Date of Award
5-2022
Document Type
Thesis
Degree Name
Master of Science (MS)
College/School
College of Science and Mathematics
Department/Program
Computer Science
Thesis Sponsor/Dissertation Chair/Project Chair
Vaibhav Anu
Committee Member
Aparna Varde
Committee Member
Jiacheng Shang
Abstract
This thesis proposes and evaluates Machine Learning (ML) based data models to identify and isolate software requirements from datasets containing user app review statements. The ML models classify user app review statements into Functional Requirements (FRs), Non-Functional Requirements (NFRs), and Non-Requirements (NRs). This proposed approach consisted of creating a novel hybrid dataset that contains software requirements from Software Requirements Specification (SRS) documents and user app reviews. The Support Vector Machine (SVM), Stochastic Gradient Descent (SGD), and Random Forest (RF) ML algorithms combined with the term frequency-inverse document frequency (TF-IDF) natural language processing (NLP) technique were implemented on the hybrid dataset. The performance of each data model was evaluated by metrics such as accuracy, precision, recall, and F1 scores, and the models were validated using 10 k-fold cross-validation. The proposed approach can successfully identify and isolate software requirements with SGD performing the best with an accuracy of 83%. Overall, this thesis presents a comprehensive methodology for implementing machine learning algorithms combined with NLP techniques to identify requirements from user app reviews with a high degree of accuracy.
File Format
Recommended Citation
Dave, Dev Jayant, "Identifying Functional and Non-functional Software Requirements from User App Reviews and Requirements Artifacts" (2022). Theses, Dissertations and Culminating Projects. 1012.
https://digitalcommons.montclair.edu/etd/1012