Vegetation Response to Intensive Commercial Horticulture and Environmental Changes within Watersheds in Central Highlands, Kenya, Using AVHRR NDVI Data

Document Type

Article

Publication Date

1-2-2016

Abstract

Expansion and heterogeneous clustering of commercial horticulture within the central highlands of Kenya after the mid-1990s impact watersheds and the sustainable resource management. This is distressing since climate conditions for world horticultural regions are projected to change, making such farming extremely difficult and costly to the environment. To understand the scope of impact on vegetation, the study evaluated (1) interannual variability in averaged normalized difference vegetation index (NDVI); (2) trends in average annual NDVI before and after 1990 - the presumed onset of rapid horticulture; and (3) relationship between the average annual NDVI and large-scale commercial farms, population density, and mean annual rainfall in subwatersheds. Time-series analysis of long-term Global Inventory Modeling and Mapping Studies NDVI data were analyzed as indicator of vegetation condition. NDVI trends before 1990s (1982-1989) and after 1990s (1990-2006) were evaluated to determine the slope (sign), and the Spearmans correlation coefficient (strength). Overall, results show considerable variations in vegetation condition due largely to mixed factors including intensive farming activities, drought, and rainfall variation. Statistical analysis shows significant differences in slopes before 1990 and after 1990 (p < 0.05 and p < 0.1 respectively). Negative (decline) trends were common after 1990, linked to increased commercial horticulture and related anthropogenic disturbances on land cover. There was decline in vegetation over densely populated subwatersheds, though low NDVI values in 1984 and 2000 were the effect of severe droughts. Understanding the linkage between vegetation responses to the effects of human-induced pressure at the subwatershed scale can help natural resource managers approach conservation measures more effectively.

DOI

10.1080/15481603.2015.1085736

This document is currently not available here.

Share

COinS