
Montclair State University Montclair State University 

Montclair State University Digital Montclair State University Digital 

Commons Commons 

Theses, Dissertations and Culminating Projects 

5-2024 

Multicolor Bipartite Ramsey Numbers of Balanced Double Stars Multicolor Bipartite Ramsey Numbers of Balanced Double Stars 

Ella Oren-Dahan 

Follow this and additional works at: https://digitalcommons.montclair.edu/etd 

 Part of the Mathematics Commons 

https://digitalcommons.montclair.edu/
https://digitalcommons.montclair.edu/
https://digitalcommons.montclair.edu/etd
https://digitalcommons.montclair.edu/etd?utm_source=digitalcommons.montclair.edu%2Fetd%2F1409&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/174?utm_source=digitalcommons.montclair.edu%2Fetd%2F1409&utm_medium=PDF&utm_campaign=PDFCoverPages


Abstract

Given an integer n ≥ 1, the balanced double star Sn,n is a tree consisting of two vertex

disjoint stars with n leaves each, connected at their central vertices by an edge. Given r ≥ 2,

we consider the problem of finding the smallest integer N such that every r-colored complete

bipartite graph KN,N contains a monochromatic copy of the balanced double star Sn,n. This

question is an instance of a problem within Ramsey theory. In this thesis, we cover the

history of Ramsey theory and our problem in general, provide an alternative approach to

prove the two colored case, prove new bounds as well as exact values when r = 3, and prove

new bounds for r > 3.
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Chapter 1

Introduction

This chapter will introduce some graph theory terminology and concepts that relate to our

problem. We also provide some background information about the problem.

1.1 Terminology

We begin with giving some basic graph theory definitions relevant to this thesis, as well as

defining some key terms used. Any other necessary terminology will be defined later when

needed.

A graph G is an ordered pair G = (V,E) consisting of a vertex set V = V (G) and an edge

set E = E(G). The elements of V are called vertices and the elements of E are called edges.

Each edge is a 2-element subset of V . For every pair of distinct vertices u, v ∈ V , the edge

between u and v is the subset {u, v}. If {u, v} ∈ E, then u and v are adjacent, and the edge

e = {u, v} is incident to both vertices. A graph H is a subgraph of the graph G if and only
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if V (H) ⊆ V (G) and E(H) ⊆ E(G), denoted H ⊆ G, and we say “G contains H”.

Families of graphs are collections of graphs with specific common properties and each

family has a unique notation. For example, a graph G is complete if every pair of two distinct

vertices in V (G) are adjacent. The complete graph is denoted as Kn, with n = |V (G)|. A

graph G is bipartite if V (G) is the union of two disjoint independent sets called the partite

sets of G. A complete bipartite graph is a bipartite graph such that vertices are adjacent if

and only if they are in different partite sets. If G is a bipartite graph, then X = X(G) and

Y = Y (G) will denote the partite sets of G, and G is denoted as Kx,y where |X| = x and

|Y | = y. When |X(G)| = |Y (G| = N , the graph G = KN,N is a balanced complete bipartite

graph.

|Y | = 5

YX
|X| = 5

Figure 1.1: Example of a complete graph G = K3 (left) and a complete bipartite graph, G = K5,5 (right).

The number of edges incident to a particular vertex v is the degree of v, denoted d(v).

A leaf is a vertex with degree 1. For any graph G and vertex v ∈ V (G), the subset of

vertices that v is adjacent to is called the neighborhood of v, denoted N(v). A path is a

sequence of distinct vertices and edges v0, e1, v1, e2, v2, . . . , en−1, vn−1 such that ei = {vi−1, vi}

for i = 1, 2, ..., n − 1. We call vertices v0 and vn−1 endpoints. A uv-path is a path where u

and v are endpoints. When the path is the entirety of the graph we denote the graph as Pn.

2



A cycle is a closed path, a path where the endpoints are the same. A graph is acyclic if it

contains no cycle. A graph G is connected if for every pair of vertices u, v, there exists a

uv-path in G. A graph is a tree if it is both connected and acyclic.

A double star, denoted Sm,n, is a tree with a singular edge incident to two vertices, called

the central vertices, with degrees m + 1 and n + 1 respectively. The central vertices are

respectively adjacent to m and n leaves. If m = n the graph is called a balanced double star,

and is denoted Sn,n.

Figure 1.2: Example of a Double Star Graph, G = S3,3.

An important element of the graphs we consider in this thesis is coloring. The following

terms formally define how we describe the coloring of a graph. A graph G is called single-

colored or monochromatic if all edges of G are colored with the same color. A proper r

edge-coloring of a graph G is an assignment of r colors to edges such that no vertex is

incident to two edges of the same color.

We can adjust the notation of both degree and neighborhood to specify only edges of a

specific color. When specifying the degrees in a specific color c for vertex v, we denote dc(v).

Additionally let Nc(v) = {w ∈ V (G) | w is adjacent to v through a c-colored edge} be the c

colored neighborhood of vertex v.

Remark 1.1.1. Every complete bipartite graph KN,N has a proper N -edge-coloring [10].
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Figure 1.3: K2,2 with a proper 2 edge coloring (left), K3,3 with a proper 3 edge coloring (center), and K4,4

with a proper 4 edge coloring.

1.2 Ramsey Theory

Ramsey theory is based on the Ramsey Theorem, originally published in Frank P. Ramsey’s

1928 paper On a Problem of Formal Logic as a lemma [13]. The field refers to the study of

partitions of large structures. Within graph theory, a typical example asks how large must

a red and blue edge colored graph be to ensure the graph contains a specific monochromatic

subgraph.

Roughly, Ramsey’s Theorem can be stated as specific monochromatic subgraphs must be

found in any sufficiently large arbitrarily colored complete graph. Formally,

Theorem 1.2.1 (Ramsey’s Theorem). Given positive integers k and ℓ there exists a least

positive integer R(k, ℓ) for which every red/blue coloring of the edges of the complete graph

on R(k, ℓ) vertices contains a red clique on k vertices or a blue clique on ℓ vertices [13].

The integers R(k, ℓ) are known as the Ramsey numbers [17].

A classic question within Ramsey theory is as follows:

4



Example 1.2.2. “What is the smallest number of people needed in a room to guarantee that

either at least three people know each other or at least three people do not know each other?”

In this problem we represent people as vertices and the relationship of knowing another

person as a blue edge between both vertices and not knowing another person as a red edge

between both vertices. Thus, three people knowing one another would be represented by a

monochromatic blue K3, and three people not knowing one another would be a monochro-

matic red K3. The question asks what is the smallest number of vertices v for Kv to always

contain a monochromatic red or blueK3, in other words, what is the Ramsey number R(3, 3)?

Lemma 1.2.3 (The Pigeonhole Principle). Suppose n and m are positive integers such that

n > m. If we distribute n objects into m sets, then the pigeonhole principle states at least

one of the m sets must contain more than one item, specifically at least ⌈ n
m
⌉ objects.

Proof of Example 1.2.2. To prove R(3, 3) > 5, it is sufficient to show a coloring of K5 that

does not contain a monochromatic K3 in any color, this is done in Figure 1.4.

Figure 1.4: An edge coloring of K5 which does not contain a monochromatic K3.

To prove R(3, 3) = 6, let a be an arbitrary vertex within V (K6). The vertex a is incident

to five edges, using the pigeonhole principle we know at least three of these edges are the

same color. Without loss of generality, suppose three edges of these edges are red. Let the
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three vertices incident to a in red be called b, c, and d respectively. If at least one of the

edges {b, c}, {b, d}, or {c, d} is red, then K6 contains a monochromatic red K3. Otherwise the

edges {b, c}, {b, d}, and {c, d} are all blue and K6 contains a monochromatic blue K3. Figure

1.5 illustrates both of these cases.

a a

b bc c

d d

Figure 1.5: The edge coloring of K6 on the left contains a red K3 and the right contains a blue K3.

Thus v = 6 is the smallest number of vertices for Kv to always contain a monochromatic

red or blue K3.

No exact formula for any arbitrary Ramsey number is known, and to consider every

possible edge coloring to identify Ramsey numbers rapidly becomes too large to compute.

In the case such that k = ℓ, we call R(k, k) the diagonal Ramsey number. The general

bounds for R(k, k) are given by [1+o(1)]
√
2k
e
2k/2 ≤ R(k, k) ≤ (4−ϵ)k, where the lower bound

is due to Spencer [15] and the upper bound was very recently proved in a major breakthrough

by Campos, Morris, Griffiths and Sahasrabudhe [3].

More generally, given graphs G1, G2 we may define R(G1, G2) as the smallest integer v

such that every red/blue coloring of the edges of Kv contains a red copy of G1 or a blue copy

of G2. These more general Ramsey numbers have been extensively studied with many results

and references collected in Sections 4 and 5 of the dynamic survey Small Ramsey Numbers

[16].
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1.2.1 Extensions of Ramsey Theory

Ramsey theory can be extended in multiple fashions. Multicolor Ramsey theorem, for exam-

ple, considers the case of any finite number of colors, r ≥ 2, rather than the case of red/blue

edge coloring. Formally stated, v = Rr(G1, G2, . . . , Gr) is the multicolored Ramsey number

for an r-colored complete graph. That is, v is the least positive integer for which every r

edge-coloring of Kv vertices contains a monochromatic copy of Gi in the ith color, for some

i ∈ {1, 2, · · · , r}. In the case that all the Gi are the same graph G, we write Rr(G) for

Rr(G,G, . . . , G).

We can also consider extensions utilizing different host graphs or adding conditions to

the host graph. Examples of different host graphs include hypergraphs and complete bi-

partite graphs, which lead to hypergraph Ramsey numbers and bipartite Ramsey numbers

respectively. Bipartite Ramsey theory was first introduced by Beineke and Schwenk [2].

Problems in Ramsey theory can consider multiple extensions simultaneously, further ex-

panding the possible questions to consider. Multicolor bipartite Ramsey numbers are exam-

ined when the host graph is a balanced complete bipartite graph instead of a complete graph

and we consider the case of r-colored edges.

Theorem 1.2.4 (Bipartite Ramsey Theorem). The multicolor bipartite Ramsey number v =

Br(G1, G2, . . . , Gr), is the least positive integer v, such that every coloring of the edges of

Kv,v with r colors, will result in a copy of the bipartite graph Gi in the ith color, for some

i ∈ {1, 2, · · · , r}.

Again, in the case that all theGi’s are the same graphG, we writeBr(G) forBr(G,G, . . . , G).

7



The existence of bipartite Ramsey numbers follows from Erdős and Rado’s results [6]. Fur-

thermore, like general Ramsey numbers, many bipartite Ramsey numbers are known [11, 14,

18].
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or equal to n + 1. Vertices can be colored in more than one color. In Figure 2.1 the two

central vertices of S3,3 are colored in red since n = 3 in this case.

2.1 Previous Findings

While most multicolor bipartite Ramsey numbers of balanced double stars are unknown, the

study of Ramsey numbers has applicable findings from similar problems. Furthermore, when

variables are limited, some exact values have been proven.

When the colors are limited to a red/blue edge-coloring, the bipartite Ramsey numbers

of all double stars are provided by Hattingh and Joubert [9]. They prove for any two positive

integers n and m such that n ≥ m ≥ 2,

B2(Sn,n, Sm,m) = n+m+ 1.

It directly implies an equation for the bipartite Ramsey number of any balanced double

star,

B2(Sn,n) = 2n+ 1. (2.1)

When n is fixed to be 1, then S1,1 = P4. Counting the Ramsey numbers of paths are

problems that are often studied. The bipartite Ramsey number of S1,1 for r colors was

recently given by DeBiasio, Gyárfás, Krueger, Ruszinkó, and Sárközy [4].

Theorem 2.1.1 (DeBiasio, Gyárfás, Krueger, Ruszinkó, and Sárközy [4]). For every positive

10





A result of DeBiasio, Gyárfás, Krueger, Ruszinkó, and Sárközy [4] implies an improvement

on the lower bound on Br(Sn,n) for r ≥ 4.

Theorem 2.1.3. For every balanced bipartite graph G on 2n+ 2 vertices,

Br(G) ≥



rn+ 1, 1 ≤ r ≤ 3

5n+ 1, r = 4

(2r − 4)n+ 1, r ≥ 5

Note how the double star graph Sn,n is a balanced bipartite graph on 2n+2 vertices, thus

Theorem 2.1.3 is applicable.

Regarding the upper bound of Br(Sn,n), a result from Hattingh and Joubert [9] proved

Br(Sn,n) ≤ ⌈rn+
√
n2r(r − 1)− 2r(n− 1)⌉ = n(r +

√
r2 − r)− o(n); r ≥ 3, n ≥ 3.

Recently, Decamillis and Song [5] proved the following extremal result for double stars in

balanced bipartite graphs.

Theorem 2.1.4 (Decamillis and Song [5]). Let n ≥ m with N ≥ 3n + 1 and let G be a

balanced bipartite graph on 2N vertices. If e(G) > max{nN, 2m(N −m)}, then Sn,m ⊆ G.

Furthermore, this result is best possible.

From this they obtained the following corollary.

Corollary 2.1.5 (Decamillis and Song [5]). Let r ≥ 2 be an integer.

1. If n ≥ 2m, then Br(Sn,m) ≤ rn+ 1.

2. If m ≤ n < 2m, then Br(Sn,m) ≤ (r+
√

r(r − 2))m+ 1 = (2r− 1− 1
2r
−O( 1

r2
))m+ 1.

12



Corollary 2.1.5(2) improves the upper bound for Br(Sn,n) when n = m.

Thus, the current general bounds known for Br(Sn,n) given by the following:

rn+ 1, 1 ≤ r ≤ 3

5n+ 1, r = 4

(2r − 4)n+ 1, r ≥ 5


≤ Br(Sn,n) ≤ (r +

√
r(r − 2))n+ 1.

13



Chapter 3

The Two Colored Case

In this chapter we give an alternative approach to two edge colored bipartite Ramsey numbers

of balanced double stars as a preview of the more complicated cases of multicolored Ramsey

numbers and to illustrate the terminology for our approach. In this case edges are colored

with colors i ∈ {1, 2}. Let i = 1 be red and i = 2 be blue.

Recall that we consider a vertex v to be colored with color i ∈ {1, 2} if and only if v has

di(v) ≥ n+ 1.

Observation 3.0.1. A bipartite graph G = Kx,y contains an i-colored Sn,n if and only if

there exists an i-colored vertex v ∈ X and i-colored vertex u ∈ Y incident to an i-colored

edge.

Theorem 3.0.2. Let n be a positive integer, then B2(Sn,n) = 2n+ 1.

Proof. We first prove B2(Sn,n) ≥ 2n+ 1.

Let G = K2n,2n, and note that we cannot guarantee by the pigeonhole principle that any

14





Without loss of generality let |X1| = 2n+1 and X2 = ∅. In this case, X has at minimum

(n + 1)(2n + 1) incident red edges, and so by pigeonhole principle there must be at least 1

vertex in Y that is incident at least n + 1 red edges. Thus there must exist a red vertex in

Y and some red vertex in X both incident to a red edge. Following our observation 3.0.1, G

contains a red Sn,n.

Case 2. There is at least one blue and one red vertex in both sets X and Y , thus X1,

X2, Y1, and Y2 are all nonempty. Without loss of generality, |X1| ≥ n + 1 and |X2| ≤ n.

Given that Y1 is not empty, there must exist some vertex v ∈ Y1 that is incident to at least

n + 1 red edges. Since |X2| ≤ n, by the pigeonhole principle, vertex v must be adjacent to

at least one vertex in X1 through a red edge. Following Observation 3.0.1, G must contain

a red Sn,n.

16



Chapter 4

The Three Colored Case

In the case that r = 3 we start with giving exact bipartite Ramsey numbers for small values

of n. In this case edges are colored with color i ∈ {1, 2, 3}, and let i = 1 be red, i = 2 be

blue, and i = 3 be green.

Example 4.0.1.

B3(S1,1) = 4. (4.1)

Proof. To prove B3(S1,1) ≥ 4 it is sufficient to construct an edge coloring of K3,3 that does

not contain a monochromatic S1,1. A proper 3 edge coloring of K3,3 is one such construction,

displayed in Figure 4.1. Thus B3(S1,1) ≥ 4.

To prove B3(S1,1) ≤ 4, let G = K4,4.

By the pigeonhole principle every vertex receives at least two i-colored edges for some

i ∈ {1, 2, 3}. Additionally, at least two vertices in X = X(G) will be colored the same color,

creating a majority color class in X. Similarly, at least two vertices in Y = Y (G) will be

17





Remark 4.0.3. In general, a vertex can be colored in multiple colors. When a vertex v is

incident to at least n+ 1 i-colored edges and at least n+ 1 j-colored edges such that i ̸= j,

we call the vertex double colored, or a double. When a vertex v is incident to at least n + 1

i-colored edges, at least n + 1 j-colored edges, and at least n + 1 k-colored edges in three

distinct colors i, j, k, we call the vertex triple colored, or a triple. Vertices colored in exactly

one color are called singles or single colored.

We call the i-colored edges incident to i-colored vertices i-colored important edges.

Observation 4.0.4. Without loss of generality, if the ratio of i-colored important edges in

X to vertices not colored i in Y is greater than n, then an i-colored Sn,n is induced. This

ratio’s formula is dependent on the existence of multi-colored vertices.

Let the host graph be G = KN,N and consider the double star Sn,n. Partition X(G) into

subsets such that vertices in Xi are colored in i. Similarly partition Y (G) into subsets such

that vertices in Yi are colored in i. Let Dx be the number of double colored vertices in X and

Dy be the number of double colored vertices in Y .

1. If there exists only single colored vertices in G then for some i ∈ {1, 2, 3} when

⌈
(N − 2n)Yi

N −Xi

⌉
> n (4.3)

or ⌈
(N − 2n)Xi

N − Yi

⌉
> n (4.4)

hold, G contains a monochromatic Sn,n.

19



2. If there exists double colored vertices in G then for some i ∈ {1, 2, 3} when

⌈
(N − 2n)(Yi −Dy) +max(⌊N−n

2
⌋, n+ 1)Dy

N −Xi

⌉
> n (4.5)

or ⌈
(N − 2n)(Xi −Xd) +max(⌊N−n

2
⌋, n+ 1)Dx

N − Yi

⌉
> n (4.6)

hold, G contains a monochromatic Sn,n.

Following Observation 3.0.1 the edges incident to two i-colored vertices can induce a

monochromatic Sn,n, we call these edges forbidden edges, specifically edges are forbidden in

color i. The edges between X1 and Y1 are forbidden in color 1, similarly for the edges between

X2 and Y2, and between X3 and Y3.

Observation 4.0.5. It is apparent if an edge is both forbidden and important in i, then G

contains an i-colored Sn,n. Thus if the number of forbidden edges is greater than the number

of non-important edges, G contains a monochromatic Sn,n.

Proof of Example 4.0.2. To prove B3(S2,2) ≥ 7 we construct an edge coloring of K6,6 that

does not contain a monochromatic S2,2. A 3 colored proper edge coloring of K6,6 is one such

construction, displayed in Figure 4.2. Thus B3(S2,2) ≥ 7.

To prove B3(S2,2) ≤ 7 we consider G = K7,7. By the pigeonhole principle, every vertex in

G must receive at least 3 same colored edges. Let sets X1, X2, and X3 be subsets of X such

that vertices in Xi are i-colored. Similarly, let sets Y1, Y2, and Y3 be subsets of Y .

Case 1. Let each vertex be colored with at most one color. That is, X1, X2, X3, Y1, Y2,

20







1 vtxs = [(x1, x2, x3) for x1 in range(5) for x2 in range(5) for x3 in

range(5) if x1+x2+x3>= 7]↪→

2 vectors = [(x1, x2, x3) for x1,x2,x3 in vtxs]

3 constructions = []

4 for X in vectors:

5 for Y in vectors:

6 Xvtx = X[0]+X[1]+X[2]

7 Yvtx = Y[0]+Y[1]+Y[2]

8 #case 1

9 if Xvtx==7 and Yvtx==7:

10 if 42<=49-(X[0]*Y[0] + X[1]*Y[1] +X[2]*Y[2]):

11 if (math.ceil((3*Y[0])/(7-X[0]))<=2) and

(math.ceil((3*Y[1])/(7-X[1]))<=2) and

(math.ceil((3*Y[2])/(7-X[2]))<=2) and

(math.ceil((3*X[0])/(7-Y[0]))<=2) and

(math.ceil((3*X[1])/(7-Y[1]))<=2) and

(math.ceil((3*X[2])/(7-Y[2]))<=2):

↪→

↪→

↪→

↪→

↪→

12 if(not [Y,X] in constructions):

13 constructions.append([X,Y])

14 #case 2

15 else:

16 dY=Yvtx-7

17 dX=Xvtx-7

18 if

3*(14-dY-dX)+3*(dY+dX)<=49-(X[0]*Y[0]+X[1]*Y[1]+X[2]*Y[2])+dY*dX:↪→

19 if (math.ceil((3*(Y[0]-dY)+3*dY)/(7-X[0]))<=2) and

(math.ceil((3*(Y[1]-dY)+3*dY)/(7-X[1]))<=2) and

(math.ceil((3*(Y[2]-dY)+3*dY)/(7-X[2]))<=2) and

(math.ceil((3*(X[0]-dX)+3*dX)/(7-Y[0]))<=2) and

(math.ceil((3*(X[1]-dX)+3*dX)/(7-Y[1]))<=2) and

(math.ceil((3*(X[2]-dX)+3*dX)/(7-Y[2]))<=2):

↪→

↪→

↪→

↪→

↪→

20 if(not [Y,X] in constructions):

21 constructions.append([X,Y])

Together both cases cover all possible three colored constructions, and the script results

in no constructions that fails to hold Equation 4.8 or Observation 4.0.4 (2). Thus every

coloring induces a monochromatic double star, therefore B3(S2,2) = 7.

With specific cases examined and the two colored case as a base, we start with a lower

bound for B3(Sn,n).
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Theorem 4.0.6. For any positive integer n, B3(Sn,n) ≥ 3n+ 1.

Proof. We start with the bipartite graph G = K3n,3n. Partition X(G) into three subsets of

size n labeled X1, X2, and X3. Similarly, partition the set Y (G) into Y1, Y2, and Y3. Color

the edges between Xi and Yi red if i = j, blue if j = i+1 or j = i− 2, and green if j = i+2

or j = i− 1. This construction is a proper 3 edge coloring of G and avoids a monochromatic

Sn,n. Thus B3(Sn,n) ≥ 3n+ 1.

Y1

|Y1| = n

Y2

|Y2| = n

Y3

|Y3| = n

X1

|X1| = n

X2

|X2| = n

X3

|X3| = n

Y1

|Y1| = n

Y2

|Y2| = n

Y3

|Y3| = n

X1

|X1| = n

X2

|X2| = n

X3

|X3| = n

1

1

1

2

2

2

3

3

3

Figure 4.5: The graph (left) shows a proper 3 edge coloring of K3n,3n, the matrix (right) displays the same
construction.

The bound matches the lower bound for Br(Sn,n) proved by Alm, Hommowun, Schneider

[1].

Remark 4.0.7. This lower bound and the pigeonhole principle imply if G is large enough

to guarantee G contains a monochromatic Sn,n then every vertex in G must be colored in at

least one color.
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Let G = Kαn,αn, so that |E(G)| = (αn)2. The pigeonhole principle guarantees at least

|E(G)|
3

edges will be colored by some color i. Without loss of generality, let that major color

class be red.

Applying Decamillis and Song’s [5] extremal result, we know if the number of i-colored

edges in G are greater than max{nN, 2n(N − n)} then G contains an i-colored Sn,n.

Thus α2n2

3
< max{αn2, 2n2(α− 1)}.

Solving for α we have

α2n2 < 6n2(α− 1)

α2 < 6(α− 1)

α2 − 6α + 6 < 0

α < 3 +
√
3 ≈ 4.7321

. Thus α < 3 +
√
3 ≈ 4.7321 and the partite sets of G are of size (3 +

√
3)n ≈ 4.7321n.

Taking into consideration the important edges allows us to further improve the upper

bound.

Theorem 4.0.10. For any positive integer n, B3(Sn,n) ≤ 4n.

Proof. Consider G = Kαn,αn such that G contains monochromatic double star Sn,n.

The number of important edges are bounded above by |E(G)| = (αn)2 and bounded

below by |V (G)|(αn− 2n). Thus,
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2(αn)(αn− 2n) ≤ (αn)2

2α2n2 − 4αn2 ≤ α2n2

2α2 − 4α ≤ α2

α2 − 4α ≤ 0

α(α− 4) ≤ 0

α ≤ 4.

Therefor B3(Sn,n) ≤ 4n.

Taking into consideration of doubles and triples (for larger graphs), we are able to improve

the bounds on the number of important edges and thus also the upper bounds.

Theorem 4.0.11. For any positive integer n, B3(Sn,n) ≤ 3.6678 · n.

The proof for Theorem 4.0.11 is a continuation of Theorem 5.0.2 and is given together.

Example 4.0.12.

B3(S3,3) = 11. (4.9)

Proof of Example 4.0.12. To prove B3(S3,3) ≥ 11 we must construct an edge coloring of

K10,10 that does not contain a monochromatic S3,3. Example 4.0.8 presents such a case, thus

B3(S3,3) ≥ 11.

To prove B3(S3,3) ≤ 11 we consider G = K11,11. Partition X into X1, X2, and X3 such

that vertices in Xi are i-colored. Similarly, partition Y into Y1, Y2, and Y3.
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11 if (math.ceil((5*Y[0])/(11-X[0]))<=3) and

(math.ceil((5*Y[1])/(11-X[1]))<=3) and

(math.ceil((5*Y[2])/(11-X[2]))<=3) and

(math.ceil((5*X[0])/(11-Y[0]))<=3) and

(math.ceil((5*X[1])/(11-Y[1]))<=3) and

(math.ceil((5*X[2])/(11-Y[2]))<=3):

↪→

↪→

↪→

↪→

↪→

12 if(not [Y,X] in constructions):

13 constructions.append([X,Y])

14 #case 2

15 else:

16 dY=Yvtx-11

17 dX=Xvtx-11

18 if

5*(22-dY-dX)+4*(dY+dX)<=121-(X[0]*Y[0]+X[1]*Y[1]+X[2]*Y[2])+dY*dX:↪→

19 if (math.ceil((5*(Y[0]-dY)+4*dY)/(11-X[0]))<=3) and

(math.ceil((5*(Y[1]-dY)+4*dY)/(11-X[1]))<=3) and

(math.ceil((5*(Y[2]-dY)+4*dY)/(11-X[2]))<=3) and

(math.ceil((5*(X[0]-dX)+4*dX)/(11-Y[0]))<=3) and

(math.ceil((5*(X[1]-dX)+4*dX)/(11-Y[1]))<=3) and

(math.ceil((5*(X[2]-dX)+4*dX)/(11-Y[2]))<=3):

↪→

↪→

↪→

↪→

↪→

20 if(not [Y,X] in constructions):

21 constructions.append([X,Y])

Together both cases cover all possible three colored constructions, and the script results

in no constructions that fails to hold Equation 4.11 or Observation 4.0.4 (2). Thus every

coloring induces a monochromatic double star, therefore B3(S3,3) = 11.

This example also breaks the pattern for the previous lower bound, thus we next prove a

tighter lower bound.

Theorem 4.0.13. For any positive integer n, B3(Sn,n) >
10
3
n.

Proof. Let n = 3k, thus B3(Sn,n) > 10k.

For k = 1, we have B3(S3,3) > 10 proven in Example 4.0.8. Let this construction be called

G1.
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Chapter 5

The Multicolored Case

In this chapter we consider the multicolored case with any r ≥ 2.

Theorem 5.0.1. For all r ≥ 2,

Br(Sn,n) ≥


(3r
2
− 1)n+ 1, if r is even

(r − 1 +
√
r2−1
2

)n− r+1
2
, if r is odd.

This lower bound beats the known lower bound from Example 2.1.3 when r = 3 and r = 5

(and matches the bound when r = 4 and r = 6). In the case of r = 3 Theorem 4.0.14 holds.

Theorem 5.0.2. For all r ≥ 2,

Br(Sn,n) ≤
(
3r − 5 +

√
r2 − 2r + 9

2

)
n+ 1 =

(
2r − 3 +

2

r
+O(

1

r2
)

)
n. (5.1)

Note that when r = 2, we have
(

3r−5+
√
r2−2r+9
2

)
n+1 = 2n+1, which recovers the known

bound from Hattingh and Joubert [9].
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Thus by combining Theorem 5.0.1, Theorem 4.0.14, Theorem 5.0.2, with Theorem 4.0.11

we have that for all r ≥ 3,

(2 +
√
2)n− 2 r = 3

5n+ 1 r = 4

(4 +
√
6)n− 3 r = 5

(2r − 4)n+ 1 r ≥ 6


≤ Br(Sn,n) ≤


3.6678n r = 3(

3r−5+
√
r2−2r+9
2

)
n+ 1 r ≥ 4

.

We begin generalizing the coloring used in Theorem 4.0.14.

Lemma 5.0.3. Let 2 ≤ n < s ≤ t be integers and G = Kt,s. If s− ⌊ sn
t
⌋ ≤ n, then there is a

coloring of the edges of G with colors {1, 2} such that:

1. d1(v) ≤ n for all v ∈ X(G), and

2. d2(v) ≤ n for all v ∈ Y (G).

Proof of Lemma. Let X = {x1, . . . , xt} and Y = {y1, . . . , ys}. For each i ∈ {1, 2, · · · , s},

let yi have edges of color 2 to vertices x(i−1)n+1, x(i−1)n+2 . . . , xin where the indices are taken

modulo t. Color the remaining edges of G with color 1. Condition (2) is then satisfied by

construction.

To show Condition (1), note that for all v ∈ X, we have d2(v) is either ⌊ sn
t
⌋ or ⌈ sn

t
⌉. So

for all v ∈ X, d1(v) = s− d2(v) ≤ s− ⌊ sn
t
⌋ which is at most n by assumption.

When t = s = 2n note that G from Lemma 5.0.3 contains two disjoint copies of Kn,n in

each color.
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Proof of Theorem 5.0.1. Let G = KN,N be colored with r colors.

Case 1. First suppose that r is even. Let R be the set of colors in G such that |R| = r =

2k and let N = (3k− 1)n. Partition R into two sets A = {1, . . . , k} and B = {k+ 1, . . . 2k}.

Also, let A′ = A \ {k} and B′ = B \ {2k}.

We partition X(G) into k sets {Xi : i ∈ A}, each of size 2n and k−1 sets {Xj,2k : j ∈ B′},

each of size n. We similarly partition Y (G) into k single colored sets {Yj : j ∈ B}, each of

size 2n and k−1 double colored sets {Yi,k : i ∈ A′}, each of size n. Vertices in a set Xi (or Yi)

are single colored in color i and have degree at most n in all other colors. Likewise, vertices

in Xi,j (or Yi,j) are double colored in colors i and j and have degree at most n in all other

colors. We call a set single colored if it has one subscript and double colored if it has two.

Between Xi and Yj we color as described in Lemma 5.0.3 so that dj(v) ≤ n for all v ∈ Xi

and di(v) ≤ n for all v ∈ Yj. The hypothesis of the lemma is easy to check as both sets have

order 2n. These components cannot contain a copy of Sn,n.

Color all the edges between Xj,2k and Yi with color j unless j = i in which case we use

color 2k. Color all edges between Yj,k and Xi with color j unless j = i in which case we use

color k. Finally, color all edges between Yi,k and Xj,2k with color i. These components are

all complete bipartite graphs with one side of size n, thus they also cannot contain a copy of

Sn,n.

Case 2. Now consider when r is odd. Let R be the set of colors in G such that |R| =

r = 2k − 1 and let N = ⌊αn⌋ − k where α = r − 1 +
√
r2−1
2

. We partition R into two sets

A = {1, . . . , k − 1} and B = {k, . . . , 2k − 1}. Let A′ = A \ {k − 1} and B′ = B \ {2k − 1}.

Now we partition X(G) into k−1 single colored sets {Xi : i ∈ A}, each of size ⌈α−(k−1)
k−1

n⌉
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in the even case, this coloring contains no monochromatic Sn,n.

Now we prove the upper bound and main theorem in this thesis.

Proof of Theorem 5.0.2. Start with G = KN,N such that N is an integer with N ≥ rn + 1

and let α = N
n
. Suppose G is r-colored with no monochromatic Sn,n. We will later assume

that N is larger, but first we prove claims with N ≥ rn+1. Note that every vertex in G will

be colored in at least one color.

For all i ∈ [r], let zi be the number of vertices which receive exactly i many colors. For

all ∅ ̸= S ⊆ [r], let XS and YS be the set of vertices in X(G) and Y (G) respectively which

are colored with exactly the colors in S and let xS = |XS| and yS = |YS|. For all i ∈ [r], let

Xi and Yi be the set of vertices in X and Y respectively which receive color i (and possibly

other colors). For A ⊆ X, B ⊆ Y , and S ⊆ [r], let eS(A,B) be the number of edges between

A and B which receive any color from S.

Due to our assumption, an important edge of color i is incident to exactly one vertex of

color i, otherwise this edge would induce an i colored Sn,n. Let e
∗ be the number of important

edges. Define σ such that σ2 is the proportion of edges which are not important. We have

σ2N2 =
∑

∅̸=S1,S2⊆[r]

e[r]\(S1∪S2)(XS1 , YS2) ≥
∑
i∈[r]

xiyi. (5.2)

Note that by the definition of zi, we have that for all i ∈ [r] and all vertices v which

receive exactly i colors, v is incident with at least N − (r − i)n important edges. Thus we
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have the following bounds on e∗,

∑
i∈[r]

zi(N − (r − i)n) ≤ e∗ = (1− σ2)N2. (5.3)

Our first claim gives an upper bound on the number of vertices which are colored with

more than one color. Note that a higher proportion of non-important edges causes a smaller

proportion of the vertices to have more than one color.

Claim 5.0.4.
r∑

i=2

zi ≤ (2r − 2− α(1 + σ2))N.

Proof of claim. Expanding, canceling, and simplifying (5.3) gives

r∑
i=2

zi ≤ z2 + 2z3 + · · ·+ (r − 1)zr ≤ (2r − 2− α(1 + σ2))N. ■

The next claim gives an absolute upper bound on the order of an individual set Xi or Yi.

Claim 5.0.5. For all i ∈ [r] we have xi ≤ N
α−(r−1)

and yi ≤ N
α−(r−1)

.

Proof of claim. For all i ∈ [r] we have

xi(N − (r − 1)n) ≤ ei(Xi, Y ) = ei(Xi, Y − Yi) ≤ n(N − |Yi|),

and thus

xi ≤
N − |Yi|

α− (r − 1)
≤ N

α− (r − 1)
.
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Likewise for yi,

yi ≤
N − |Xi|

α− (r − 1)
≤ N

α− (r − 1)
.

■

The final claim gives an upper bound on the number of vertices which receive exactly one

color.

Claim 5.0.6. Let C ∈ R+. If there are exactly t indices i ∈ [r] such that max{xi, yi} ≥ σN
C
,

then

z1 =
∑
i∈[r]

(xi + yi) ≤
(

t

α− (r − 1)
+ (r − t)

σ

C
+ Cσ

)
N.

Proof of claim. First note that if σ = 0, then xi > 0 implies that yi = 0 and vice versa. Hence

Claim 5.0.5 implies that z1 ≤ r
α−(r−1)

N and so the claim holds in this case. So we may assume

that σ > 0 for the remainder. Without loss of generality, suppose that max{xi, yi} ≥ σN
C

for

all i ∈ [t] and max{xi, yi} < σN
C

for all i ∈ [r] \ [t].

Note that for all i ∈ [t], we have max{xi, yi}min{xi, yi} = xiyi and since i ∈ [t], we have

max{xi, yi} ≥ σN
C

and thus

min{xi, yi} ≤ xiyi
σN
C

. (5.4)

For all i ∈ [r] \ [t], we have max{xi, yi} < σN
C

and thus xi
σN
C

, yi
σN
C

< 1. From this (and the

fact that for all real numbers 0 ≤ a, b ≤ 1, we have a+ b ≤ 1 + ab) we have

xi + yi ≤
σN

C
+

xiyi
σN
C

. (5.5)
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Using (5.4) and (5.5) together with Claim 5.0.5, we have

z1 =
∑
i∈[r]

(xi + yi) =
∑
i∈[t]

(max{xi, yi}+min{xi, yi}) +
∑

i∈[r]\[t]

(xi + yi)

≤ t

α− (r − 1)
N +

∑
i∈[t]

xiyi
σN
C

+
∑

i∈[r]\[t]

σN

C
+

xiyi
σN
C

=
t

α− (r − 1)
N + (r − t)

σN

C
+
∑
i∈[r]

xiyi
σN
C

(5.2)

≤ t

α− (r − 1)
N + (r − t)

σN

C
+ CσN,

as desired. ■

Now we prove Theorem 5.0.2. Let N be an integer with N >
(

3r−5+
√
r2−2r+9
2

)
n, set

α = N
n
, and note that

α >
3r − 5 +

√
r2 − 2r + 9

2
. (5.6)

We now combine Claim 5.0.4 and Claim 5.0.6 to get a contradiction with (5.6).

Case 1. (σ = 0) Applying Claim 5.0.6 (with C = 1) we see that since σ = 0 we have that

there are exactly r indices with i ∈ [r] such that max{xi, yi} ≥ 0 = σN
C

and thus Claim 5.0.6

together with Claim 5.0.4 gives

2N = z1 +
r∑

i=2

zi ≤
r

α− (r − 1)
N + (2r − 2− α)N =

(
r

α− (r − 1)
+ 2r − 2− α

)
N

which contradicts (5.6).

Case 2. (σ > 0)

Set C = (α−(r−1))σ. Let t be the number of indices where max{xi, yi} ≥ σN
C

= N
α−(r−1)

.
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Now Claim 5.0.6 (with C = (α− (r − 1))σ) and Claim 5.0.4 implies

2N = z1 +
r∑

i=2

zi ≤
(

t

α− (r − 1)
+ (r − t)

σ

C
+ Cσ

)
N + (2r − 2− α(1 + σ2))N

=

(
t

α− (r − 1)
+

r − t

α− (r − 1)
+ (α− (r − 1))σ2 + 2r − 2− α(1 + σ2)

)
N

=

(
r

α− (r − 1)
+ 2r − 2− α− σ2(r − 1)

)
N

≤
(

r

α− (r − 1)
+ 2r − 2− α

)
N

which, as before, contradicts (5.6).

Now we prove Theorem 4.0.11 using the claims proven.

Proof of Theorem 4.0.11. Let G = KN,N such that N ≥ 3.6678n and is an integer. Let

α = N
n
, and note that α ≥ 3.6678. (The exact bound we will get from our calculations is

actually the largest of the three real solutions to the cubic polynomial 4α3−20α2+19α+2 = 0.

However, the exact form of this solution is quite ugly, so we give the approximation 3.6678

instead).

Next note that for any positive integer k,

σ(k − ασ) ≤ k2

4α
(5.7)

with the maximum occurring when σ = k
2α
.

When σ = 0 we do the same as above, but note that since r = 3, there is one side, without

loss of generality say X(G), in which at most one of {X1, X2, X3} is non-empty. This fact
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together with Claim 5.0.5 and Claim 5.0.4 implies

N = |X| ≤ 1

α− 2
N + (4− α)N,

which is a contradiction when α > 5+
√
5

2
≈ 3.618.

When σ > 0, Claim 5.0.6 (with C = 1) and Claim 5.0.4 imply

2N = z1 + (z2 + z3) ≤ (
t

α− 2
+ (3− t)σ + σ)N + (4− α(1 + σ2))N. (5.8)

If t = 0, then (5.8) simplifies to

2N = z1 + (z2 + z3) ≤ 4σN + (4− α(1 + σ2))N = (4− α + σ(4− ασ))N

(5.7)

≤ (4− α +
4

α
)N,

which is a contradiction when α > 1 +
√
5 ≈ 3.2361.

When t ≥ 1, note that there is some set W ∈ {X1, X2, X3, Y1, Y2, Y3} which has order at

least σN . So by Claim 5.0.5, we have σN ≤ |W | ≤ 1
α−2

N, and thus

σ ≤ 1

α− 2
. (5.9)
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Now when 1 ≤ t ≤ 2, (5.8) gives us

2N = z1 + (z2 + z3) ≤ (
t

α− 2
+ (3− t)σ + σ)N + (4− α(1 + σ2))N

(5.9)

≤
(

2

α− 2
+ 4− α + σ(2− ασ)

)
N

(5.7)

≤
(

2

α− 2
+ 4− α +

1

α

)
N

which is a contradiction when α > 3+
√
17

2
≈ 3.5616.

Finally when t = 3, we may suppose without loss of generality that x1, y2, and y3 are at

least σN . Thus

σ2N2 ≥
3∑

i=1

xiyi =
3∑

i=1

min{xi, yi}max{xi, yi} ≥ σN
3∑

i=1

min{xi, yi},

which implies

x2 + x3 ≤ y1 + x2 + x3 ≤ σN. (5.10)

Now by Claims 5.0.5 and (5.10) we have

N = |X| = x1 + (x2 + x3) ≤
N

α− 2
+ σN + (4− α(1 + σ2))N

= (
1

α− 2
+ 4− α + σ(1− ασ))N

(5.7)

≤ (
1

α− 2
+ 4− α +

1

4α
)N

which is a contradiction when α ≥ 3.6678.
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Chapter 6

Conclusion

6.1 Summary

Combining the known bounds and the bounds for Br(Sn,n proven in this thesis we have

2n+ 1 r = 2

(2 +
√
2)n− 2 r = 3

5n+ 1 r = 4

(4 +
√
6)n− 3 r = 5

(2r − 4)n+ 1 r ≥ 6



≤ Br(Sn,n) ≤



2n+ 1 r = 2

3.6678n r = 3(
3r−5+

√
r2−2r+9
2

)
n+ 1 r ≥ 4

with the new results proven in this thesis displayed in colored text.
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6.2 Open Problems

The immediate continuation of the problem is to continue improving the bounds and solve

for an exact equation to calculate Br(Sn,n) for any r ≥ 2. While examining the exact values

determined and comparing to the current bounds, it appears that the lower bound is a tighter

bound than the upper bound. Thus improving the upper bound will have the most impact

in finishing the problem.

In addition to further improving Br(Sn,n), it is interesting to consider the case of mul-

ticolored bipartite Ramsey numbers of unbalanced double stars, Br(Sn,m). The unbalanced

variation of this problem has been found to behave differently than the bounds for Br(Sn,n).

Grossman, Harary and Klawe [8] proved that

R(Sn,m) =


max{2n+ 1, n+ 2m+ 2}, if n is odd and m ≤ 2

max{2n+ 2, n+ 2m+ 2}, if n is even or m ≥ 3, and n ≤
√
2m or n ≥ 3m

and conjectured that their result would hold when
√
2m < n < 3m. Recently Norin, Sun,

and Zhao [12] proved this was not the case, when n = 2m they showed that S2m,m ≥ 4.2m.

In 2023, Flores Dubó and Stein [7] proved that S2m,m ≤ 4.275m.
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