Adaptive Metric Nearest Neighbor Classification
Document Type
Conference Proceeding
Publication Date
1-1-2000
Abstract
Nearest neighbor classification assumes locally constant class conditional probabilities. This assumption becomes invalid in high dimensions with finite samples due to the curse of dimensionality. Severe bias can be introduced under these conditions when using the nearest neighbor rule. We propose a locally adaptive nearest neighbor classification method to try to minimize bias. We use a Chi-squared distance analysis to compute a flexible metric for producing neighborhoods that are highly adaptive to query locations. Neighborhoods are elongated along less relevant feature dimensions and constricted along most influential ones. As a result, the class conditional probabilities tend to be smoother in the modified neighborhoods, whereby better classification performance can be achieved. The efficacy of our method is validated and compared against other techniques using a variety of simulated and real world data.
Montclair State University Digital Commons Citation
Domeniconi, Carlotta; Peng, Jing; and Gunopulos, Dimitrios, "Adaptive Metric Nearest Neighbor Classification" (2000). Department of Computer Science Faculty Scholarship and Creative Works. 81.
https://digitalcommons.montclair.edu/compusci-facpubs/81