Independent Feature Analysis for Image Retrieval
Document Type
Article
Publication Date
2-28-2001
Abstract
Content-based image retrieval methods based on the Euclidean metric expect the feature space to be isotropic. They suffer from unequal differential relevance of features in computing the similarity between images in the input feature space. We propose a learning method that attempts to overcome this limitation by capturing local differential relevance of features based on user feedback. This feedback, in the form of accept or reject examples generated in respones to a query image, is used to locally estimate the strength of features along each dimension while taking into considertaion the correlation between features. This results in local neighborhood that are constricted along feature dimensions and that are most relevant, while elongated along less relevant ones. In addition to exploring and exploiting local principal information, the system seeks a global for efficient independent feature analysis by combining such local information. We provide experimental results that demonstrate the efficacy of our technique using both simulated and real-world data.
DOI
10.1016/S0167-8655(00)00100-8
Montclair State University Digital Commons Citation
Peng, Jing and Bhanu, Bir, "Independent Feature Analysis for Image Retrieval" (2001). Department of Computer Science Faculty Scholarship and Creative Works. 341.
https://digitalcommons.montclair.edu/compusci-facpubs/341