Multiple Forms of Phospholipase D following Germination and During Leaf Development of Castor Bean

Document Type

Article

Publication Date

6-1-1994

Abstract

Multiple molecular forms of phospholipase D (PLD; EC 3.1.4.4) were identified and partially characterized in endosperm of germinated seeds and leaves of castor bean (Ricinus communis L. var Hale). The different PLD forms were resolved by nondenaturing polyacrylamide gel electrophoresis, isoelectric focusing, and size-exclusion chromatography. PLD was detected with both a PLD activity assay and immunoblots with PLD-specific antibodies. There were three major forms of PLD, designated types 1, 2, and 3, based on their mobility during nondenaturing polyacrylamide gel electrophoresis. Molecular masses of the PLD variants were estimated at 330, 230, and 270 kD for the types 1, 2, and 3, respectively. Isoelectric points of the native type 1, 2, and 3 PLDs were approximately 6.2, 4.9, and 4.8. Under the in vitro assay conditions used, the three forms of PLD exhibited the same substrate specificity, hydrolyzing phosphatidylcholine (PC), phosphatidylethanolamine (PE), and phosphatidylglycerol (PG) but not phosphatidylserine (PS) and phosphatidylinositol (PI). The three forms of PLD differed in their substrate preferences, and the order of activities was: PLD 1, PE > PG = PC; PLD 2, PE > PG > PC; PLD 3, PE = PG = PC. The Km values of PLDs 1, 2, and 3 for PC were 1.92, 2.62, and 5.18 mM, respectively. These PLDs were expressed differentially following seed germination and during leaf development. Type 1 was found in the early stages of seedling growth and in young leaves, type 2 was present in all the tissues and growth stages examined, and type 3 was expressed in senescent tissues. The PLDs shifted from largely cytosolic to predominantly membrane-associated forms during leaf development. The present studies demonstrate the structural heterogeneity of plant PLD and growth stage-specific expression of different molecular forms. The possible role for the occurrence of multiple molecular forms of PLD in cellular metabolism is discussed.

This document is currently not available here.

Share

COinS