Principal Component Analysis to Assess the Efficiency and Mechanism for Enhanced Coagulation of Natural Algae-Laden Water using a Novel Dual Coagulant System
Document Type
Article
Publication Date
2-1-2014
Abstract
A novel dual coagulant system of polyaluminum chloride sulfate (PACS) and polydiallyldimethylammonium chloride (PDADMAC) was used to treat natural algae-laden water from Meiliang Gulf, Lake Taihu. PACS (Aln(OH)mCl3n-m-2k(SO4)k) has a mass ratio of 10 %, a SO4 2-/Al3 + mole ratio of 0.0664, and an OH/Al mole ratio of 2. The PDADMAC ([C8H16NCl]m) has a MW which ranges from 5 × 105 to 20 × 105 Da. The variations of contaminants in water samples during treatments were estimated in the form of principal component analysis (PCA) factor scores and conventional variables (turbidity, DOC, etc.). Parallel factor analysis determined four chromophoric dissolved organic matters (CDOM) components, and PCA identified four integrated principle factors. PCA factor 1 had significant correlations with chlorophyll-a (r = 0.718), protein-like CDOM C1 (0.689), and C2 (0.756). Factor 2 correlated with UV254 (0.672), humic-like CDOM component C3 (0.716), and C4 (0.758). Factors 3 and 4 had correlations with NH3-N (0.748) and T-P (0.769), respectively. The variations of PCA factors scores revealed that PACS contributed less aluminum dissolution than PAC to obtain equivalent removal efficiency of contaminants. This might be due to the high cationic charge and pre-hydrolyzation of PACS. Compared with PACS coagulation (20 mg L-1), the removal of PCA factors 1, 2, and 4 increased 45, 33, and 12 %, respectively, in combined PACS-PDADMAC treatment (0.8 mg L-1 + 20 mg L-1). Since PAC contained more Al (0.053 g/1 g) than PACS (0.028 g/1 g), the results indicated that PACS contributed less Al dissolution into the water to obtain equivalent removal efficiency.
DOI
10.1007/s11356-013-2077-z
MSU Digital Commons Citation
Ou, Hua Se; Wei, Chao Hai; Deng, Yang; Gao, Nai Yun; Ren, Yuan; and Hu, Yun, "Principal Component Analysis to Assess the Efficiency and Mechanism for Enhanced Coagulation of Natural Algae-Laden Water using a Novel Dual Coagulant System" (2014). Department of Earth and Environmental Studies Faculty Scholarship and Creative Works. 484.
https://digitalcommons.montclair.edu/earth-environ-studies-facpubs/484