A Weighted Sum Genetic Algorithm to Support Multiple-Party Multiple-Objective Negotiations
Document Type
Article
Publication Date
8-1-2002
Abstract
Negotiations are a special class of group decision-making problems that can be formulated as constrained optimization problems and are characterized by high degrees of conflict among the negotiation participants. A variety of negotiation support techniques have been used to help find solutions acceptable to all parties in a negotiation. This paper presents an approach that employs a genetic algorithm (GA) for finding acceptable solutions for multiparty multiobjective negotiations. The GA approach is consistent with the complex nature of real-world negotiations and is, therefore, capable of addressing more realistic negotiation scenarios than previous techniques in the literature allow. In addition to the traditional genetic operators of reproduction, crossover, and mutation, the search is enhanced with a new operator called trade. The trade operator simulates concessions that might be made by parties during the negotiation process. GA performance with the trade operator is compared to a traditional GA, nonlinear programming, a hill-climber, and a random search. Experimental results show the GA with the trade operator performs better than these other more-traditional approaches.
DOI
10.1109/TEVC.2002.802874
MSU Digital Commons Citation
Rubenstein-Montano, Bonnie and Malaga, Ross, "A Weighted Sum Genetic Algorithm to Support Multiple-Party Multiple-Objective Negotiations" (2002). Department of Information Management and Business Analytics Faculty Scholarship and Creative Works. 31.
https://digitalcommons.montclair.edu/infomgmt-busanalytics-facpubs/31