Date of Award
5-2011
Document Type
Thesis
Degree Name
Master of Science (MS)
College/School
College of Science and Mathematics
Department/Program
Mathematical Sciences
Thesis Sponsor/Dissertation Chair/Project Chair
Aihua Li
Committee Member
Michael A. Jones
Committee Member
Jonathan Cutler
Abstract
In this paper, I investigate polynomial solutions to the Diophantine equa tion, X² +Y³ = 6912Z², where X = g(x,y), Y = h(x,y) and Z = f(x,y) are polynomials with integer coefficients. The focus is on the greatest common di visors for the integer values of these polynomials when the polynomials f (x, y), g(x, y) and h(x, y) are relatively prime in Q[x, y]. However, for a fixed integer pair xo, Yo, the integer values f(x0,y0), g(x0, y0) and h(x0,y0) are not necessarily relatively prime in Z. I investigate the greatest common divisors (GCDs) of these three polynomial values for specific integer pairs x0 and y0· First, I study the cases where y0 = 1 and y0 = 2. For these cases, a complete distribution of the GCDs is given. Furthermore, I use the Euclidean Algorithm and Grobner Basis techniques to determine the GCDs for f(x0, y0), g(x0, y0) and h(x0, y0) in Z by obtaining multiples of the GCDs of the polynomials. Then, the results from the cases y0 = 1 and y0 = 2 are generalized to obtain similar properties of the GCDs for all possible integer values of x and y. For the cases where the integer values are not relatively prime, the possible prime divisors of the GCDs and integer bounds for the powers of prime divisors are determined. Finally, polynomial solutions to new Diophantine equations are derived from the original Diophantine equation.
File Format
Recommended Citation
Demirel, Emel, "Polynomial Solutions to the Diophantine Equation x² + y³ = 6912z²" (2011). Theses, Dissertations and Culminating Projects. 820.
https://digitalcommons.montclair.edu/etd/820