Document Type


Publication Date


Journal / Book Title



This issue showcases a compilation of papers on fluid mechanics (FM) education, covering different sub topics of the subject. The success of the first volume [1] prompted us to consider another follow-up special issue on the topic, which has also been very successful in garnering an impressive variety of submissions. As a classical branch of science, the beauty and complexity of fluid dynamics cannot be overemphasized. This is an extremely well-studied subject which has now become a significant component of several major scientific disciplines ranging from aerospace engineering, astrophysics, atmospheric science (including climate modeling), biological and biomedical science and engineering, energy harvesting, oceanography, geophysical and environmental science and engineering, etc. While each of these disciplines has its own nuances and specific constraints, the fundamental physics behind the kinds of ‘flow’ phenomena discussed remains the same. In this volume, we bring together articles from authors with diverse expertise ranging from mathematics, physics, mechanical engineering, aerospace engineering, environmental engineering, and chemical engineering to discuss topics in fluid mechanics, many of which are of multidisciplinary interest. The focus of all articles in this issue remains on the presentation of fundamental and advanced ideas on fluid mechanics which are suitable for presentation in an undergraduate or graduate course in fluid mechanics. Overall, I would divide the collection into the following four categories: (a) Pedagogy of fluid mechanics; (b) experimental or lab-based perspectives; (c) computational approaches; and (d) mathematical fluid mechanics. The following pages provide a brief summary of each of the contributions.


Published Citation

Vaidya, Ashwin. "Contributions to the Teaching and Learning of Fluid Mechanics." Fluids 6, no. 8 (2021): 269.