Title

Minimizing the Number of Independent Sets in Triangle-Free Regular Graphs

Document Type

Article

Publication Date

3-1-2018

Abstract

Recently, Davies, Jenssen, Perkins, and Roberts gave a very nice proof of the result (due, in various parts, to Kahn, Galvin–Tetali, and Zhao) that the independence polynomial of a d-regular graph is maximized by disjoint copies of Kd,d. Their proof uses linear programming bounds on the distribution of a cleverly chosen random variable. In this paper, we use this method to give lower bounds on the independence polynomial of regular graphs. We also give a new bound on the number of independent sets in triangle-free cubic graphs.

DOI

10.1016/j.disc.2017.11.016

This document is currently not available here.

Share

COinS