Evidence from Thermodynamics that DNA Photolyase Recognizes a Solvent-Exposed CPD Lesion
Document Type
Article
Publication Date
11-24-2011
Abstract
Binding of a cis,syn-cyclobutane pyrimidine dimer (CPD) to Escherichia coli DNA photolyase was examined as a function of temperature, enzyme oxidation state, salt, and substrate conformation using isothermal titration calorimetry. While the overall ΔG° of binding was relatively insensitive to most of the conditions examined, the enthalpic and entropic terms that make up the free energy of binding are sensitive to the conditions of the experiment. Substrate binding to DNA photolyase is generally driven by a negative change in enthalpy. Electrostatic interactions and protonation are affected by the oxidation state of the required FAD cofactor and substrate conformation. The fully reduced enzyme appears to bind approximately two additional water molecules as part of substrate binding. More significantly, the experimental change in heat capacity strongly suggests that the CPD lesion must be flipped out of the intrahelical base stacking prior to binding to the protein; the DNA repair enzyme appears to recognize a solvent-exposed CPD as part of its damage recognition mechanism.
DOI
10.1021/jp208129a
Montclair State University Digital Commons Citation
Wilson, Thomas J.; Crystal, Matthew A.; Rohrbaugh, Meredith C.; Sokolowsky, Kathleen P.; and Gindt, Yvonne, "Evidence from Thermodynamics that DNA Photolyase Recognizes a Solvent-Exposed CPD Lesion" (2011). Department of Chemistry and Biochemistry Faculty Scholarship and Creative Works. 83.
https://digitalcommons.montclair.edu/chem-biochem-facpubs/83