Document Type

Article

Publication Date

11-15-2025

Journal / Book Title

Earth and Planetary Science Letters

Abstract

The Cretaceous-Paleogene boundary (KPB) represents a massive extinction event in Earth's history, probably triggered by the Chicxulub asteroid impact ∼66 Ma. The event dispersed vast volumes of ejecta materials including exceptionally preserved impact spherules in the Gorgonilla Island KPB section. Previous work identified three populations of spherules at Gorgonilla: 1) ballistically transported molten spherules, 2) a mixture of molten and condensed spherules dispersed by the expansion of a high-temperature, turbulent cloud (the "pyrocloud"), and 3) tiny droplets condensed from the plume (the "fireball layer"). We determine the Mg, Fe, and Ca isotopic compositions of pristine spherules to better understand the evaporation and condensation thermodynamics within the pyrocloud. We detect enrichment in mass bias corrected µ48Ca and µ26Mg* isotope signatures from the terrestrial value corresponding to an impactor contribution of ∼17–25%, most likely from a CM or CO chondrite-like asteroid. The mass-dependent δ25Mg and δ56Fe compositions are generally light or unfractionated, suggesting incomplete recondensation as the pyrocloud cooled and expanded. Combined δ25Mg and δ56Fe signatures reveal decoupling of these isotope systems, likely due to differing condensation rates. Thus, we calculate a higher average condensation rate of Fe than Mg, reflecting the thermodynamic decoupling and more complete recondensation signatures of Fe in the pyrocloud vapor. While we uncover information about the evaporation and condensation thermodynamics in the pyrocloud, the exact formation mechanisms of the complete suite of spherules remain complex with some spherules potentially forming from multiple mechanisms, including recondensation and splash–melting.

Comments

© 2025 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

DOI

10.1016/j.epsl.2025.119599

Published Citation

Rundhaug, Courtney Jean, et al. “Magnesium, Iron, and Calcium Isotope Signatures of Chicxulub Impact Spherules: Isotopic Fingerprint of the Projectile and Plume Thermodynamics.” Earth and Planetary Science Letters, vol. 670, Nov. 2025, p. 119599.

Share

COinS