Locally Adaptive Metric Nearest-Neighbor Classification
Document Type
Article
Publication Date
9-1-2002
Abstract
Nearest-neighbor classification assumes locally constant class conditional probabilities. This assumption becomes invalid in high dimensions with finite samples due to the curse of dimensionality. Severe bias can be introduced under these conditions when using the nearest-neighbor rule. We propose a locally adaptive nearest-neighbor classification method to try to minimize bias. We use a Chi-squared distance analysis to compute a flexible metric for producing neighborhoods that are highly adaptive to query locations. Neighborhoods are elongated along less relevant feature dimensions and constricted along most influential ones. As a result, the class conditional probabilities are smoother in the modified neighborhoods, whereby better classification performance can be achieved. The efficacy of our method is validated and compared against other techniques using both simulated and real-world data.
DOI
10.1109/TPAMI.2002.1033219
Montclair State University Digital Commons Citation
Domeniconi, Carlotta; Peng, Jing; and Gunopulos, Dimitrios, "Locally Adaptive Metric Nearest-Neighbor Classification" (2002). Department of Computer Science Faculty Scholarship and Creative Works. 383.
https://digitalcommons.montclair.edu/compusci-facpubs/383