Weighted Kernel Density Estimation of the Prepulse Inhibition Test
Document Type
Article
Publication Date
9-26-2011
Abstract
Problem statement: The goal of this study was to devise a more reliable and sensitive method for analysis of experimental data of the Prepulse Inhibition (PPI), the reduction in startle reaction towards a startle-eliciting "pulse" stimulus when it is shortly preceded by a sub-threshold "prepulse" stimulus. Approach: Different from the conventional simple averaging-based method, we proposed a probabilistic approach to modeling the PPI data. With this probabilistic description, we reconstructed complete response signals from the PPI data and devised a nonparametric weighted Kernel Density Estimation (KDE) method to tackle two important issues in PPI data related density estimation: instability and limited number of samples. We designed two sets of animal experiments using different medicines and compared the KDE based method with the conventional simpleaveraging based method. Results: Our results showed that the KDE method performed better than the conventional method and offered some advantages over the conventional method. Conclusion: The new method provided a more reliable and sensitive approach to the post-session analysis of PPI data.
DOI
10.3844/jcssp.2011.611.618
Montclair State University Digital Commons Citation
Zhou, Hongbo; Cheng, Qiang; Yang, Hong Ju; and Xu, Haiyun, "Weighted Kernel Density Estimation of the Prepulse Inhibition Test" (2011). Department of Computer Science Faculty Scholarship and Creative Works. 629.
https://digitalcommons.montclair.edu/compusci-facpubs/629