Fast and Efficient Bandwidth Reservation Algorithms for Dynamic Network Provisioning
Document Type
Article
Publication Date
7-17-2015
Abstract
Large-scale collaborative e-science requires fast and reliable data transfer with guaranteed performance, which is made possible by reserving bandwidth as needed in advance in high-performance networks. In scientific applications, users typically know the data size, the data available time, and the deadline to finish the data transfer, and they always wish to achieve the earliest possible finish time or the minimum time duration for the data transfer. On the other hand, the network service provider wishes to serve as many users’ bandwidth reservation requests (BRRs) as possible to maximize the network resource utilization without compromising their deadlines. Such multi-objective requirements and high system throughput call for a fast and efficient bandwidth reservation strategy that can quickly discover various reservation options in a time-varying network environment. We propose two bandwidth reservation algorithms with rigorous optimality proofs to compute the reservation options with the earliest completion time and with the shortest duration for a local BRR. Our algorithms aim to achieve the balanced resource utilization for the network system. Extensive simulation results demonstrate the superiority of the proposed algorithms in terms of execution time, success ratio, success ratio of BRRs with different priorities and searched complexity of BRRs in comparison with similar scheduling algorithms.
DOI
10.1007/s10922-013-9294-0
Montclair State University Digital Commons Citation
Zuo, Liudong; Zhu, Michelle; and Wu, Chase Qishi, "Fast and Efficient Bandwidth Reservation Algorithms for Dynamic Network Provisioning" (2015). Department of Computer Science Faculty Scholarship and Creative Works. 282.
https://digitalcommons.montclair.edu/compusci-facpubs/282