Document Type
Preprint
Publication Date
3-1-2024
Journal / Book Title
Mass Spectrometry Reviews
Abstract
Despite recent advances in glycomics, glycan characterization still remains an analytical challenge. Accordingly, numerous glycan-tagging reagents with different chemistries were developed, including those involving acid-base chemistry and/or free radical chemistry. Acid-base chemistry excels at dissociating glycans into their constituent components in a systematic and predictable manner to generate cleavages at glycosidic bonds. Glycans are also highly susceptible to depolymerization by free radical processes, which is supported by results observed from electron-activated dissociation techniques. Therefore, the free radical activated glycan sequencing (FRAGS) reagent was developed so as to possess the characteristics of both acid-base and free radical chemistry, thus generating information-rich glycosidic bond and cross-ring cleavages. Alternatively, the free radical processes can be induced via photodissociation of the specific carbon-iodine bond which gives birth to similar fragmentation patterns as the FRAGS reagent. Furthermore, the methylated-FRAGS (Me-FRAGS) reagent was developed to eliminate glycan rearrangements by way of a fixed charged as opposed to a labile proton, which would otherwise yield additional, yet unpredictable, fragmentations including internal residue losses or multiple external residue losses. Lastly, to further enhance glycan enrichment and characterization, solid-support FRAGS was developed.
DOI
10.1002/mas.21810
Montclair State University Digital Commons Citation
Murtada, Rayan; Finn, Shane; and Gao, Jinshan, "Development of mass spectrometric glycan characterization tags using acid-base chemistry and/or free radical chemistry" (2024). Department of Chemistry and Biochemistry Faculty Scholarship and Creative Works. 620.
https://digitalcommons.montclair.edu/chem-biochem-facpubs/620
Rights
This Accepted Manuscript is made freely accessible through the NSF Public Access Repository.