Empirical Comparison of Robustness of Classifiers on IR Imagery

Document Type

Conference Proceeding

Publication Date



Many classifiers have been proposed for ATR applications. Given a set of training data, a classifier is built from the labeled training data, and then applied to predict the label of a new test point. If there is enough training data, and the test points are drawn from the same distribution (i.i.d.) as training data, then many classifiers perform quite well. However, in reality, there will never be enough training data or with limited computational resources we can only use part of the training data. Likewise, the distribution of new test points might be different from that of the training data, whereby the training data is not representative of the test data. In this paper, we empirically compare several classifiers, namely support vector machines, regularized least squares classifiers, C4.4, C4.5, random decision trees, bagged C4.4, and bagged C4.5 on IR imagery. We reduce the training data by half (less representative of the test data) each time and evaluate the resulting classifiers on the test data. This allows us to assess the robustness of classifiers against a varying knowledge base. A robust classifier is the one whose accuracy is the least sensitive to changes in the training data. Our results show that ensemble methods (random decision trees, bagged C4.4 and bagged C4.5) outlast single classifiers as the training data size decreases.



This document is currently not available here.