"Observation of A Kilogram-Scale Oscillator Near Its Quantum Ground Sta" by B. Abbott, R. Abbott et al.
 

Document Type

Article

Publication Date

7-16-2009

Journal / Book Title

New Journal of Physics

Abstract

We introduce a novel cooling technique capable of approaching the quantum ground state of a kilogram-scale system-an interferometric gravitational wave detector. The detectors of the Laser Interferometer Gravitational-wave Observatory (LIGO) operate within a factor of 10 of the standard quantum limit (SQL), providing a displacement sensitivity of 10-18 m in a 100 Hz band centered on 150 Hz. With a new feedback strategy, we dynamically shift the resonant frequency of a 2.7 kg pendulum mode to lie within this optimal band, where its effective temperature falls as low as 1.4μK, and its occupation number reaches about 200 quanta. This work shows how the exquisite sensitivity necessary to detect gravitational waves can be made available to probe the validity of quantum mechanics on an enormous mass scale.

DOI

10.1088/1367-2630/11/7/073032

Published Citation

Abbott, B., Abbott, R., Adhikari, R., Ajith, P., Allen, B., Allen, G., ... & Hanna, C. (2009). Observation of a kilogram-scale oscillator near its quantum ground state. New Journal of Physics, 11(7), 073032.

Plum Print visual indicator of research metrics
PlumX Metrics
  • Citations
    • Citation Indexes: 88
  • Usage
    • Downloads: 151
    • Abstract Views: 16
  • Captures
    • Readers: 158
see details

Included in

Physics Commons

Share

COinS