Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo

B. P. Abbott, California Institute of Technology
R. Abbott, University of Florida
M. R. Abernathy, University of Glasgow
R. X. Adhikari, Max Planck Institute for Gravitational Physics (Albert Einstein Institute)
S. B. Anderson, National Science Foundation
K. Arai, Louisiana State University
M. C. Araya, ComUE Paris-Saclay
Marc Favata, Montclair State University
Shaon Ghosh, Montclair State University
Rodica Martin, Montclair State University

Abstract

We present a possible observing scenario for the Advanced LIGO and Advanced Virgo gravitational-wave detectors over the next decade, with the intention of providing information to the astronomy community to facilitate planning for multi-messenger astronomy with gravitational waves. We determine the expected sensitivity of the network to transient gravitational-wave signals, and study the capability of the network to determine the sky location of the source. We report our findings for gravitational-wave transients, with particular focus on gravitational-wave signals from the inspiral of binary neutron-star systems, which are considered the most promising for multi-messenger astronomy. The ability to localize the sources of the detected signals depends on the geographical distribution of the detectors and their relative sensitivity, and 90% credible regions can be as large as thousands of square degrees when only two sensitive detectors are operational. Determining the sky position of a significant fraction of detected signals to areas of 5 deg 2 to 20 deg 2 will require at least three detectors of sensitivity within a factor of ~ 2 of each other and with a broad frequency bandwidth. Should the third LIGO detector be relocated to India as expected, a significant fraction of gravitational-wave signals will be localized to a few square degrees by gravitational-wave observations alone.