A tale of two genes: Divergent evolutionary fate of haptoglobin and hemopexin in hemoglobinless Antarctic icefishes

Document Type

Article

Publication Date

1-1-2019

Journal / Book Title

Journal of Experimental Biology

Abstract

The evolution of Antarctic notothenioid fishes in the isolated freezing Southern Ocean has led to remarkable trait gains and losses. One of the most extraordinary was the loss of the major oxygen carrier hemoglobin (Hb) in the icefishes (family Channichthyidae). Although the mechanisms of this loss and the resulting compensatory changes have been well studied, the impact of Hb loss on the network of genes that once supported its recycling and disposal has remained unexplored. Here, we report the functional fate and underlying molecular changes of two such key Hb-supporting proteins across the icefish family – haptoglobin (Hp) and hemopexin (Hx), crucial in removing cytotoxic free Hb and heme, respectively. Hp plays a critical role in binding free Hb for intracellular recycling and absent its primary client, icefish Hp transcription is now vanishingly little, and translation into a functional protein is nearly silenced. Hp genotype degeneration has manifested in separate lineages of the icefish phylogeny with three distinct nonsense mutations and a deletion frame shift, as well as mutated polyadenylation signal sequences. Thus, Hb loss appears to have diminished selective constraint on Hp maintenance, resulting in its stochastic, co-evolutionary drift towards extinction. Hx binds free heme for iron recycling in hepatocytes. In contrast to Hp, Hx genotype integrity is preserved in the icefishes and transcription occurs at levels comparable to those in the red-blooded notothenioids. The persistence of Hx likely owes to continued selective pressure for its function from mitochondrial and non-Hb cellular hemoproteins.

DOI

10.1242/jeb.188573

Journal ISSN / Book ISBN

85063623600 (Scopus)

This document is currently not available here.

Share

COinS