"Maximal-Clique Partitions and the Roller Coaster Conjecture" by Jonathan Cutler and Luke Pebody
 

Maximal-Clique Partitions and the Roller Coaster Conjecture

Document Type

Article

Publication Date

1-1-2017

Abstract

A graph G is well-covered if every maximal independent set has the same cardinality q. Let ik(G) denote the number of independent sets of cardinality k in G. Brown, Dilcher, and Nowakowski conjectured that the independence sequence (i0(G),i1(G),…,iq(G)) was unimodal for any well-covered graph G with independence number q. Michael and Traves disproved this conjecture. Instead they posited the so-called “Roller Coaster” Conjecture: that the termsi⌈q2⌉(G),i⌈q2⌉+1(G),…,iq(G) could be in any specified order for some well-covered graph G with independence number q. Michael and Traves proved the conjecture for q<8 and Matchett extended this to q<12. In this paper, we prove the Roller Coaster Conjecture using a construction of graphs with a property related to that of having a maximal-clique partition. In particular, we show, for all pairs of integers 0≤k

DOI

10.1016/j.jcta.2016.06.019

This document is currently not available here.

Plum Print visual indicator of research metrics
PlumX Metrics
  • Citations
    • Citation Indexes: 5
  • Usage
    • Abstract Views: 4
  • Captures
    • Readers: 6
see details

Share

COinS