WordPrep: Word-based Preposition Prediction Tool

Document Type

Conference Proceeding

Publication Date

12-1-2019

Journal / Book Title

Proceedings 2019 IEEE International Conference on Big Data Big Data 2019

Abstract

As big data heads towards big knowledge, data management and machine learning techniques work together to address several interesting problems. In this paper, we address a problem in natural language processing that involves learning by mining from large text databases. More specifically, we deal with the problem of preposition prediction, especially for ESL (English as a second language) learners. Prepositions are function words that typically show a relationship between a noun or a pronoun and other elements of a sentence. They play a key role in determining the meaning of a sentence. Accurate prediction of correct prepositions in a sentence is a challenging job since preposition usage is one of the most subtle aspects of the English grammar, making it difficult for non-native speakers. This paper proposes an approach for preposition prediction called WordPrep based on which we build a tool. WordPrep relies on mining based on the words themselves rather than on their lexical or syntactic connotations. This addresses the challenges of prepositions appearing in idiomatic phrases or in different semantic contexts, due to which the actual words are better than their grammatical positions. Our proposed solution entails a direct data-driven approach to predict the missing preposition in a sentence by learning from matching tokens consisting of ngrams with words before and after the preposition. Using various searches and pattern-matching methods against a large number of database records from big text corpora, this approach predicts the missing preposition(s). We describe our pilot approach, tool implementation and experiments in this paper. This work is particularly helpful for pedagogical applications.

DOI

10.1109/BigData47090.2019.9005608

This document is currently not available here.

Share

COinS