Occurrence of Soil and Tick-Borne Fungi and Related Virulence Tests for Pathogenicity to Ixodes Scapularis (Acariixodidae)

Document Type


Publication Date



Ixodes scapularis Say, the blacklegged tick, vectors Borrelia burgdorferi Johnson et al. 1984, the bacterium that causes Lyme disease, the most important vector-borne disease in the United States. Efforts to reduce I. scapularis populations are shifting toward the development of biological control methods. Currently, only a few entomopathogenic fungal species are considered virulent to ticks. We hypothesized that these species may not represent the most abundant local taxa that would be pathogenic to ticks in situ. To identify potential entomopathogenic fungi at a study site in Westchester County, New York, we sampled soils and ticks, extracted and amplified the internal transcribed spacer region of nuclear ribosomal DNA (nrDNA), and compared sequences with those in GenBank. Over three sampling periods from June 2007 to May 2008, 70 fungal taxa were isolated and identified from soils (48 taxa) and ticks (27 taxa; 5 taxa were found both in soil and on ticks) collected in this study, encompassing species in 25 different genera. In laboratory bioassays, 15 fungal taxa were found to be significantly virulent, although none of these were previously considered common pathogens of I. scapularis. Two species, Hypocrea lixii Patouillard 1891 and Penicillium soppii K. M. Zalessky 1927, were tested in field trials by spraying suspensions on forested plots. Mean tick mortality was 71% after treatment with H. lixii, 58% after treatment with P. soppii, and 32% in the control plots. The complete diversity of entomopathogenic fungal species at this site is yet to be defined, but, in general, such fungi appear to be more common in forest habitats where I. scapularis resides than previously thought. Examination of intact fungal communities can provide information that serves as the foundation for site-specific biocontrol programs.

This document is currently not available here.