GPU-Accelerated Computing with Gibbs Sampler for the 2PNO IRT Model

Document Type

Conference Proceeding

Publication Date



Item response theory (IRT) is a popular approach used for addressing large-scale statistical problems in psychometrics as well as in other fields. The fully Bayesian approach for estimating IRT models is usually memory and computational expensive due to the large number of iterations. This limits the use of the procedure in many applications. In an effort to overcome such restrictions, previous studies proposed to tackle the problem using massive core-based graphic processing units (GPU), and demonstrated the advantage of this approach over the message passing interface (MPI) by showing that a single GPU card could achieve a speedup of up to 50×. Given that GPU is practical, cost-effective, and convenient, this study aims to seek further improvements using a single GPU card.



This document is currently not available here.