Document Type

Conference Proceeding

Publication Date

12-3-2014

Journal / Book Title

2014 IEEE 7th International Conference on Cloud Computing

Abstract

Hadoop is an emerging framework for parallel big data processing. While becoming popular, Hadoop is too complex for regular users to fully understand all the system parameters and tune them appropriately. Especially when processing a batch of jobs, default Hadoop setting may cause inefficient resource utilization and unnecessarily prolong the execution time. This paper considers an extremely important setting of slot configuration which by default is fixed and static. We proposed an enhanced Hadoop system called FRESH which can derive the best slot setting, dynamically configure slots, and appropriately assign tasks to the available slots. The experimental results show that when serving a batch of MapReduce jobs, FRESH significantly improves the makespan as well as the fairness among jobs.

DOI

10.1109/CLOUD.2014.106

Published Citation

J. Wang, Y. Yao, Y. Mao, B. Sheng and N. Mi, "FRESH: Fair and Efficient Slot Configuration and Scheduling for Hadoop Clusters," 2014 IEEE 7th International Conference on Cloud Computing, Anchorage, AK, USA, 2014, pp. 761-768, doi: 10.1109/CLOUD.2014.106.

Share

COinS