Latin Squares with Forbidden Entries
Document Type
Article
Publication Date
5-12-2006
Abstract
An n × n array is avoidable if there exists a Latin square which differs from the array in every cell. The main aim of this paper is to present a generalization of a result of Chetwynd and Rhodes involving avoiding arrays with multiple entries in each cell. They proved a result regarding arrays with at most two entries in each cell, and we generalize their method to obtain a similar result for arrays with arbitrarily many entries per cell. In particular, we prove that if m ∞ N there exists an N = N(m) such that if F is an N × N array with at most m entries in each cell, then F is avoidable.
MSU Digital Commons Citation
Cutler, Jonathan and Öhinan, Lars Daniel, "Latin Squares with Forbidden Entries" (2006). Department of Mathematics Facuty Scholarship and Creative Works. 99.
https://digitalcommons.montclair.edu/mathsci-facpubs/99