Date of Award
5-2016
Document Type
Thesis
Degree Name
Master of Science (MS)
College/School
College of Science and Mathematics
Department/Program
Mathematical Sciences
Thesis Sponsor/Dissertation Chair/Project Chair
Ashwin Vaidya
Committee Member
Bong Jae Chung
Committee Member
Diana Thomas
Abstract
The terminal orientation of a rigid body is a classic example of a system out of thermodynamic equilibrium and a perfect testing ground for the validity of the maximum entropy production principle(MEPP). A freely falling body in a quiescent fluid generates fluid flow around the body resulting in dissipative losses. Thus far, dynamical equations have been employed in deriving the equilibrium states of such falling bodies, but they are far too complex and become analytically intractable when inertial effects come into play. At that stage, our only recourse is to rely on numerical techniques which can be computationally expensive. In the past, it has been shown that the MEPP is a reliable tool to help predict mechanical equilibrium states of free falling, highly symmetric bodies such as cylinders, spheroids and toroidal bodies. Physicists have been able to show that the MEPP correctly helps choose the stable equilibrium in cases when the system is slightly out of thermodynamic equilibrium. In this thesis, we expand our analysis to examine bodies with fewer symmetries than previously reported, for instance, a half-cylinder. Using two-dimensional numerical studies at Reynolds numbers substantially greater than zero, we examine the validity of the MEPP. Does the principle still hold up when a sedimenting body is no longer isotropic nor has three planes of symmetry? In addition, we also examine the relation between entropy production and dynamical quantities such as drag force to find possible qualitative relations between them.
File Format
Recommended Citation
Ortega, Blas J., "Application of Nonequilibrium Thermodynamics to Pattern Selection in Fluid Solid Interaction" (2016). Theses, Dissertations and Culminating Projects. 564.
https://digitalcommons.montclair.edu/etd/564