Date of Award


Document Type


Degree Name

Master of Science (MS)


College of Science and Mathematics



Thesis Sponsor/Dissertation Chair/Project Chair

Scott Kight

Committee Member

Robert Prezant

Committee Member

Lisa Hazard


Lateral biases and alternation of directional turns influence impact navigation, foraging, and predator avoidance in diverse animal species. Extended alternating turn successions are known to reflect anti-predation escape behaviors of organisms in complex environments. This study examined the effects of chemosensory cues from bluegill sunfish, Lepomis macrochirus, red-eared slider turtles Trachemys scripta elegans, American bullfrogs, Rana catesbeiana, and conspecific giant waterbugs on turning behaviors of Belostoma flumineum in a multiple T-maze.

As a study population, B. flumineum were found to perform significantly different alternating turn behaviors than those predicted, but overall were not influenced by any one specific treatment. When compared by sex, males and females were found to make significantly different alternating turn responses when exposed to bluegill sunfish cues, reflecting possible sex-dependent cue reception and/or perception. As seen in prior turnbehavioral studies, a left-turn bias was expressed throughout the entire experiment, by both males and females, across all treatments except for conspecific waters, another example of cue association, however, these observations were only noticeably important, but not statistically significant.

While overall female lateralized (right- and left-) frequencies were noticeably different from expected frequencies, only overall alternating turn frequencies of males throughout the entire study were found to significantly differ from those expected. This may be explained by the distinct inverse lateralized turn frequencies observed between conspecific and slider responses.

These trends may be associated with reproductive life-history adaptations of successful parental males, as males provide exclusive parental care to eggs. Future turning behavior research should include testing encumbered males, expanding cue types associated with relevant life histories, and observing hatching success when paternal males are exposed to potentially threatening environmental cues.

File Format


Included in

Biology Commons