Magnetic and Geochemical Evidence of Yellow and Yangtze River Influence on Tidal Flat Deposits in Northern Jiangsu Plain, China

Document Type

Article

Publication Date

8-1-2012

Abstract

The formation of a broad tidal flat along the coast of the northern Jiangsu Province of China depends largely on the sediment supply from the Yellow and Yangtze Rivers although the relative contributions from each of these two large rivers remain uncertain. Knowledge of sediment sources to the tidal flat is critical for understanding the evolution of this muddy coast impacted by the large rivers. The present study focuses on tracking the sediment source of the tidal flat deposits based on sediment magnetic properties and geochemical analyses as well as statistical analysis. The study shows that sediments to the north of Yangkougang (site 9) have lower values of saturation isothermal remanence magnetization (SIRM), magnetic susceptibility (χ), demagnetization parameter S -100 ratios, lower Fe/Al values and higher Ca concentrations, while the opposite is true for samples south to Haozhigang (site 18). In addition, SIRM values of the <16μm and >63μm fractions generally display increasing trend from north to south. These results suggest that sediment sources rather than particle size variation are the dominant factors influencing the bulk magnetic properties. In light of the sediment composition comparison between the Yellow River and Yangtze River, factor analysis is used to identify sediment source of the tidal flat sediments. It is indicated that the Yellow River in its former course is the dominant supplier for sites to the north of Yangkougang (site 9), while the Yangtze River is the dominant supplier for sites to the south of Haozhigang (site 18). The coast between Yangkougang (site 9) and Haozhigang (site 18) is a transition zone influenced by both rivers. The inferred provenance contrasts are consistent with the pattern of coastal geomorphological evolution. Our data also suggest that sediments eroded from the former Yellow River delta have contributed to the evolution of the Yangtze Estuary in historical time. This study demonstrates that a combined magnetic and geochemical fingerprinting techniques in couple with statistical analysis is valuable for identifying sediment sources of tidal flats and deltas influenced by large rivers in the world.

DOI

10.1016/j.margeo.2012.07.002

This document is currently not available here.

Share

COinS