ✓ P([n]) is a collection of subsets of [n] such that for every i 2 [n] lies in at least

k elements of A , then

H(X)  1

k

X

A2A

H(XA).

We prove the following, which gives an upper bound on the number of strong

dominating sets in a regular graph.

Theorem 3.0.3. If G is r-regular on n vertices, then

@st(G)  @st(Kr+1)
n

r+1 = (2r+1 � 1)
n

r+1 .

Proof. If G is a regular graph, the number of dominating sets and the number of

strong dominating sets are equal because any subset of V (G) that is a dominating

set is also a strong dominating set. We will show the number of dominating sets of

G satisfies our claim and thereby show the number of strong dominating sets does

as well. Let G be an r-regular graph and V (G) = {v1, v2, . . . , vn}. Define a random

vector X = (X1, X2, . . . , Xn) on G by selecting a strong dominating set D uniformly

at random from Dst(G) and letting

Xi =

8
>><

>>:

1 if vi 2 D

0 if vi /2 D

Then H(X) = log |range(X)| = log @st(G). Now let A = {N [v] : v 2 V (G)}, where

N [v] = N(v) [ {v}, the closed neighborhood of v. Then every vertex is in r + 1
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elements of A since A is r-regular. By Shearer’s Lemma,

H(X) = log @st(G)  1

r + 1

X

v2V (G)

H(XN [v]).

Since X is uniformly distributed,

H(XN [v])  log |range(XN [v])|.

So,

log @st(G)  1

r + 1

X

v2V (G)

log |range(XN [v])|.

We want to find an upper bound for log @st(G). In turn when we examine

|range(XN [v])|, we want to consider the greatest possible size of the range of XN [v].

Since D is a strong dominating set, XN [v] cannot be all 0’s, otherwise D would be

empty. Then the random variable XN [v] is at most 2r+1 � 1. Note, 2r+1 � 1 is the

number of dominating sets in the complete (r + 1)-regular graph; in other words,

XN [v] is at most @st(Kr+1) = 2r+1 � 1. Then we have,

log @st(G)  1

r + 1

X

v2V (G)

log(2r+1 � 1)

=
n

r + 1
log(2r+1 � 1)

=
n

r + 1
log (@st(Kr+1))

= log @st(Kr+1)
n

r+1 .

Thus, log @st(G)  log @st(Kr+1)
n

r+1 or @st(G)  @st(Kr+1)
n

r+1 .
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Chapter 4

Trees

We will now explain our process for establishing an upper bound on the number of

strong dominating sets for trees. We attempted to exploit the structure of a tree to

determine its maximum number of strong dominating sets, however, this proved to

be di�cult. Initially we tried using the degree of the vertices in trees to simplify the

problem. For instance, we considered trees that contained vertices that we called big,

which is a vertex v such that d(v) > d(x), 8x 2 N(v).

Lemma 4.0.1. If S is a strong dominating set in a simple graph G and v is big in

G, then v 2 S.

Proof. Suppose v is a big vertex in a graph G. The degree of v is greater than the

degree of any of its neighbors. No neighbors of v can strongly dominate v, so v must

be in every strong dominating set. Alternatively, every big vertex belongs to every

strong dominating set.

Big vertices made it easier to count the number of strong dominating sets because

big vertices are in every strong dominating set. So we could show our upper bound

holds for trees with big vertices but we couldn’t rely on big vertices in trees without
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any big vertices. To overcome this obstacle, we tried decomposing the tree into two

components by splitting the tree at a vertex adjacent to a leaf; then we had hoped

to use induction on the number of non-leaves in the tree. This issue arose when

we split the tree, significantly altering its original structure and posing challenges

in accurately counting strong dominating sets. Earlier we mentioned the maximum

number of dominating sets for trees is 2n�1 + 1 in Theorem 1.0.2 [2]. We will use

Theorem 1.0.2 to help determine an upper bound on the number of strong dominating

sets. First we define important vocabulary used to prove the maximum number of

strong dominating sets.

The order of a graph G, written n(G) is the number of vertices in G. A compo-

nent of a graph G is a connected subgraph that is not part of any larger connected

subgraph. The components of any graph partition its vertices into disjoint sets, and

are the induced subgraphs of those sets. A component is trivial if is has no edges;

otherwise it is nontrivial. The maximum degree of a graph G is the maximum of

the vertex degrees, denoted �(G). If G has a u, v-path, then the distance from u

to v, written dG(u, v) is the least length of a u, v-path. The diameter (diam G) is

maxu,v2V (G) d(u, v).

Recall a tree is a connected acyclic graph. We will explore the structure of trees

further and consider a deconstructed version. We begin by showing that every tree

has at least two leaves.

Theorem 4.0.2 (Handshaking Lemma). Let T be a tree with n vertices. Then

X

v2V (T )

d(v) = 2e(T ) = 2(n� 1).

Lemma 4.0.3. A tree T on n � 2 vertices has at least two leaves.

Proof. Suppose T is a tree on n � 2 vertices. Assume for contradiction T does
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not have two leaves and there only exists one leaf called x. Note d(x) = 1 while the

degree of all other vertices in T are at least 2. Then we have,

X

v2V (T )

d(v) � 1 + 2(n� 1) = 2n� 1 > 2(n� 1). (4.1)

From 4.1, we see
P

v2V (T ) d(v) > 2(n�1) but by the Handshaking Lemma
P

v2V (T ) d(v)

should equal 2(n� 1). We have a contradiction, so T has at least two leaves.

Theorem 4.0.4. If T is a forest on n � 6 vertices, then @st(T )  2n�1
.

In Theorem 4.0.4 we had to specify the minimum number of vertices in T because

there are some small cases of n that would not satisfy our claim. For example,

when n = 2, T is a P2 which we know has three strong dominating sets. However,

22�1 = 2 ⇤ 3. Consider another example where n = 4. In this case, T could be a star,

path, or the union of two disjoint edges. If T is a star, then the vertex adjacent to the

all the vertices in V (T ) must be in the strong dominating set while the leaves have a

choice to be in or out of the set; this means there are 23 = 8 strong dominating sets.

We know the number of strong dominating sets in a path on 4 vertices is 8. So if T is

a star or a path our claim is satisfied since 8  24�1 = 23 = 8. As we saw earlier an

edge has three strong dominating sets but since we have two edges there are 9 strong

dominating sets; in this case our claim is not satisfied because 9 ⇤ 24�1 = 23 = 8.

Proof. Suppose we have a forest T on n � 6 vertices. By Theorem 1.0.2, @i(T ) 

2n�1 + 1 and we want to show @st(T )  2n�1. So we need to find one dominating set

that is not a strong dominating set.

If �(T ) = 1, then T is a disjoint union of edges. Each component in T has three

dominating sets. If there are c components, then there are 3c strong dominating sets.

By our assumption n is at least 6, so the tree has at least 3 edges. In this case, there
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are 33 = 27 strong dominating sets which is less than 26�1 = 32. Alternatively the

number of components c could be expressed as dn
2 e. In general, we want to show

3d
n
2 e < 2n�1 when n � 6.

Suppose T is a disjoint union of stars such that �(T ) � 2. The set of all leaves

in T gives a dominating set but is not a strong dominating set because the degree of

any leaf is strictly less than the degree of its neighbor, provided there is a vertex of

degree at least 2.

If T is neither a disjoint union of edges or stars, there exists a component with

diameter of at least 3. Let P be a maximum path and v be adjacent to an endpoint

of P . Let w be the non-leaf neighbor of v of P . Note, every neighbor of v is a

leaf otherwise we have longer path and P would not be a maximum path. Then

D = V (T ) � {v, w} is a dominating set but not a strong dominating set because v

has no neighbor in D with larger degree.
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Chapter 5

Further Directions

We examined the number of strong dominating sets in binary trees as well. Based

on our findings there appears to be a bijection between the strong dominating sets in

binary trees and multisets. Although we haven’t identified a potential candidate yet

we would like to delve deeper into this connection. To start, we introduce some key

terms to establish a foundational understanding of binary trees. In computer science,

trees are typically utilized as rooted trees since they enable e�cient data storage for

rapid access [10]. A rooted tree is a tree with one vertex r chosen as the root. For

each vertex v, let P (v) be the unique v, r-path. The parent of v is its neighbor on

P (v); its children are its other neighbors. The leaves are vertices with no children.

Definition 5.0.1. A binary tree is a rooted tree where each vertex has at most two

children and each child of a vertex is designated at its left child or right child. We

denote a binary tree with n vertices, Bn.

There is an example of a binary tree, in Figure 5.1, rooted at a with leaves d, e, f ,

and g. Broadly speaking we can think of binary trees as trees where each vertex has

between 1 and 3 neighbors, inclusive. We begin by looking at a few examples of small

binary trees and count the number of strong dominating sets in each tree. A binary
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b

a

c

d e

Figure 5.1: An example of B5.

b

a

c

d e f

Figure 5.2: An example of B6.

tree with one vertex is trivial, denoted B1. Nonetheless, B1 has one strong dominating

set. We can build bigger trees by adding vertices, one at a time. Binary trees with

two, three, and four vertices are the same as paths with two, three, and four vertices

respectively. We have found that the number of strong dominating sets for P2, P3, P4

are 3, 4, and 8 respectively. So the number of strong dominating sets for B2, B3, B4

are 3, 4, and 8 respectively. The binary tree with five vertices, B5, is the first case of

new structure as shown in Figure 5.1. If vertices a and b are in the strong dominating

set, then there are two choices for each leaf; each leaf can be in or out of the strong

dominating set. This gives 23 or 8 strong dominating sets. Alternatively if vertices b

and c are in the strong dominating set the remaining vertices can either be in or out.

b

a

c

d e f g

Figure 5.3: An example of B7.
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We do not want to overcount these cases twice: {a, b, c}, {a, b, c, d}, {a, b, c, e}, and

{a, b, c, d, e}. So we will consider the ones where a is not in the strong dominating set

and count the cases where leaves d and e are in or out of the strong dominating set.

There are four such strong dominating sets. In total the number of strong dominating

sets for B5 is 12. We will consider the number of strong dominating sets in B6 in

a similar fashion. Notice either vertices b and c or vertices a, b, and f have to be

in the strong dominating set while the remaining vertices can either be in or out.

There are 16 strong dominating sets with b and c. There are 8 strong dominating sets

including vertices a, b, and f but we have already included 4 of them in our count,

namely {a, b, c, f}, {a, b, c, d, f} ,{a, b, c, e, f}, and {a, b, c, d, e, f}. There is 20 strong

dominating sets for B6. Consider the binary tree on seven vertices in Figure 5.3.

Notice, the degree of vertices b and c is greater than all of their neighbors. So b and c

must be in every strong dominating set, but the remaining vertices can be either in or

out. Then @st(B7) = 25 = 32. In summary, the number of strong dominating sets for

B1 to B7 is 1, 3, 4, 8, 12, 20, 32. According to OEIS A349050 [8], the number of strong

dominating sets can be found in a relevant sequence a(n), which gives the number of

multisets of size n that have no alternating permutations and cover an initial segment.

Note, a sequence is alternating when it consistently alternates between being strictly

increasing and strictly decreasing, irrespective of whether it begins with an increase

or a decrease. An anti-run permutation is a permutation of a sequence in which no

consecutive elements are in ascending order. For example, the sequence (3,2,2,2,1)

has no alternating permutations, even though it does have the anti-run permutations

(2,3,2,1,2) and (2,1,2,3,2).

In Table 5.1 when n = 3 the multiset is {1, 1, 1} which corresponds to the one

strong dominating set in B1. When n = 4, the multisets are {1, 1, 1, 1}, {1, 2, 2, 2},

and {1, 1, 1, 2} which correspond to the three strong dominating sets in B2. Jumping

forward to when n = 7, these 12 multisets align with the 12 strong dominating
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Table 5.1: The a(2) = 1 through a(7) = 12 multisets.

n = 2 n = 3 n = 4 n = 5 n = 6 n = 7
{1,1} {1,1,1} {1,1,1,1} {1,1,1,1,1} {1,1,1,1,1,1} {1,1,1,1,1,1,1}

{1,1,1,2} {1,1,1,1,2} {1,1,1,1,1,2} {1,1,1,1,1,1,2}
{1,2,2,2} {1,2,2,2,2} {1,1,1,1,2,2} {1,1,1,1,1,2,2}

{1,2,2,2,3} {1,1,1,1,2,3} {1,1,1,1,1,2,3}
{1,1,2,2,2,2} {1,1,2,2,2,2,2}
{1,2,2,2,2,2} {1,1,2,2,2,2,3}
{1,2,2,2,2,3} {1,2,2,2,2,2,2}
{1,2,3,3,3,3} {1,2,2,2,2,2,3}

{1,2,2,2,2,3,3}
{1,2,2,2,2,3,4}
{1,2,3,3,3,3,3}
{1,2,3,3,3,3,4}

sets in B5. There seems to be relation between the strong dominating sets and the

multisets but we could not find a bijection. This opens up a potential avenue for future

exploration. Recently, Andrew Howroyd [8] found a closed form for the sequence:

a(n) =

8
>><

>>:

(n+ 2)2
n
2�3 for even n > 0

(n� 1)2
n�5
2 for odd n

In the extremal case we suspect binary trees are the minimizer for trees.

We also would like to investigate the lower and upper bounds on the number of

strong dominating sets in bipartite graphs. We suspect if G is a bipartite graph on n

vertices, then

@st

⇣
Kbn�1

2 c,dn+1
2 e

⌘
 @st(G)  2n�1

.
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