Title

Voluntary Exercise Inhibits Intestinal Tumorigenesis in Apc(Min/+) Mice and Azoxymethane/Dextran Sulfate Sodium-Treated Mice.

Document Type

Article

Publication Date

1-1-2008

Abstract

BACKGROUND: Epidemiological studies suggest that physical activity reduces the risk of colon cancer in humans. Results from animal studies, however, are inconclusive. The present study investigated the effects of voluntary exercise on intestinal tumor formation in two different animal models, Apc(Min/+) mice and azoxymethane (AOM)/dextran sulfate sodium (DSS)-treated mice. METHODS: In Experiments 1 and 2, five-week old female Apc(Min/+) mice were either housed in regular cages or cages equipped with a running wheel for 6 weeks (for mice maintained on the AIN93G diet; Experiment 1) or 9 weeks (for mice on a high-fat diet; Experiment 2). In Experiment 3, male CF-1 mice at 6 weeks of age were given a dose of AOM (10 mg/kg body weight, i.p.) and, 12 days later, 1.5% DSS in drinking fluid for 1 week. The mice were then maintained on a high-fat diet and housed in regular cages or cages equipped with a running wheel for 16 weeks. RESULTS: In the Apc(Min/+) mice maintained on either the AIN93G or the high-fat diet, voluntary exercise decreased the number of small intestinal tumors. In the AOM/DSS-treated mice maintained on a high-fat diet, voluntary exercise also decreased the number of colon tumors. In Apc(Min/+) mice, voluntary exercise decreased the ratio of serum insulin like growth factor (IGF)-1 to IGF binding protein (BP)-3 levels. It also decreased prostaglandin E2 and nuclear beta-catenin levels, but increased E-cadherin levels in the tumors. CONCLUSION: These results indicate hat voluntary exercise inhibited intestinal tumorigenesis in Apc(Min/+) mice and AOM/DSS-treated mice, and the inhibitory effect is associated with decreased IGF-1/IGFBP-3 ratio, aberrant beta-catenin signaling, and arachidonic acid metabolism.

DOI

10.1186/1471-2407-8-316

This document is currently not available here.

COinS